Multiphoton‐Guided Creation of Complex Organ‐Specific Microvasculature
Engineering functional human tissues in vitro is currently limited by difficulty replicating the small caliber, complex connectivity, cellularity, and 3D curvature of the native microvasculature. Multiphoton ablation has emerged as a promising technique for fabrication of microvascular structures wi...
Gespeichert in:
Veröffentlicht in: | Advanced healthcare materials 2021-05, Vol.10 (10), p.e2100031-n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 10 |
container_start_page | e2100031 |
container_title | Advanced healthcare materials |
container_volume | 10 |
creator | Rayner, Samuel G. Howard, Caitlin C. Mandrycky, Christian J. Stamenkovic, Stefan Himmelfarb, Jonathan Shih, Andy Y. Zheng, Ying |
description | Engineering functional human tissues in vitro is currently limited by difficulty replicating the small caliber, complex connectivity, cellularity, and 3D curvature of the native microvasculature. Multiphoton ablation has emerged as a promising technique for fabrication of microvascular structures with high resolution and full 3D control, but cellularization and perfusion of complex capillary‐scale structures has remained challenging. Here, multiphoton ablation combined with guided endothelial cell growth from pre‐formed microvessels is used to successfully create perfusable and cellularized organ‐specific microvascular structures at anatomic scale within collagen hydrogels. Fabrication and perfusion of model 3D pulmonary and renal microvascular beds is demonstrated, as is replication and perfusion of a brain microvascular unit derived from in vivo data. Successful endothelialization and blood perfusion of a kidney‐specific microvascular structure is achieved, using laser‐guided angiogenesis. Finally, proof‐of‐concept hierarchical blood vessels and complex multicellular models are created, using multistep patterning with multiphoton ablation techniques. These successes open new doors for the creation of engineered tissues and organ‐on‐a‐chip devices.
Engineering functional tissues for regenerative medicine and human disease modeling is limited by difficulty re‐creating in vivo‐like microvasculature. This paper reports success combining multiphoton microscopy with directed angiogenesis to precisely generate perfusable 3D organ‐specific capillary beds within natural extracellular matrices. These methods enable full cellularization of complex capillary models and the creation of multicellular, heterogeneous, and hierarchical vasculature. |
doi_str_mv | 10.1002/adhm.202100031 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8137585</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2528845591</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5711-9bd46b8fcfd5f7f1d4f320d4b5ffd88d26cea85a1bc42bd04a5ea89e24b615d93</originalsourceid><addsrcrecordid>eNqFkbtOwzAUhi0EAlS6MqJILCwttmOnzoJUFSggKgZgthxfqFESBzvhsvEIPCNPgqtCuSxMPkf-_Mnn_ADsIjhEEOJDoebVEEMcG5iiNbCNUY4HOKP5-qomcAv0Q7iPCMwoyhjaBFtpSlmW0tE2uJh1ZWubuWtd_f76Nu2s0iqZeC1a6-rEmWTiqqbUz8mVvxML5LrR0hork5mV3j2KILtStJ3XO2DDiDLo_ufZA7enJzeTs8Hl1fR8Mr4cSDpCaJAXimQFM9IoakYGKWJSDBUpqDGKMYUzqQWjAhWS4EJBImjsc41JkSGq8rQHjpbepisqraSuWy9K3nhbCf_CnbD8901t5_zOPXKG0hFlNAoOPgXePXQ6tLyyQeqyFLV2XeCYsDyDiMA0ovt_0HvX-TqOxzHFjBFKcxSp4ZKKCwnBa7P6DIJ8kRRfJMVXScUHez9HWOFfuUQgXwJPttQv_-j4-Phs9i3_AE_zozk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2528845591</pqid></control><display><type>article</type><title>Multiphoton‐Guided Creation of Complex Organ‐Specific Microvasculature</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Rayner, Samuel G. ; Howard, Caitlin C. ; Mandrycky, Christian J. ; Stamenkovic, Stefan ; Himmelfarb, Jonathan ; Shih, Andy Y. ; Zheng, Ying</creator><creatorcontrib>Rayner, Samuel G. ; Howard, Caitlin C. ; Mandrycky, Christian J. ; Stamenkovic, Stefan ; Himmelfarb, Jonathan ; Shih, Andy Y. ; Zheng, Ying</creatorcontrib><description>Engineering functional human tissues in vitro is currently limited by difficulty replicating the small caliber, complex connectivity, cellularity, and 3D curvature of the native microvasculature. Multiphoton ablation has emerged as a promising technique for fabrication of microvascular structures with high resolution and full 3D control, but cellularization and perfusion of complex capillary‐scale structures has remained challenging. Here, multiphoton ablation combined with guided endothelial cell growth from pre‐formed microvessels is used to successfully create perfusable and cellularized organ‐specific microvascular structures at anatomic scale within collagen hydrogels. Fabrication and perfusion of model 3D pulmonary and renal microvascular beds is demonstrated, as is replication and perfusion of a brain microvascular unit derived from in vivo data. Successful endothelialization and blood perfusion of a kidney‐specific microvascular structure is achieved, using laser‐guided angiogenesis. Finally, proof‐of‐concept hierarchical blood vessels and complex multicellular models are created, using multistep patterning with multiphoton ablation techniques. These successes open new doors for the creation of engineered tissues and organ‐on‐a‐chip devices.
