Multiphoton‐Guided Creation of Complex Organ‐Specific Microvasculature

Engineering functional human tissues in vitro is currently limited by difficulty replicating the small caliber, complex connectivity, cellularity, and 3D curvature of the native microvasculature. Multiphoton ablation has emerged as a promising technique for fabrication of microvascular structures wi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced healthcare materials 2021-05, Vol.10 (10), p.e2100031-n/a
Hauptverfasser: Rayner, Samuel G., Howard, Caitlin C., Mandrycky, Christian J., Stamenkovic, Stefan, Himmelfarb, Jonathan, Shih, Andy Y., Zheng, Ying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 10
container_start_page e2100031
container_title Advanced healthcare materials
container_volume 10
creator Rayner, Samuel G.
Howard, Caitlin C.
Mandrycky, Christian J.
Stamenkovic, Stefan
Himmelfarb, Jonathan
Shih, Andy Y.
Zheng, Ying
description Engineering functional human tissues in vitro is currently limited by difficulty replicating the small caliber, complex connectivity, cellularity, and 3D curvature of the native microvasculature. Multiphoton ablation has emerged as a promising technique for fabrication of microvascular structures with high resolution and full 3D control, but cellularization and perfusion of complex capillary‐scale structures has remained challenging. Here, multiphoton ablation combined with guided endothelial cell growth from pre‐formed microvessels is used to successfully create perfusable and cellularized organ‐specific microvascular structures at anatomic scale within collagen hydrogels. Fabrication and perfusion of model 3D pulmonary and renal microvascular beds is demonstrated, as is replication and perfusion of a brain microvascular unit derived from in vivo data. Successful endothelialization and blood perfusion of a kidney‐specific microvascular structure is achieved, using laser‐guided angiogenesis. Finally, proof‐of‐concept hierarchical blood vessels and complex multicellular models are created, using multistep patterning with multiphoton ablation techniques. These successes open new doors for the creation of engineered tissues and organ‐on‐a‐chip devices. Engineering functional tissues for regenerative medicine and human disease modeling is limited by difficulty re‐creating in vivo‐like microvasculature. This paper reports success combining multiphoton microscopy with directed angiogenesis to precisely generate perfusable 3D organ‐specific capillary beds within natural extracellular matrices. These methods enable full cellularization of complex capillary models and the creation of multicellular, heterogeneous, and hierarchical vasculature.
doi_str_mv 10.1002/adhm.202100031
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8137585</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2528845591</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5711-9bd46b8fcfd5f7f1d4f320d4b5ffd88d26cea85a1bc42bd04a5ea89e24b615d93</originalsourceid><addsrcrecordid>eNqFkbtOwzAUhi0EAlS6MqJILCwttmOnzoJUFSggKgZgthxfqFESBzvhsvEIPCNPgqtCuSxMPkf-_Mnn_ADsIjhEEOJDoebVEEMcG5iiNbCNUY4HOKP5-qomcAv0Q7iPCMwoyhjaBFtpSlmW0tE2uJh1ZWubuWtd_f76Nu2s0iqZeC1a6-rEmWTiqqbUz8mVvxML5LrR0hork5mV3j2KILtStJ3XO2DDiDLo_ufZA7enJzeTs8Hl1fR8Mr4cSDpCaJAXimQFM9IoakYGKWJSDBUpqDGKMYUzqQWjAhWS4EJBImjsc41JkSGq8rQHjpbepisqraSuWy9K3nhbCf_CnbD8901t5_zOPXKG0hFlNAoOPgXePXQ6tLyyQeqyFLV2XeCYsDyDiMA0ovt_0HvX-TqOxzHFjBFKcxSp4ZKKCwnBa7P6DIJ8kRRfJMVXScUHez9HWOFfuUQgXwJPttQv_-j4-Phs9i3_AE_zozk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2528845591</pqid></control><display><type>article</type><title>Multiphoton‐Guided Creation of Complex Organ‐Specific Microvasculature</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Rayner, Samuel G. ; Howard, Caitlin C. ; Mandrycky, Christian J. ; Stamenkovic, Stefan ; Himmelfarb, Jonathan ; Shih, Andy Y. ; Zheng, Ying</creator><creatorcontrib>Rayner, Samuel G. ; Howard, Caitlin C. ; Mandrycky, Christian J. ; Stamenkovic, Stefan ; Himmelfarb, Jonathan ; Shih, Andy Y. ; Zheng, Ying</creatorcontrib><description>Engineering functional human tissues in vitro is currently limited by difficulty replicating the small caliber, complex connectivity, cellularity, and 3D curvature of the native microvasculature. Multiphoton ablation has emerged as a promising technique for fabrication of microvascular