Development of a Fundus Image-Based Deep Learning Diagnostic Tool for Various Retinal Diseases

Artificial intelligence (AI)-based diagnostic tools have been accepted in ophthalmology. The use of retinal images, such as fundus photographs, is a promising approach for the development of AI-based diagnostic platforms. Retinal pathologies usually occur in a broad spectrum of eye diseases, includi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of personalized medicine 2021-04, Vol.11 (5), p.321
Hauptverfasser: Kim, Kyoung Min, Heo, Tae-Young, Kim, Aesul, Kim, Joohee, Han, Kyu Jin, Yun, Jaesuk, Min, Jung Kee
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page 321
container_title Journal of personalized medicine
container_volume 11
creator Kim, Kyoung Min
Heo, Tae-Young
Kim, Aesul
Kim, Joohee
Han, Kyu Jin
Yun, Jaesuk
Min, Jung Kee
description Artificial intelligence (AI)-based diagnostic tools have been accepted in ophthalmology. The use of retinal images, such as fundus photographs, is a promising approach for the development of AI-based diagnostic platforms. Retinal pathologies usually occur in a broad spectrum of eye diseases, including neovascular or dry age-related macular degeneration, epiretinal membrane, rhegmatogenous retinal detachment, retinitis pigmentosa, macular hole, retinal vein occlusions, and diabetic retinopathy. Here, we report a fundus image-based AI model for differential diagnosis of retinal diseases. We classified retinal images with three convolutional neural network models: ResNet50, VGG19, and Inception v3. Furthermore, the performance of several dense (fully connected) layers was compared. The prediction accuracy for diagnosis of nine classes of eight retinal diseases and normal control was 87.42% in the ResNet50 model, which added a dense layer with 128 nodes. Furthermore, our AI tool augments ophthalmologist's performance in the diagnosis of retinal disease. These results suggested that the fundus image-based AI tool is applicable for the medical diagnosis process of retinal diseases.
doi_str_mv 10.3390/jpm11050321
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8142986</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2532409668</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-38ffc362ee7d159811adf8bb9fe30bfb8c4bda74b22bfe4803e8960560659ca33</originalsourceid><addsrcrecordid>eNpdkUtLxDAUhYMoKurKvQTcCFLNo80kG0FnfMGAIOrSkLY3Y4a2qUkr-O-N-GD0bnIh3zncw0Fon5ITzhU5XfYtpaQgnNE1tM3IpMjynIn1lX0L7cW4JGlkwZggm2grSalUSm6j5xm8QeP7FroBe4sNvhq7eoz4tjULyC5MhBrPAHo8BxM61y3wzJlF5-PgKvzgfYOtD_jJBOeT6h4G15kmMRGSNO6iDWuaCHvf7w56vLp8mN5k87vr2-n5PKtyooaMS2srLhjApKaFkpSa2sqyVBY4KW0pq7yszSQvGSst5JJwkEqQQhBRqMpwvoPOvnz7sWyhrlKaYBrdB9ea8K69cfrvT-de9MK_aUlzpqRIBkffBsG_jhAH3bpYQdOYDlIwzQpG5KQgSiX08B-69GNIqT8pzlIgIWSijr-oKvgYA9jfYyjRn9XpleoSfbB6_y_7UxT_AKsBlKw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2532409668</pqid></control><display><type>article</type><title>Development of a Fundus Image-Based Deep Learning Diagnostic Tool for Various Retinal Diseases</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Kim, Kyoung Min ; Heo, Tae-Young ; Kim, Aesul ; Kim, Joohee ; Han, Kyu Jin ; Yun, Jaesuk ; Min, Jung Kee</creator><creatorcontrib>Kim, Kyoung Min ; Heo, Tae-Young ; Kim, Aesul ; Kim, Joohee ; Han, Kyu Jin ; Yun, Jaesuk ; Min, Jung Kee</creatorcontrib><description>Artificial intelligence (AI)-based diagnostic tools have been accepted in ophthalmology. The use of retinal images, such as fundus photographs, is a promising approach for the development of AI-based diagnostic platforms. Retinal pathologies usually occur in a broad spectrum of eye diseases, including neovascular or dry age-related macular degeneration, epiretinal membrane, rhegmatogenous retinal detachment, retinitis pigmentosa, macular hole, retinal vein occlusions, and diabetic retinopathy. Here, we report a fundus image-based AI model for differential diagnosis of retinal diseases. We classified retinal images with three convolutional neural network models: ResNet50, VGG19, and Inception v3. Furthermore, the performance of several dense (fully connected) layers was compared. The prediction accuracy for diagnosis of nine classes of eight retinal diseases and normal control was 87.42% in the ResNet50 model, which added a dense layer with 128 nodes. Furthermore, our AI tool augments ophthalmologist's performance in the diagnosis of retinal disease. These results suggested that the fundus image-based AI tool is applicable for the medical diagnosis process of retinal diseases.