Engineering functional tissues for regenerative medicine and human disease modeling is limited by difficulty re‐creating in vivo‐like microvasculature. This paper reports success combining multiphoton microscopy with directed angiogenesis to precisely generate perfusable 3D organ‐specific capillary beds within natural extracellular matrices. These methods enable full cellularization of complex capillary models and the creation of multicellular, heterogeneous, and hierarchical vasculature.</description><identifier>ISSN: 2192-2640</identifier><identifier>ISSN: 2192-2659</identifier><identifier>EISSN: 2192-2659</identifier><identifier>DOI: 10.1002/adhm.202100031</identifier><identifier>PMID: 33586357</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Ablation ; Ablation Techniques ; Angiogenesis ; Biochips ; biomaterials ; Blood vessels ; Collagen ; Endothelial Cells ; Human tissues ; Humans ; Hydrogels ; microphysiological systems ; Microvasculature ; Microvessels ; multiphoton ablation ; Neural networks ; organ‐on‐a‐chip ; Perfusion ; Three dimensional models ; Tissue Engineering ; Veins</subject><ispartof>Advanced healthcare materials, 2021-05, Vol.10 (10), p.e2100031-n/a</ispartof><rights>2021 The Authors. Advanced Healthcare Materials published by Wiley‐VCH GmbH</rights><rights>2021 The Authors. Advanced Healthcare Materials published by Wiley-VCH GmbH.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5711-9bd46b8fcfd5f7f1d4f320d4b5ffd88d26cea85a1bc42bd04a5ea89e24b615d93</citedby><cites>FETCH-LOGICAL-c5711-9bd46b8fcfd5f7f1d4f320d4b5ffd88d26cea85a1bc42bd04a5ea89e24b615d93</cites><orcidid>0000-0002-6564-7265 ; 0000-0003-2723-9022 ; 0000-0002-2541-4221</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadhm.202100031$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadhm.202100031$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33586357$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rayner, Samuel G.</creatorcontrib><creatorcontrib>Howard, Caitlin C.</creatorcontrib><creatorcontrib>Mandrycky, Christian J.</creatorcontrib><creatorcontrib>Stamenkovic, Stefan</creatorcontrib><creatorcontrib>Himmelfarb, Jonathan</creatorcontrib><creatorcontrib>Shih, Andy Y.</creatorcontrib><creatorcontrib>Zheng, Ying</creatorcontrib><title>Multiphoton‐Guided Creation of Complex Organ‐Specific Microvasculature</title><title>Advanced healthcare materials</title><addtitle>Adv Healthc Mater</addtitle><description>Engineering functional human tissues in vitro is currently limited by difficulty replicating the small caliber, complex connectivity, cellularity, and 3D curvature of the native microvasculature. Multiphoton ablation has emerged as a promising technique for fabrication of microvascular structures with high resolution and full 3D control, but cellularization and perfusion of complex capillary‐scale structures has remained challenging. Here, multiphoton ablation combined with guided endothelial cell growth from pre‐formed microvessels is used to successfully create perfusable and cellularized organ‐specific microvascular structures at anatomic scale within collagen hydrogels. Fabrication and perfusion of model 3D pulmonary and renal microvascular beds is demonstrated, as is replication and perfusion of a brain microvascular unit derived from in vivo data. Successful endothelialization and blood perfusion of a kidney‐specific microvascular structure is achieved, using laser‐guided angiogenesis. Finally, proof‐of‐concept hierarchical blood vessels and complex multicellular models are created, using multistep patterning with multiphoton ablation techniques. These successes open new doors for the creation of engineered tissues and organ‐on‐a‐chip devices.
