Coalitional Strategies for Efficient Individual Prediction Explanation

As Machine Learning (ML) is now widely applied in many domains, in both research and industry, an understanding of what is happening inside the black box is becoming a growing demand, especially by non-experts of these models. Several approaches had thus been developed to provide clear insights of a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information systems frontiers 2022-02, Vol.24 (1), p.49-75
Hauptverfasser: Ferrettini, Gabriel, Escriva, Elodie, Aligon, Julien, Excoffier, Jean-Baptiste, Soulé-Dupuy, Chantal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 75
container_issue 1
container_start_page 49
container_title Information systems frontiers
container_volume 24
creator Ferrettini, Gabriel
Escriva, Elodie
Aligon, Julien
Excoffier, Jean-Baptiste
Soulé-Dupuy, Chantal
description As Machine Learning (ML) is now widely applied in many domains, in both research and industry, an understanding of what is happening inside the black box is becoming a growing demand, especially by non-experts of these models. Several approaches had thus been developed to provide clear insights of a model prediction for a particular observation but at the cost of long computation time or restrictive hypothesis that does not fully take into account interaction between attributes. This paper provides methods based on the detection of relevant groups of attributes -named coalitions - influencing a prediction and compares them with the literature. Our results show that these coalitional methods are more efficient than existing ones such as SHapley Additive exPlanation ( SHAP ). Computation time is shortened while preserving an acceptable accuracy of individual prediction explanations. Therefore, this enables wider practical use of explanation methods to increase trust between developed ML models, end-users, and whoever impacted by any decision where these models played a role.
doi_str_mv 10.1007/s10796-021-10141-9
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8140327</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2535113110</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-25713a4c80671889b0b18f1413e0ca4286b3ae2a05799e426d62758d0b48dafe3</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxS0EoqXwBTigSFzgEDrjP7F9QapWW1ppJSoBZ8tJnK2rbLzYyap8exxSStsDJ1ue35t540fIW4RPCCBPE4LUVQkUSwTkWOpn5BiFpKXmqJ_nO1OyZIxWR-RVSjcAWFEpXpIjxkHwXDgm56tgez_6MNi--DZGO7qtd6noQizWXecb74axuBxaf_DtlJmr6FrfzIJifbvv7WDn-2vyorN9cm_uzhPy43z9fXVRbr5-uVydbcpGgBpLKiQyyxsFlUSldA01qi5bZw4ay6mqamYdtSCk1o7Tqp0NqxZqrlrbOXZCPi9991O9c22TzUXbm330Oxt_mWC9eVwZ_LXZhoNRyIFRmRt8XBpcP5FdnG3M_JYpoQHUATP74W5YDD8nl0az86lxfV7ahSkZKphAZIiQ0fdP0JswxfynmaqYRsqx4pmiC9XEkFJ03b0DBDNHapZITY7U_InU6Cx693Dle8nfDDPAFiDl0rB18d_s_7T9DRCLqtM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2639124164</pqid></control><display><type>article</type><title>Coalitional Strategies for Efficient Individual Prediction Explanation</title><source>SpringerLink Journals</source><creator>Ferrettini, Gabriel ; Escriva, Elodie ; Aligon, Julien ; Excoffier, Jean-Baptiste ; Soulé-Dupuy, Chantal</creator><creatorcontrib>Ferrettini, Gabriel ; Escriva, Elodie ; Aligon, Julien ; Excoffier, Jean-Baptiste ; Soulé-Dupuy, Chantal</creatorcontrib><description>As Machine Learning (ML) is now widely applied in many domains, in both research and industry, an understanding of what is happening inside the black box is becoming a growing demand, especially by non-experts of these models. Several approaches had thus been developed to provide clear insights of a model prediction for a particular observation but at the cost of long computation time or restrictive hypothesis that does not fully take into account interaction between attributes. This paper provides methods based on the detection of relevant groups of attributes -named coalitions - influencing a prediction and compares them with the literature. Our results show that these coalitional methods are more efficient than existing ones such as SHapley Additive exPlanation ( SHAP ). Computation time is shortened while preserving an acceptable accuracy of individual prediction explanations. Therefore, this enables wider practical use of explanation methods to increase trust between developed ML models, end-users, and whoever impacted by any decision where these models played a role.