</description><identifier>ISSN: 2075-4426</identifier><identifier>EISSN: 2075-4426</identifier><identifier>DOI: 10.3390/jpm11050321</identifier><identifier>PMID: 33918998</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Age ; Artificial intelligence ; Deep learning ; Diabetes ; Diabetes mellitus ; Diabetic retinopathy ; Differential diagnosis ; Disease ; Eye diseases ; Hemorrhage ; Macular degeneration ; Medical imaging ; Medical records ; Neural networks ; Photography ; Precision medicine ; Retina ; Retinitis ; Retinitis pigmentosa ; Retinopathy</subject><ispartof>Journal of personalized medicine, 2021-04, Vol.11 (5), p.321</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-38ffc362ee7d159811adf8bb9fe30bfb8c4bda74b22bfe4803e8960560659ca33</citedby><cites>FETCH-LOGICAL-c409t-38ffc362ee7d159811adf8bb9fe30bfb8c4bda74b22bfe4803e8960560659ca33</cites><orcidid>0000-0002-8006-8560 ; 0000-0002-0505-5559</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8142986/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8142986/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33918998$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Kyoung Min</creatorcontrib><creatorcontrib>Heo, Tae-Young</creatorcontrib><creatorcontrib>Kim, Aesul</creatorcontrib><creatorcontrib>Kim, Joohee</creatorcontrib><creatorcontrib>Han, Kyu Jin</creatorcontrib><creatorcontrib>Yun, Jaesuk</creatorcontrib><creatorcontrib>Min, Jung Kee</creatorcontrib><title>Development of a Fundus Image-Based Deep Learning Diagnostic Tool for Various Retinal Diseases</title><title>Journal of personalized medicine</title><addtitle>J Pers Med</addtitle><description>Artificial intelligence (AI)-based diagnostic tools have been accepted in ophthalmology. The use of retinal images, such as fundus photographs, is a promising approach for the development of AI-based diagnostic platforms. Retinal pathologies usually occur in a broad spectrum of eye diseases, including neovascular or dry age-related macular degeneration, epiretinal membrane, rhegmatogenous retinal detachment, retinitis pigmentosa, macular hole, retinal vein occlusions, and diabetic retinopathy. Here, we report a fundus image-based AI model for differential diagnosis of retinal diseases. We classified retinal images with three convolutional neural network models: ResNet50, VGG19, and Inception v3. Furthermore, the performance of several dense (fully connected) layers was compared. The prediction accuracy for diagnosis of nine classes of eight retinal diseases and normal control was 87.42% in the ResNet50 model, which added a dense layer with 128 nodes. Furthermore, our AI tool augments ophthalmologist's performance in the diagnosis of retinal disease. These results suggested that the fundus image-based AI tool is applicable for the medical diagnosis process of retinal diseases.</description><subject>Age</subject><subject>Artificial intelligence</subject><subject>Deep learning</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Diabetic retinopathy</subject><subject>Differential diagnosis</subject><subject>Disease</subject><subject>Eye diseases</subject><subject>Hemorrhage</subject><subject>Macular degeneration</subject><subject>Medical imaging</subject><subject>Medical records</subject><subject>Neural networks</subject><subject>Photography</subject><subject>Precision medicine</subject><subject>Retina</subject><subject>Retinitis</subject><subject>Retinitis pigmentosa</subject><subject>Retinopathy</subject><issn>2075-4426</issn><issn>2075-4426</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkUtLxDAUhYMoKurKvQTcCFLNo80kG0FnfMGAIOrSkLY3Y4a2qUkr-O-N-GD0bnIh3zncw0Fon5ITzhU5XfYtpaQgnNE1tM3IpMjynIn1lX0L7cW4JGlkwZggm2grSalUSm6j5xm8QeP7FroBe4sNvhq7eoz4tjULyC5MhBrPAHo8BxM61y3wzJlF5-PgKvzgfYOtD_jJBOeT6h4G15kmMRGSNO6iDWuaCHvf7w56vLp8mN5k87vr2-n5PKtyooaMS2srLhjApKaFkpSa2sqyVBY4KW0pq7yszSQvGSst5JJwkEqQQhBRqMpwvoPOvnz7sWyhrlKaYBrdB9ea8K69cfrvT-de9MK_aUlzpqRIBkffBsG_jhAH3bpYQdOYDlIwzQpG5KQgSiX08B-69GNIqT8pzlIgIWSijr-oKvgYA9jfYyjRn9XpleoSfbB6_y_7UxT_AKsBlKw</recordid><startdate>20210421</startdate><enddate>20210421</enddate><creator>Kim, Kyoung Min</creator><creator>Heo, Tae-Young</creator><creator>Kim, Aesul</creator><creator>Kim, Joohee</creator><creator>Han, Kyu Jin</creator><creator>Yun, Jaesuk</creator><creator>Min, Jung Kee</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8006-8560</orcidid><orcidid>https://orcid.org/0000-0002-0505-5559</orcidid></search><sort><creationdate>20210421</creationdate><title>Development of a Fundus Image-Based Deep Learning