Engineering functional tissues for regenerative medicine and human disease modeling is limited by difficulty re‐creating in vivo‐like microvasculature. This paper reports success combining multiphoton microscopy with directed angiogenesis to precisely generate perfusable 3D organ‐specific capillary beds within natural extracellular matrices. These methods enable full cellularization of complex capillary models and the creation of multicellular, heterogeneous, and hierarchical vasculature.</description><subject>Ablation</subject><subject>Ablation Techniques</subject><subject>Angiogenesis</subject><subject>Biochips</subject><subject>biomaterials</subject><subject>Blood vessels</subject><subject>Collagen</subject><subject>Endothelial Cells</subject><subject>Human tissues</subject><subject>Humans</subject><subject>Hydrogels</subject><subject>microphysiological systems</subject><subject>Microvasculature</subject><subject>Microvessels</subject><subject>multiphoton ablation</subject><subject>Neural networks</subject><subject>organ‐on‐a‐chip</subject><subject>Perfusion</subject><subject>Three dimensional models</subject><subject>Tissue Engineering</subject><subject>Veins</subject><issn>2192-2640</issn><issn>2192-2659</issn><issn>2192-2659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNqFkbtOwzAUhi0EAlS6MqJILCwttmOnzoJUFSggKgZgthxfqFESBzvhsvEIPCNPgqtCuSxMPkf-_Mnn_ADsIjhEEOJDoebVEEMcG5iiNbCNUY4HOKP5-qomcAv0Q7iPCMwoyhjaBFtpSlmW0tE2uJh1ZWubuWtd_f76Nu2s0iqZeC1a6-rEmWTiqqbUz8mVvxML5LrR0hork5mV3j2KILtStJ3XO2DDiDLo_ufZA7enJzeTs8Hl1fR8Mr4cSDpCaJAXimQFM9IoakYGKWJSDBUpqDGKMYUzqQWjAhWS4EJBImjsc41JkSGq8rQHjpbepisqraSuWy9K3nhbCf_CnbD8901t5_zOPXKG0hFlNAoOPgXePXQ6tLyyQeqyFLV2XeCYsDyDiMA0ovt_0HvX-TqOxzHFjBFKcxSp4ZKKCwnBa7P6DIJ8kRRfJMVXScUHez9HWOFfuUQgXwJPttQv_-j4-Phs9i3_AE_zozk</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Rayner, Samuel G.</creator><creator>Howard, Caitlin C.</creator><creator>Mandrycky, Christian J.</creator><creator>Stamenkovic, Stefan</creator><creator>Himmelfarb, Jonathan</creator><creator>Shih, Andy Y.</creator><creator>Zheng, Ying</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T5</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6564-7265</orcidid><orcidid>https://orcid.org/0000-0003-2723-9022</orcidid><orcidid>https://orcid.org/0000-0002-2541-4221</orcidid></search><sort><creationdate>20210501</creationdate><title>Multiphoton‐Guided Creation of Complex Organ‐Specific Microvasculature</title><author>Rayner, Samuel G. ; Howard, Caitlin C. ; Mandrycky, Christian J. ; Stamenkovic, Stefan ; Himmelfarb, Jonathan ; Shih, Andy Y. ; Zheng, Ying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5711-9bd46b8fcfd5f7f1d4f320d4b5ffd88d26cea85a1bc42bd04a5ea89e24b615d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Ablation</topic><topic>Ablation Techniques</topic><topic>Angiogenesis</topic><topic>Biochips</topic><topic>biomaterials</topic><topic>Blood vessels</topic><topic>Collagen</topic><topic>Endothelial Cells</topic><topic>Human tissues</topic><topic>Humans</topic><topic>Hydrogels</topic><topic>microphysiological systems</topic><topic>Microvasculature</topic><topic>Microvessels</topic><topic>multiphoton ablation</topic><topic>Neural networks</topic><topic>organ‐on‐a‐chip</topic><topic>Perfusion</topic><topic>Three dimensional models</topic><topic>Tissue Engineering</topic><topic>Veins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rayner, Samuel G.</creatorcontrib><creatorcontrib>Howard, Caitlin C.</creatorcontrib><creatorcontrib>Mandrycky, Christian J.</creatorcontrib><creatorcontrib>Stamenkovic, Stefan</creatorcontrib><creatorcontrib>Himmelfarb, Jonathan</creatorcontrib><creatorcontrib>Shih, Andy Y.</creatorcontrib><creatorcontrib>Zheng, Ying</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Immunology Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Advanced healthcare materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rayner, Samuel G.