An ADH toolbox for raspberry ketone production from natural resources via a biocatalytic cascade

Raspberry ketone is a widely used flavor compound in food and cosmetic industry. Several processes for its biocatalytic production have already been described, but either with the use of genetically modified organisms (GMOs) or incomplete conversion of the variety of precursors that are available in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied microbiology and biotechnology 2021-05, Vol.105 (10), p.4189-4197
Hauptverfasser: Becker, Aileen, Böttcher, Dominique, Katzer, Werner, Siems, Karsten, Müller-Kuhrt, Lutz, Bornscheuer, Uwe T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4197
container_issue 10
container_start_page 4189
container_title Applied microbiology and biotechnology
container_volume 105
creator Becker, Aileen
Böttcher, Dominique
Katzer, Werner
Siems, Karsten
Müller-Kuhrt, Lutz
Bornscheuer, Uwe T.
description Raspberry ketone is a widely used flavor compound in food and cosmetic industry. Several processes for its biocatalytic production have already been described, but either with the use of genetically modified organisms (GMOs) or incomplete conversion of the variety of precursors that are available in nature. Such natural precursors are rhododendrol glycosides with different proportions of ( R )- and ( S )-rhododendrol depending on the origin. After hydrolysis of these rhododendrol glycosides, the formed rhododendrol enantiomers have to be oxidized to obtain the final product raspberry ketone. To be able to achieve a high conversion with different starting material, we assembled an alcohol dehydrogenase toolbox that can be accessed depending on the optical purity of the intermediate rhododendrol. This is demonstrated by converting racemic rhododendrol using a combination of ( R )- and ( S )-selective alcohol dehydrogenases together with a universal cofactor recycling system. Furthermore, we conducted a biocatalytic cascade reaction starting from naturally derived rhododendrol glycosides by the use of a glucosidase and an alcohol dehydrogenase to produce raspberry ketone in high yield. Key points • LB-ADH, LK-ADH and LS-ADH oxidize (R)-rhododendrol • RR-ADH and ADH1E oxidize (S)-rhododendrol • Raspberry ketone production via glucosidase and alcohol dehydrogenases from a toolbox Graphical abstract
doi_str_mv 10.1007/s00253-021-11332-9
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8140976</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A662708599</galeid><sourcerecordid>A662708599</sourcerecordid><originalsourceid>FETCH-LOGICAL-c612t-f6a7b5aa1603f0c8e27bc3ae369c257cf82b1b8b6ee3360d1512344d8d64f4ed3</originalsourceid><addsrcrecordid>eNp9kktv1DAUhSMEokPhD7BAltjAIsWP-JEN0qg8WqkSEo-1cZzrwSWJB9upOv8ehyktgxArW77fObaPTlU9JfiEYCxfJYwpZzWmpCaEMVq396oVacoGC9Lcr1aYSF5L3qqj6lFKlxgTqoR4WB0x1iolGV9VX9cTWr85QzmEoQvXyIWIoknbDmLcoe-QwwRoG0M_2-zDhFwMI5pMnqMZUIQU5mghoStvkEGdD9ZkM-yyt8iaZE0Pj6sHzgwJntysx9WXd28_n57VFx_en5-uL2orCM21E0Z23BgiMHPYKqCys8wAE62lXFqnaEc61QkAxgTuCSeUNU2vetG4Bnp2XL3e-27nboTewpTLE_U2-tHEnQ7G68PJ5L_pTbjSijS4laIYvLgxiOHHDCnr0ScLw2AmCHPSlFNFZCvogj7_C70sOUzle4VimC928o7amAG0n1wo99rFVK-FoBIr3raFOvkHZZboRm9L-s6X8wPBywNBYTJc542ZU9Lnnz4esnTP2hhSiuBu8yBYLx3S-w7p0iH9q0N6ET37M8lbye_SFIDtgVRG0wbi3ff_Y_sTuZPQ8w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2530597637</pqid></control><display><type>article</type><title>An ADH toolbox for raspberry ketone production from natural resources via a biocatalytic cascade</title><source>SpringerLink Journals - AutoHoldings</source><creator>Becker, Aileen ; Böttcher, Dominique ; Katzer, Werner ; Siems, Karsten ; Müller-Kuhrt, Lutz ; Bornscheuer, Uwe T.</creator><creatorcontrib>Becker, Aileen ; Böttcher, Dominique ; Katzer, Werner ; Siems, Karsten ; Müller-Kuhrt, Lutz ; Bornscheuer, Uwe T.