</description><identifier>ISSN: 1387-3326</identifier><identifier>EISSN: 1572-9419</identifier><identifier>DOI: 10.1007/s10796-021-10141-9</identifier><identifier>PMID: 34054332</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Accuracy ; Artificial intelligence ; Business and Management ; Computer Science ; Computing time ; Control ; Data analysis ; Datasets ; Feature selection ; Influence ; Information Retrieval ; Information systems ; IT in Business ; Machine Learning ; Management of Computing and Information Systems ; Operations Research/Decision Theory ; Systems Theory</subject><ispartof>Information systems frontiers, 2022-02, Vol.24 (1), p.49-75</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-25713a4c80671889b0b18f1413e0ca4286b3ae2a05799e426d62758d0b48dafe3</citedby><cites>FETCH-LOGICAL-c508t-25713a4c80671889b0b18f1413e0ca4286b3ae2a05799e426d62758d0b48dafe3</cites><orcidid>0000-0002-1954-8733 ; 0000-0002-2637-724X ; 0000-0003-3618-967X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10796-021-10141-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10796-021-10141-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,777,781,882,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34054332$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03259008$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ferrettini, Gabriel</creatorcontrib><creatorcontrib>Escriva, Elodie</creatorcontrib><creatorcontrib>Aligon, Julien</creatorcontrib><creatorcontrib>Excoffier, Jean-Baptiste</creatorcontrib><creatorcontrib>Soulé-Dupuy, Chantal</creatorcontrib><title>Coalitional Strategies for Efficient Individual Prediction Explanation</title><title>Information systems frontiers</title><addtitle>Inf Syst Front</addtitle><addtitle>Inf Syst Front</addtitle><description>As Machine Learning (ML) is now widely applied in many domains, in both research and industry, an understanding of what is happening inside the black box is becoming a growing demand, especially by non-experts of these models. Several approaches had thus been developed to provide clear insights of a model prediction for a particular observation but at the cost of long computation time or restrictive hypothesis that does not fully take into account interaction between attributes. This paper provides methods based on the detection of relevant groups of attributes -named coalitions - influencing a prediction and compares them with the literature. Our results show that these coalitional methods are more efficient than existing ones such as SHapley Additive exPlanation ( SHAP ). Computation time is shortened while preserving an acceptable accuracy of individual prediction explanations. Therefore, this enables wider practical use of explanation methods to increase trust between developed ML models, end-users, and whoever impacted by any decision where these models played a role.</description><subject>Accuracy</subject><subject>Artificial intelligence</subject><subject>Business and Management</subject><subject>Computer Science</subject><subject>Computing time</subject><subject>Control</subject><subject>Data analysis</subject><subject>Datasets</subject><subject>Feature selection</subject><subject>Influence</subject><subject>Information Retrieval</subject><subject>Information systems</subject><subject>IT in Business</subject><subject>Machine Learning</subject><subject>Management of Computing and Information Systems</subject><subject>Operations Research/Decision Theory</subject><subject>Systems Theory</subject><issn>1387-3326</issn><issn>1572-9419</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU9v1DAQxS0EoqXwBTigSFzgEDrjP7F9QapWW1ppJSoBZ8tJnK2rbLzYyap8exxSStsDJ1ue35t540fIW4RPCCBPE4LUVQkUSwTkWOpn5BiFpKXmqJ_nO1OyZIxWR-RVSjcAWFEpXpIjxkHwXDgm56tgez_6MNi--DZGO7qtd6noQizWXecb74axuBxaf_DtlJmr6FrfzIJifbvv7WDn-2vyorN9cm_uzhPy43z9fXVRbr5-uVydbcpGgBpLKiQyyxsFlUSldA01qi5bZw4ay6mqamYdtSCk1o7Tqp0NqxZqrlrbOXZCPi9991O9c22TzUXbm330Oxt_mWC9eVwZ_LXZhoNRyIFRmRt8XBpcP5FdnG3M_JYpoQHUATP74W5YDD8nl0az86lxfV7ahSkZKphAZIiQ0fdP0JswxfynmaqYRsqx4pmiC9XEkFJ03b0DBDNHapZITY7U_InU6Cx693Dle8nfDDPAFiDl0rB18d_s_7T9DRCLqtM</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Ferrettini, Gabriel</creator><creator>Escriva, Elodie</creator><creator>Aligon, Julien</creator><creator>Excoffier, Jean-Baptiste</creator><creator>Soulé-Dupuy, Chantal</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CNYFK</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M1O</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1954-8733</orcidid><orcidid>https://orcid.org/0000-0002-2637-724X</orcidid><orcidid>https://orcid.org/0000-0003-3618-967X</orcidid></search><sort><creationdate>20220201</creationdate><title>Coalitional Strategies for