</au><au>Howard, Caitlin C.</au><au>Mandrycky, Christian J.</au><au>Stamenkovic, Stefan</au><au>Himmelfarb, Jonathan</au><au>Shih, Andy Y.</au><au>Zheng, Ying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiphoton‐Guided Creation of Complex Organ‐Specific Microvasculature</atitle><jtitle>Advanced healthcare materials</jtitle><addtitle>Adv Healthc Mater</addtitle><date>2021-05-01</date><risdate>2021</risdate><volume>10</volume><issue>10</issue><spage>e2100031</spage><epage>n/a</epage><pages>e2100031-n/a</pages><issn>2192-2640</issn><issn>2192-2659</issn><eissn>2192-2659</eissn><abstract>Engineering functional human tissues in vitro is currently limited by difficulty replicating the small caliber, complex connectivity, cellularity, and 3D curvature of the native microvasculature. Multiphoton ablation has emerged as a promising technique for fabrication of microvascular structures with high resolution and full 3D control, but cellularization and perfusion of complex capillary‐scale structures has remained challenging. Here, multiphoton ablation combined with guided endothelial cell growth from pre‐formed microvessels is used to successfully create perfusable and cellularized organ‐specific microvascular structures at anatomic scale within collagen hydrogels. Fabrication and perfusion of model 3D pulmonary and renal microvascular beds is demonstrated, as is replication and perfusion of a brain microvascular unit derived from in vivo data. Successful endothelialization and blood perfusion of a kidney‐specific microvascular structure is achieved, using laser‐guided angiogenesis. Finally, proof‐of‐concept hierarchical blood vessels and complex multicellular models are created, using multistep patterning with multiphoton ablation techniques. These successes open new doors for the creation of engineered tissues and organ‐on‐a‐chip devices.
Engineering functional tissues for regenerative medicine and human disease modeling is limited by difficulty re‐creating in vivo‐like microvasculature. This paper reports success combining multiphoton microscopy with directed angiogenesis to precisely generate perfusable 3D organ‐specific capillary beds within natural extracellular matrices. These methods enable full cellularization of complex capillary models and the creation of multicellular, heterogeneous, and hierarchical vasculature.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33586357</pmid><doi>10.1002/adhm.202100031</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-6564-7265</orcidid><orcidid>https://orcid.org/0000-0003-2723-9022</orcidid><orcidid>https://orcid.org/0000-0002-2541-4221</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2192-2640 |
ispartof | Advanced healthcare materials, 2021-05, Vol.10 (10), p.e2100031-n/a |
issn | 2192-2640 2192-2659 2192-2659 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8137585 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Ablation Ablation Techniques Angiogenesis Biochips biomaterials Blood vessels Collagen Endothelial Cells Human tissues Humans Hydrogels microphysiological systems Microvasculature Microvessels multiphoton ablation Neural networks organ‐on‐a‐chip Perfusion Three dimensional models Tissue Engineering Veins |
title | Multiphoton‐Guided Creation of Complex Organ‐Specific Microvasculature |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T22%3A53%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiphoton%E2%80%90Guided%20Creation%20of%20Complex%20Organ%E2%80%90Specific%20Microvasculature&rft.jtitle=Advanced%20healthcare%20materials&rft.au=Rayner,%20Samuel%20G.&rft.date=2021-05-01&rft.volume=10&rft.issue=10&rft.spage=e2100031&rft.epage=n/a&rft.pages=e2100031-n/a&rft.issn=2192-2640&rft.eissn=2192-2659&rft_id=info:doi/10.1002/adhm.202100031&rft_dat=%3Cproquest_pubme%3E2528845591%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2528845591&rft_id=info:pmid/33586357&rfr_iscdi=true |