</creatorcontrib><description>Raspberry ketone is a widely used flavor compound in food and cosmetic industry. Several processes for its biocatalytic production have already been described, but either with the use of genetically modified organisms (GMOs) or incomplete conversion of the variety of precursors that are available in nature. Such natural precursors are rhododendrol glycosides with different proportions of ( R )- and ( S )-rhododendrol depending on the origin. After hydrolysis of these rhododendrol glycosides, the formed rhododendrol enantiomers have to be oxidized to obtain the final product raspberry ketone. To be able to achieve a high conversion with different starting material, we assembled an alcohol dehydrogenase toolbox that can be accessed depending on the optical purity of the intermediate rhododendrol. This is demonstrated by converting racemic rhododendrol using a combination of ( R )- and ( S )-selective alcohol dehydrogenases together with a universal cofactor recycling system. Furthermore, we conducted a biocatalytic cascade reaction starting from naturally derived rhododendrol glycosides by the use of a glucosidase and an alcohol dehydrogenase to produce raspberry ketone in high yield. Key points • LB-ADH, LK-ADH and LS-ADH oxidize (R)-rhododendrol • RR-ADH and ADH1E oxidize (S)-rhododendrol • Raspberry ketone production via glucosidase and alcohol dehydrogenases from a toolbox Graphical abstract</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-021-11332-9</identifier><identifier>PMID: 33988735</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Alcohol ; Alcohol dehydrogenase ; Alcohols ; Aroma compounds ; Biomedical and Life Sciences ; Biosynthesis ; Biotechnologically Relevant Enzymes and Proteins ; Biotechnology ; Cascade chemical reactions ; Conversion ; Dehydrogenase ; Dehydrogenases ; Enantiomers ; Flavor compounds ; Food industry ; Fruits ; Genetic modification ; Genetically engineered organisms ; Genetically modified organisms ; Glucosidase ; Glycosides ; Ketones ; Life Sciences ; Methods ; Microbial Genetics and Genomics ; Microbiology ; Natural resources ; Physiological aspects ; Precursors ; Raspberries ; Recycling systems</subject><ispartof>Applied microbiology and biotechnology, 2021-05, Vol.105 (10), p.4189-4197</ispartof><rights>The Author(s) 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c612t-f6a7b5aa1603f0c8e27bc3ae369c257cf82b1b8b6ee3360d1512344d8d64f4ed3</citedby><cites>FETCH-LOGICAL-c612t-f6a7b5aa1603f0c8e27bc3ae369c257cf82b1b8b6ee3360d1512344d8d64f4ed3</cites><orcidid>0000-0003-0685-2696</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00253-021-11332-9$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00253-021-11332-9$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33988735$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Becker, Aileen</creatorcontrib><creatorcontrib>Böttcher, Dominique</creatorcontrib><creatorcontrib>Katzer, Werner</creatorcontrib><creatorcontrib>Siems, Karsten</creatorcontrib><creatorcontrib>Müller-Kuhrt, Lutz</creatorcontrib><creatorcontrib>Bornscheuer, Uwe T.</creatorcontrib><title>An ADH toolbox for raspberry ketone production from natural resources via a biocatalytic cascade</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><addtitle>Appl Microbiol Biotechnol</addtitle><description>Raspberry ketone is a widely used flavor compound in food and cosmetic industry. Several processes for its biocatalytic production have already been described, but either with the use of genetically modified organisms (GMOs) or incomplete conversion of the variety of precursors that are available in nature. Such natural precursors are rhododendrol glycosides with different proportions of ( R )- and ( S )-rhododendrol depending on the origin. After hydrolysis of these rhododendrol glycosides, the formed rhododendrol enantiomers have to be oxidized to obtain the final product raspberry ketone. To be able to achieve a high conversion with different starting material, we assembled an alcohol dehydrogenase toolbox that can be accessed depending on the optical purity of the intermediate rhododendrol. This is demonstrated by converting