structures with high resolution and full 3D control, but cellularization and perfusion of complex capillary‐scale structures has remained challenging. Here, multiphoton ablation combined with guided endothelial cell growth from pre‐formed microvessels is used to successfully create perfusable and cellularized organ‐specific microvascular structures at anatomic scale within collagen hydrogels. Fabrication and perfusion of model 3D pulmonary and renal microvascular beds is demonstrated, as is replication and perfusion of a brain microvascular unit derived from in vivo data. Successful endothelialization and blood perfusion of a kidney‐specific microvascular structure is achieved, using laser‐guided angiogenesis. Finally, proof‐of‐concept hierarchical blood vessels and complex multicellular models are created, using multistep patterning with multiphoton ablation techniques. These successes open new doors for the creation of engineered tissues and organ‐on‐a‐chip devices. Engineering functional tissues for regenerative medicine and human disease modeling is limited by difficulty re‐creating in vivo‐like microvasculature. This paper reports success combining multiphoton microscopy with directed angiogenesis to precisely generate perfusable 3D organ‐specific capillary beds within natural extracellular matrices. These methods enable full cellularization of complex capillary models and the creation of multicellular, heterogeneous, and hierarchical vasculature.</description><identifier>ISSN: 2192-2640</identifier><identifier>ISSN: 2192-2659</identifier><identifier>EISSN: 2192-2659</identifier><identifier>DOI: 10.1002/adhm.202100031</identifier><identifier>PMID: 33586357</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Ablation ; Ablation Techniques ; Angiogenesis ; Biochips ; biomaterials ; Blood vessels ; Collagen ; Endothelial Cells ; Human tissues ; Humans ; Hydrogels ; microphysiological systems ; Microvasculature ; Microvessels ; multiphoton ablation ; Neural networks ; organ‐on‐a‐chip ; Perfusion ; Three dimensional models ; Tissue Engineering ; Veins</subject><ispartof>Advanced healthcare materials, 2021-05, Vol.10 (10), p.e2100031-n/a</ispartof><rights>2021 The Authors. Advanced Healthcare Materials published by Wiley‐VCH GmbH</rights><rights>2021 The Authors. Advanced Healthcare Materials published by Wiley-VCH GmbH.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5711-9bd46b8fcfd5f7f1d4f320d4b5ffd88d26cea85a1bc42bd04a5ea89e24b615d93</citedby><cites>FETCH-LOGICAL-c5711-9bd46b8fcfd5f7f1d4f320d4b5ffd88d26cea85a1bc42bd04a5ea89e24b615d93</cites><orcidid>0000-0002-6564-7265 ; 0000-0003-2723-9022 ; 0000-0002-2541-4221</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadhm.202100031$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadhm.202100031$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33586357$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rayner, Samuel G.</creatorcontrib><creatorcontrib>Howard, Caitlin C.</creatorcontrib><creatorcontrib>Mandrycky, Christian J.</creatorcontrib><creatorcontrib>Stamenkovic, Stefan</creatorcontrib><creatorcontrib>Himmelfarb, Jonathan</creatorcontrib><creatorcontrib>Shih, Andy Y.</creatorcontrib><creatorcontrib>Zheng, Ying</creatorcontrib><title>Multiphoton‐Guided Creation of Complex Organ‐Specific Microvasculature</title><title>Advanced healthcare materials</title><addtitle>Adv Healthc Mater</addtitle><description>Engineering functional human tissues in vitro is currently limited by difficulty replicating the small caliber, complex connectivity, cellularity, and 3D curvature of the native microvasculature. Multiphoton ablation has emerged as a promising technique for fabrication of microvascular structures with high resolution and full 3D control, but cellularization and perfusion of complex capillary‐scale structures has remained challenging. Here, multiphoton ablation combined with guided endothelial cell growth from pre‐formed microvessels is used to successfully create perfusable and cellularized organ‐specific microvascular structures at anatomic scale within collagen hydrogels. Fabrication and perfusion of model 3D pulmonary and renal microvascular beds is demonstrated, as is replication and perfusion of a brain microvascular unit derived from in vivo data. Successful endothelialization and blood perfusion of a kidney‐specific