Coalitional Strategies for Efficient Individual Prediction Explanation
As Machine Learning (ML) is now widely applied in many domains, in both research and industry, an understanding of what is happening inside the black box is becoming a growing demand, especially by non-experts of these models. Several approaches had thus been developed to provide clear insights of a...
Gespeichert in:
Veröffentlicht in: | Information systems frontiers 2022-02, Vol.24 (1), p.49-75 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 75 |
---|---|
container_issue | 1 |
container_start_page | 49 |
container_title | Information systems frontiers |
container_volume | 24 |
creator | Ferrettini, Gabriel Escriva, Elodie Aligon, Julien Excoffier, Jean-Baptiste Soulé-Dupuy, Chantal |
description | As Machine Learning (ML) is now widely applied in many domains, in both research and industry, an understanding of what is happening
inside the black box
is becoming a growing demand, especially by non-experts of these models. Several approaches had thus been developed to provide clear insights of a model prediction for a particular observation but at the cost of long computation time or restrictive hypothesis that does not fully take into account interaction between attributes. This paper provides methods based on the detection of relevant groups of attributes -named
coalitions
- influencing a prediction and compares them with the literature. Our results show that these
coalitional
methods are more efficient than existing ones such as SHapley Additive exPlanation (
SHAP
). Computation time is shortened while preserving an acceptable accuracy of individual prediction explanations. Therefore, this enables wider practical use of explanation methods to increase trust between developed ML models, end-users, and whoever impacted by any decision where these models played a role. |
doi_str_mv | 10.1007/s10796-021-10141-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8140327</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2535113110</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-25713a4c80671889b0b18f1413e0ca4286b3ae2a05799e426d62758d0b48dafe3</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxS0EoqXwBTigSFzgEDrjP7F9QapWW1ppJSoBZ8tJnK2rbLzYyap8exxSStsDJ1ue35t540fIW4RPCCBPE4LUVQkUSwTkWOpn5BiFpKXmqJ_nO1OyZIxWR-RVSjcAWFEpXpIjxkHwXDgm56tgez_6MNi--DZGO7qtd6noQizWXecb74axuBxaf_DtlJmr6FrfzIJifbvv7WDn-2vyorN9cm_uzhPy43z9fXVRbr5-uVydbcpGgBpLKiQyyxsFlUSldA01qi5bZw4ay6mqamYdtSCk1o7Tqp0NqxZqrlrbOXZCPi9991O9c22TzUXbm330Oxt_mWC9eVwZ_LXZhoNRyIFRmRt8XBpcP5FdnG3M_JYpoQHUATP74W5YDD8nl0az86lxfV7ahSkZKphAZIiQ0fdP0JswxfynmaqYRsqx4pmiC9XEkFJ03b0DBDNHapZITY7U_InU6Cx693Dle8nfDDPAFiDl0rB18d_s_7T9DRCLqtM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2639124164</pqid></control><display><type>article</type><title>Coalitional Strategies for Efficient Individual Prediction Explanation</title><source>SpringerLink Journals</source><creator>Ferrettini, Gabriel ; Escriva, Elodie ; Aligon, Julien ; Excoffier, Jean-Baptiste ; Soulé-Dupuy, Chantal</creator><creatorcontrib>Ferrettini, Gabriel ; Escriva, Elodie ; Aligon, Julien ; Excoffier, Jean-Baptiste ; Soulé-Dupuy, Chantal</creatorcontrib><description>As Machine Learning (ML) is now widely applied in many domains, in both research and industry, an understanding of what is happening
inside the black box
is becoming a growing demand, especially by non-experts of these models. Several approaches had thus been developed to provide clear insights of a model prediction for a particular observation but at the cost of long computation time or restrictive hypothesis that does not fully take into account interaction between attributes. This paper provides methods based on the detection of relevant groups of attributes -named
coalitions
- influencing a prediction and compares them with the literature. Our results show that these
coalitional
methods are more efficient than existing ones such as SHapley Additive exPlanation (
SHAP