racemic rhododendrol using a combination of ( R )- and ( S )-selective alcohol dehydrogenases together with a universal cofactor recycling system. Furthermore, we conducted a biocatalytic cascade reaction starting from naturally derived rhododendrol glycosides by the use of a glucosidase and an alcohol dehydrogenase to produce raspberry ketone in high yield. Key points • LB-ADH, LK-ADH and LS-ADH oxidize (R)-rhododendrol • RR-ADH and ADH1E oxidize (S)-rhododendrol • Raspberry ketone production via glucosidase and alcohol dehydrogenases from a toolbox Graphical abstract</description><subject>Alcohol</subject><subject>Alcohol dehydrogenase</subject><subject>Alcohols</subject><subject>Aroma compounds</subject><subject>Biomedical and Life Sciences</subject><subject>Biosynthesis</subject><subject>Biotechnologically Relevant Enzymes and Proteins</subject><subject>Biotechnology</subject><subject>Cascade chemical reactions</subject><subject>Conversion</subject><subject>Dehydrogenase</subject><subject>Dehydrogenases</subject><subject>Enantiomers</subject><subject>Flavor compounds</subject><subject>Food industry</subject><subject>Fruits</subject><subject>Genetic modification</subject><subject>Genetically engineered organisms</subject><subject>Genetically modified organisms</subject><subject>Glucosidase</subject><subject>Glycosides</subject><subject>Ketones</subject><subject>Life Sciences</subject><subject>Methods</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Natural resources</subject><subject>Physiological aspects</subject><subject>Precursors</subject><subject>Raspberries</subject><subject>Recycling systems</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kktv1DAUhSMEokPhD7BAltjAIsWP-JEN0qg8WqkSEo-1cZzrwSWJB9upOv8ehyktgxArW77fObaPTlU9JfiEYCxfJYwpZzWmpCaEMVq396oVacoGC9Lcr1aYSF5L3qqj6lFKlxgTqoR4WB0x1iolGV9VX9cTWr85QzmEoQvXyIWIoknbDmLcoe-QwwRoG0M_2-zDhFwMI5pMnqMZUIQU5mghoStvkEGdD9ZkM-yyt8iaZE0Pj6sHzgwJntysx9WXd28_n57VFx_en5-uL2orCM21E0Z23BgiMHPYKqCys8wAE62lXFqnaEc61QkAxgTuCSeUNU2vetG4Bnp2XL3e-27nboTewpTLE_U2-tHEnQ7G68PJ5L_pTbjSijS4laIYvLgxiOHHDCnr0ScLw2AmCHPSlFNFZCvogj7_C70sOUzle4VimC928o7amAG0n1wo99rFVK-FoBIr3raFOvkHZZboRm9L-s6X8wPBywNBYTJc542ZU9Lnnz4esnTP2hhSiuBu8yBYLx3S-w7p0iH9q0N6ET37M8lbye_SFIDtgVRG0wbi3ff_Y_sTuZPQ8w</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Becker, Aileen</creator><creator>Böttcher, Dominique</creator><creator>Katzer, Werner</creator><creator>Siems, Karsten</creator><creator>Müller-Kuhrt, Lutz</creator><creator>Bornscheuer, Uwe T.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0685-2696</orcidid></search><sort><creationdate>20210501</creationdate><title>An ADH toolbox for raspberry ketone production from natural resources via a biocatalytic cascade</title><author>Becker, Aileen ; Böttcher, Dominique ; Katzer, Werner ; Siems, Karsten ; Müller-Kuhrt, Lutz ; Bornscheuer, Uwe T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c612t-f6a7b5aa1603f0c8e27bc3ae369c257cf82b1b8b6ee3360d1512344d8d64f4ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alcohol</topic><topic>Alcohol dehydrogenase</topic><topic>Alcohols</topic><topic>Aroma compounds</topic><topic>Biomedical and Life Sciences</topic><topic>Biosynthesis</topic><topic>Biotechnologically Relevant Enzymes and Proteins</topic><topic>Biotechnology</topic><topic>Cascade chemical reactions</topic><topic>Conversion</topic><topic>Dehydrogenase</topic><topic>Dehydrogenases</topic><topic>Enantiomers</topic><topic>Flavor compounds</topic><topic>Food industry</topic><topic>Fruits</topic><topic>Genetic modification</topic><topic>Genetically engineered organisms</topic><topic>Genetically modified organisms</topic><topic>Glucosidase</topic><topic>Glycosides</topic><topic>Ketones</topic><topic>Life Sciences</topic><topic>Methods</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Natural resources</topic><topic>Physiological aspects</topic><topic>Precursors</topic><topic>Raspberries</topic><topic>Recycling systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Becker, Aileen</creatorcontrib><creatorcontrib>Böttcher, Dominique</creatorcontrib><creatorcontrib>Katzer, Werner</creatorcontrib><creatorcontrib>Siems, Karsten</creatorcontrib><creatorcontrib>Müller-Kuhrt, Lutz</creatorcontrib><creatorcontrib>Bornscheuer, Uwe T.