Diagnostic Tool for Various Retinal Diseases</title><author>Kim, Kyoung Min ; Heo, Tae-Young ; Kim, Aesul ; Kim, Joohee ; Han, Kyu Jin ; Yun, Jaesuk ; Min, Jung Kee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-38ffc362ee7d159811adf8bb9fe30bfb8c4bda74b22bfe4803e8960560659ca33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Age</topic><topic>Artificial intelligence</topic><topic>Deep learning</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Diabetic retinopathy</topic><topic>Differential diagnosis</topic><topic>Disease</topic><topic>Eye diseases</topic><topic>Hemorrhage</topic><topic>Macular degeneration</topic><topic>Medical imaging</topic><topic>Medical records</topic><topic>Neural networks</topic><topic>Photography</topic><topic>Precision medicine</topic><topic>Retina</topic><topic>Retinitis</topic><topic>Retinitis pigmentosa</topic><topic>Retinopathy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Kyoung Min</creatorcontrib><creatorcontrib>Heo, Tae-Young</creatorcontrib><creatorcontrib>Kim, Aesul</creatorcontrib><creatorcontrib>Kim, Joohee</creatorcontrib><creatorcontrib>Han, Kyu Jin</creatorcontrib><creatorcontrib>Yun, Jaesuk</creatorcontrib><creatorcontrib>Min, Jung Kee</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of personalized medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Kyoung Min</au><au>Heo, Tae-Young</au><au>Kim, Aesul</au><au>Kim, Joohee</au><au>Han, Kyu Jin</au><au>Yun, Jaesuk</au><au>Min, Jung Kee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of a Fundus Image-Based Deep Learning Diagnostic Tool for Various Retinal Diseases</atitle><jtitle>Journal of personalized medicine</jtitle><addtitle>J Pers Med</addtitle><date>2021-04-21</date><risdate>2021</risdate><volume>11</volume><issue>5</issue><spage>321</spage><pages>321-</pages><issn>2075-4426</issn><eissn>2075-4426</eissn><abstract>Artificial intelligence (AI)-based diagnostic tools have been accepted in ophthalmology. The use of retinal images, such as fundus photographs, is a promising approach for the development of AI-based diagnostic platforms. Retinal pathologies usually occur in a broad spectrum of eye diseases, including neovascular or dry age-related macular degeneration, epiretinal membrane, rhegmatogenous retinal detachment, retinitis pigmentosa, macular hole, retinal vein occlusions, and diabetic retinopathy. Here, we report a fundus image-based AI model for differential diagnosis of retinal diseases. We classified retinal images with three convolutional neural network models: ResNet50, VGG19, and Inception v3. Furthermore, the performance of several dense (fully connected) layers was compared. The prediction accuracy for diagnosis of nine classes of eight retinal diseases and normal control was 87.42% in the ResNet50 model, which added a dense layer with 128 nodes. Furthermore, our AI tool augments ophthalmologist's performance in the diagnosis of retinal disease. These results suggested that the fundus image-based AI tool is applicable for the medical diagnosis process of retinal diseases.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>33918998</pmid><doi>10.3390/jpm11050321</doi><orcidid>https://orcid.org/0000-0002-8006-8560</orcidid><orcidid>https://orcid.org/0000-0002-0505-5559</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2075-4426
ispartof Journal of personalized medicine, 2021-04, Vol.11 (5), p.321
issn 2075-4426
2075-4426
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8142986
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; PubMed Central Open Access
subjects Age
Artificial intelligence
Deep learning
Diabetes
Diabetes mellitus
Diabetic retinopathy
Differential diagnosis
Disease
Eye diseases
Hemorrhage
Macular degeneration
Medical imaging
Medical records
Neural networks
Photography
Precision medicine
Retina
Retinitis
Retinitis pigmentosa
Retinopathy
title Development of a Fundus Image-Based Deep Learning Diagnostic Tool for Various Retinal Diseases
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T08%3A27%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20a%20Fundus%20Image-Based%20Deep%20Learning%20Diagnostic%20Tool%20for%20Various%20Retinal%20Diseases&rft.jtitle=Journal%20of%20personalized%20medicine&rft.au=Kim,%20Kyoung%20Min&rft.date=2021-04-21&rft.volume=11&rft.issue=5&rft.spage=321&rft.pages=321-&rft.issn=2075-4426&rft.eissn=2075-4426&rft_id=info:doi/10.3390/jpm11050321&rft_dat=%3Cproquest_pubme%3E2532409668%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2532409668&rft_id=info:pmid/33918998&rfr_iscdi=true