). Computation time is shortened while preserving an acceptable accuracy of individual prediction explanations. Therefore, this enables wider practical use of explanation methods to increase trust between developed ML models, end-users, and whoever impacted by any decision where these models played a role.</description><identifier>ISSN: 1387-3326</identifier><identifier>EISSN: 1572-9419</identifier><identifier>DOI: 10.1007/s10796-021-10141-9</identifier><identifier>PMID: 34054332</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Accuracy ; Artificial intelligence ; Business and Management ; Computer Science ; Computing time ; Control ; Data analysis ; Datasets ; Feature selection ; Influence ; Information Retrieval ; Information systems ; IT in Business ; Machine Learning ; Management of Computing and Information Systems ; Operations Research/Decision Theory ; Systems Theory</subject><ispartof>Information systems frontiers, 2022-02, Vol.24 (1), p.49-75</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-25713a4c80671889b0b18f1413e0ca4286b3ae2a05799e426d62758d0b48dafe3</citedby><cites>FETCH-LOGICAL-c508t-25713a4c80671889b0b18f1413e0ca4286b3ae2a05799e426d62758d0b48dafe3</cites><orcidid>0000-0002-1954-8733 ; 0000-0002-2637-724X ; 0000-0003-3618-967X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10796-021-10141-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10796-021-10141-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,777,781,882,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34054332$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03259008$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ferrettini, Gabriel</creatorcontrib><creatorcontrib>Escriva, Elodie</creatorcontrib><creatorcontrib>Aligon, Julien</creatorcontrib><creatorcontrib>Excoffier, Jean-Baptiste</creatorcontrib><creatorcontrib>Soulé-Dupuy, Chantal</creatorcontrib><title>Coalitional Strategies for Efficient Individual Prediction Explanation</title><title>Information systems frontiers</title><addtitle>Inf Syst Front</addtitle><addtitle>Inf Syst Front</addtitle><description>As Machine Learning (ML) is now widely applied in many domains, in both research and industry, an understanding of what is happening
inside the black box
is becoming a growing demand, especially by non-experts of these models. Several approaches had thus been developed to provide clear insights of a model prediction for a particular observation but at the cost of long computation time or restrictive hypothesis that does not fully take into account interaction between attributes. This paper provides methods based on the detection of relevant groups of attributes -named
coalitions
- influencing a prediction and compares them with the literature. Our results show that these
coalitional
methods are more efficient than existing ones such as SHapley Additive exPlanation (
SHAP
). Computation time is shortened while preserving an acceptable accuracy of individual prediction explanations. Therefore, this enables wider practical use of explanation methods to increase trust between developed ML models, end-users, and whoever impacted by any decision where these models played a role.</description><subject>Accuracy</subject><subject>Artificial intelligence</subject><subject>Business and Management</subject><subject>Computer Science</subject><subject>Computing time</subject><subject>Control</subject><subject>Data analysis</subject><subject>Datasets</subject><subject>Feature selection</subject><subject>Influence</subject><subject>Information Retrieval</subject><subject>Information systems</subject><subject>IT in Business</subject><subject>Machine Learning</subject><subject>Management of Computing and Information Systems</subject><subject>Operations Research/Decision Theory</subject><subject>Systems Theory</subject><issn>1387-3326</issn><issn>1572-9419</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU9v1DAQxS0EoqXwBTigSFzgEDrjP7F9QapWW1ppJSoBZ8tJnK2rbLzYyap8exxSStsDJ1ue35t540fIW4RPCCBPE4LUVQkUSwTkWOpn5BiFpKXmqJ_nO1OyZIxWR-RVSjcAWFEpXpIjxkHwXDgm56tgez_6MNi--DZGO7qtd6noQizWXecb74axuBxaf_DtlJmr6FrfzIJifbvv7WDn-2vyorN9cm_uzhPy43z9fXVRbr5-uVydbcpGgBpLKiQyyxsFlUSldA01qi5bZw4ay6mqamYdtSCk1o7Tqp0NqxZqrlrbOXZCPi9991O9c22TzUXbm330Oxt_mWC9eVwZ_LXZhoNRyIFRmRt8XBpcP5FdnG3M_JYpoQHUATP74W5YDD8nl0az86lxfV7ahSkZKphAZIiQ0fdP0JswxfynmaqYRsqx4pmiC9XEkFJ03b0DBDNHapZITY7U_InU6Cx693Dle8nfDDPAFiDl0rB18d_s_7T9DRCLqtM</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Ferrettini, Gabriel</creator><creator>Escriva, Elodie</creator><creator>Aligon, Julien</creator><creator>Excoffier, Jean-Baptiste</creator><creator>Soulé-Dupuy, Chantal</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CNYFK</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M1O</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1954-8733</orcidid><orcidid>https://orcid.org/0000-0002-2637-724X</orcidid><orcidid>https://orcid.org/0000-0003-3618-967X</orcidid></search><sort><creationdate>20220201</creationdate><title>Coalitional Strategies for Efficient Individual Prediction