</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Becker, Aileen</au><au>Böttcher, Dominique</au><au>Katzer, Werner</au><au>Siems, Karsten</au><au>Müller-Kuhrt, Lutz</au><au>Bornscheuer, Uwe T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An ADH toolbox for raspberry ketone production from natural resources via a biocatalytic cascade</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2021-05-01</date><risdate>2021</risdate><volume>105</volume><issue>10</issue><spage>4189</spage><epage>4197</epage><pages>4189-4197</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><abstract>Raspberry ketone is a widely used flavor compound in food and cosmetic industry. Several processes for its biocatalytic production have already been described, but either with the use of genetically modified organisms (GMOs) or incomplete conversion of the variety of precursors that are available in nature. Such natural precursors are rhododendrol glycosides with different proportions of ( R )- and ( S )-rhododendrol depending on the origin. After hydrolysis of these rhododendrol glycosides, the formed rhododendrol enantiomers have to be oxidized to obtain the final product raspberry ketone. To be able to achieve a high conversion with different starting material, we assembled an alcohol dehydrogenase toolbox that can be accessed depending on the optical purity of the intermediate rhododendrol. This is demonstrated by converting racemic rhododendrol using a combination of ( R )- and ( S )-selective alcohol dehydrogenases together with a universal cofactor recycling system. Furthermore, we conducted a biocatalytic cascade reaction starting from naturally derived rhododendrol glycosides by the use of a glucosidase and an alcohol dehydrogenase to produce raspberry ketone in high yield. Key points • LB-ADH, LK-ADH and LS-ADH oxidize (R)-rhododendrol • RR-ADH and ADH1E oxidize (S)-rhododendrol • Raspberry ketone production via glucosidase and alcohol dehydrogenases from a toolbox Graphical abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>33988735</pmid><doi>10.1007/s00253-021-11332-9</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0685-2696</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0175-7598
ispartof Applied microbiology and biotechnology, 2021-05, Vol.105 (10), p.4189-4197
issn 0175-7598
1432-0614
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8140976
source SpringerLink Journals - AutoHoldings
subjects Alcohol
Alcohol dehydrogenase
Alcohols
Aroma compounds
Biomedical and Life Sciences
Biosynthesis
Biotechnologically Relevant Enzymes and Proteins
Biotechnology
Cascade chemical reactions
Conversion
Dehydrogenase
Dehydrogenases
Enantiomers
Flavor compounds
Food industry
Fruits
Genetic modification
Genetically engineered organisms
Genetically modified organisms
Glucosidase
Glycosides
Ketones
Life Sciences
Methods
Microbial Genetics and Genomics
Microbiology
Natural resources
Physiological aspects
Precursors
Raspberries
Recycling systems
title An ADH toolbox for raspberry ketone production from natural resources via a biocatalytic cascade
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T05%3A56%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20ADH%20toolbox%20for%20raspberry%20ketone%20production%20from%20natural%20resources%20via%20a%20biocatalytic%20cascade&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Becker,%20Aileen&rft.date=2021-05-01&rft.volume=105&rft.issue=10&rft.spage=4189&rft.epage=4197&rft.pages=4189-4197&rft.issn=0175-7598&rft.eissn=1432-0614&rft_id=info:doi/10.1007/s00253-021-11332-9&rft_dat=%3Cgale_pubme%3EA662708599%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2530597637&rft_id=info:pmid/33988735&rft_galeid=A662708599&rfr_iscdi=true