Efficient Individual Prediction Explanation</title><author>Ferrettini, Gabriel ; Escriva, Elodie ; Aligon, Julien ; Excoffier, Jean-Baptiste ; Soulé-Dupuy, Chantal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-25713a4c80671889b0b18f1413e0ca4286b3ae2a05799e426d62758d0b48dafe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Artificial intelligence</topic><topic>Business and Management</topic><topic>Computer Science</topic><topic>Computing time</topic><topic>Control</topic><topic>Data analysis</topic><topic>Datasets</topic><topic>Feature selection</topic><topic>Influence</topic><topic>Information Retrieval</topic><topic>Information systems</topic><topic>IT in Business</topic><topic>Machine Learning</topic><topic>Management of Computing and Information Systems</topic><topic>Operations Research/Decision Theory</topic><topic>Systems Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ferrettini, Gabriel</creatorcontrib><creatorcontrib>Escriva, Elodie</creatorcontrib><creatorcontrib>Aligon, Julien</creatorcontrib><creatorcontrib>Excoffier, Jean-Baptiste</creatorcontrib><creatorcontrib>Soulé-Dupuy, Chantal</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Library &amp; Information Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Library Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Information systems frontiers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ferrettini, Gabriel</au><au>Escriva, Elodie</au><au>Aligon, Julien</au><au>Excoffier, Jean-Baptiste</au><au>Soulé-Dupuy, Chantal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coalitional Strategies for Efficient Individual Prediction Explanation</atitle><jtitle>Information systems frontiers</jtitle><stitle>Inf Syst Front</stitle><addtitle>Inf Syst Front</addtitle><date>2022-02-01</date><risdate>2022</risdate><volume>24</volume><issue>1</issue><spage>49</spage><epage>75</epage><pages>49-75</pages><issn>1387-3326</issn><eissn>1572-9419</eissn><abstract>As Machine Learning (ML) is now widely applied in many domains, in both research and industry, an understanding of what is happening inside the black box is becoming a growing demand, especially by non-experts of these models. Several approaches had thus been developed to provide clear insights of a model prediction for a particular observation but at the cost of long computation time or restrictive hypothesis that does not fully take into account interaction between attributes. This paper provides methods based on the detection of relevant groups of attributes -named coalitions - influencing a prediction and compares them with the literature. Our results show that these coalitional methods are more efficient than existing ones such as SHapley Additive exPlanation ( SHAP ). Computation time is shortened while preserving an acceptable accuracy of individual prediction explanations. Therefore, this enables wider practical use of explanation methods to increase trust between developed ML models, end-users, and whoever impacted by any decision where these models played a role.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>34054332</pmid><doi>10.1007/s10796-021-10141-9</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0002-1954-8733</orcidid><orcidid>https://orcid.org/0000-0002-2637-724X</orcidid><orcidid>https://orcid.org/0000-0003-3618-967X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1387-3326
ispartof Information systems frontiers, 2022-02, Vol.24 (1), p.49-75
issn 1387-3326
1572-9419
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8140327
source SpringerLink Journals
subjects Accuracy
Artificial intelligence
Business and Management
Computer Science
Computing time
Control
Data analysis
Datasets
Feature selection
Influence
Information Retrieval
Information systems
IT in Business
Machine Learning
Management of Computing and Information Systems
Operations Research/Decision Theory
Systems Theory
title Coalitional Strategies for Efficient Individual Prediction Explanation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T04%3A14%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coalitional%20Strategies%20for%20Efficient%20Individual%20Prediction%20Explanation&rft.jtitle=Information%20systems%20frontiers&rft.au=Ferrettini,%20Gabriel&rft.date=2022-02-01&rft.volume=24&rft.issue=1&rft.spage=49&rft.epage=75&rft.pages=49-75&rft.issn=1387-3326&rft.eissn=1572-9419&rft_id=info:doi/10.1007/s10796-021-10141-9&rft_dat=%3Cproquest_pubme%3E2535113110%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2639124164&rft_id=info:pmid/34054332&rfr_iscdi=true