Explanation</title><author>Ferrettini, Gabriel ; Escriva, Elodie ; Aligon, Julien ; Excoffier, Jean-Baptiste ; Soulé-Dupuy, Chantal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-25713a4c80671889b0b18f1413e0ca4286b3ae2a05799e426d62758d0b48dafe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Artificial intelligence</topic><topic>Business and Management</topic><topic>Computer Science</topic><topic>Computing time</topic><topic>Control</topic><topic>Data analysis</topic><topic>Datasets</topic><topic>Feature selection</topic><topic>Influence</topic><topic>Information Retrieval</topic><topic>Information systems</topic><topic>IT in Business</topic><topic>Machine Learning</topic><topic>Management of Computing and Information Systems</topic><topic>Operations Research/Decision Theory</topic><topic>Systems Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ferrettini, Gabriel</creatorcontrib><creatorcontrib>Escriva, Elodie</creatorcontrib><creatorcontrib>Aligon, Julien</creatorcontrib><creatorcontrib>Excoffier, Jean-Baptiste</creatorcontrib><creatorcontrib>Soulé-Dupuy, Chantal</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Library & Information Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Library Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Information systems frontiers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ferrettini, Gabriel</au><au>Escriva, Elodie</au><au>Aligon, Julien</au><au>Excoffier, Jean-Baptiste</au><au>Soulé-Dupuy, Chantal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coalitional Strategies for Efficient Individual Prediction Explanation</atitle><jtitle>Information systems frontiers</jtitle><stitle>Inf Syst Front</stitle><addtitle>Inf Syst Front</addtitle><date>2022-02-01</date><risdate>2022</risdate><volume>24</volume><issue>1</issue><spage>49</spage><epage>75</epage><pages>49-75</pages><issn>1387-3326</issn><eissn>1572-9419</eissn><abstract>As Machine Learning (ML) is now widely applied in many domains, in both research and industry, an understanding of what is happening
inside the black box
is becoming a growing demand, especially by non-experts of these models. Several approaches had thus been developed to provide clear insights of a model prediction for a particular observation but at the cost of long computation time or restrictive hypothesis that does not fully take into account interaction between attributes. This paper provides methods based on the detection of relevant groups of attributes -named
coalitions
- influencing a prediction and compares them with the literature. Our results show that these
coalitional
methods are more efficient than existing ones such as SHapley Additive exPlanation (
SHAP
). Computation time is shortened while preserving an acceptable accuracy of individual prediction explanations. Therefore, this enables wider practical use of explanation methods to increase trust between developed ML models, end-users, and whoever impacted by any decision where these models played a role.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>34054332</pmid><doi>10.1007/s10796-021-10141-9</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0002-1954-8733</orcidid><orcidid>https://orcid.org/0000-0002-2637-724X</orcidid><orcidid>https://orcid.org/0000-0003-3618-967X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1387-3326 |
ispartof | Information systems frontiers, 2022-02, Vol.24 (1), p.49-75 |
issn | 1387-3326 1572-9419 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8140327 |
source | SpringerLink Journals |
subjects | Accuracy Artificial intelligence Business and Management Computer Science Computing time Control Data analysis Datasets Feature selection Influence Information Retrieval Information systems IT in Business Machine Learning Management of Computing and Information Systems Operations Research/Decision Theory Systems Theory |
title | Coalitional Strategies for Efficient Individual Prediction Explanation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T04%3A14%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coalitional%20Strategies%20for%20Efficient%20Individual%20Prediction%20Explanation&rft.jtitle=Information%20systems%20frontiers&rft.au=Ferrettini,%20Gabriel&rft.date=2022-02-01&rft.volume=24&rft.issue=1&rft.spage=49&rft.epage=75&rft.pages=49-75&rft.issn=1387-3326&rft.eissn=1572-9419&rft_id=info:doi/10.1007/s10796-021-10141-9&rft_dat=%3Cproquest_pubme%3E2535113110%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2639124164&rft_id=info:pmid/34054332&rfr_iscdi=true |