microvascular structure is achieved, using laser‐guided angiogenesis. Finally, proof‐of‐concept hierarchical blood vessels and complex multicellular models are created, using multistep patterning with multiphoton ablation techniques. These successes open new doors for the creation of engineered tissues and organ‐on‐a‐chip devices. Engineering functional tissues for regenerative medicine and human disease modeling is limited by difficulty re‐creating in vivo‐like microvasculature. This paper reports success combining multiphoton microscopy with directed angiogenesis to precisely generate perfusable 3D organ‐specific capillary beds within natural extracellular matrices. These methods enable full cellularization of complex capillary models and the creation of multicellular, heterogeneous, and hierarchical vasculature.</description><subject>Ablation</subject><subject>Ablation Techniques</subject><subject>Angiogenesis</subject><subject>Biochips</subject><subject>biomaterials</subject><subject>Blood vessels</subject><subject>Collagen</subject><subject>Endothelial Cells</subject><subject>Human tissues</subject><subject>Humans</subject><subject>Hydrogels</subject><subject>microphysiological systems</subject><subject>Microvasculature</subject><subject>Microvessels</subject><subject>multiphoton ablation</subject><subject>Neural networks</subject><subject>organ‐on‐a‐chip</subject><subject>Perfusion</subject><subject>Three dimensional models</subject><subject>Tissue Engineering</subject><subject>Veins</subject><issn>2192-2640</issn><issn>2192-2659</issn><issn>2192-2659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNqFkbtOwzAUhi0EAlS6MqJILCwttmOnzoJUFSggKgZgthxfqFESBzvhsvEIPCNPgqtCuSxMPkf-_Mnn_ADsIjhEEOJDoebVEEMcG5iiNbCNUY4HOKP5-qomcAv0Q7iPCMwoyhjaBFtpSlmW0tE2uJh1ZWubuWtd_f76Nu2s0iqZeC1a6-rEmWTiqqbUz8mVvxML5LrR0hork5mV3j2KILtStJ3XO2DDiDLo_ufZA7enJzeTs8Hl1fR8Mr4cSDpCaJAXimQFM9IoakYGKWJSDBUpqDGKMYUzqQWjAhWS4EJBImjsc41JkSGq8rQHjpbepisqraSuWy9K3nhbCf_CnbD8901t5_zOPXKG0hFlNAoOPgXePXQ6tLyyQeqyFLV2XeCYsDyDiMA0ovt_0HvX-TqOxzHFjBFKcxSp4ZKKCwnBa7P6DIJ8kRRfJMVXScUHez9HWOFfuUQgXwJPttQv_-j4-Phs9i3_AE_zozk</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Rayner, Samuel G.</creator><creator>Howard, Caitlin C.</creator><creator>Mandrycky, Christian J.</creator><creator>Stamenkovic, Stefan</creator><creator>Himmelfarb, Jonathan</creator><creator>Shih, Andy Y.</creator><creator>Zheng, Ying</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T5</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6564-7265</orcidid><orcidid>https://orcid.org/0000-0003-2723-9022</orcidid><orcidid>https://orcid.org/0000-0002-2541-4221</orcidid></search><sort><creationdate>20210501</creationdate><title>Multiphoton‐Guided Creation of Complex Organ‐Specific Microvasculature</title><author>Rayner, Samuel G. ; Howard, Caitlin C. ; Mandrycky, Christian J. ; Stamenkovic, Stefan ; Himmelfarb, Jonathan ; Shih, Andy Y. ; Zheng, Ying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5711-9bd46b8fcfd5f7f1d4f320d4b5ffd88d26cea85a1bc42bd04a5ea89e24b615d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Ablation</topic><topic>Ablation Techniques</topic><topic>Angiogenesis</topic><topic>Biochips</topic><topic>biomaterials</topic><topic>Blood vessels</topic><topic>Collagen</topic><topic>Endothelial Cells</topic><topic>Human tissues</topic><topic>Humans</topic><topic>Hydrogels</topic><topic>microphysiological systems</topic><topic>Microvasculature</topic><topic>Microvessels</topic><topic>multiphoton ablation</topic><topic>Neural networks</topic><topic>organ‐on‐a‐chip</topic><topic>Perfusion</topic><topic>Three dimensional models</topic><topic>Tissue Engineering</topic><topic>Veins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rayner, Samuel G.</creatorcontrib><creatorcontrib>Howard, Caitlin C.</creatorcontrib><creatorcontrib>Mandrycky, Christian J.</creatorcontrib><creatorcontrib>Stamenkovic, Stefan</creatorcontrib><creatorcontrib>Himmelfarb, Jonathan</creatorcontrib><creatorcontrib>Shih, Andy Y.</creatorcontrib><creatorcontrib>Zheng, Ying</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Immunology Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Advanced healthcare materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rayner, Samuel G.</au><au>Howard, Caitlin C.</au><au>Mandrycky, Christian J.</au><au>Stamenkovic, Stefan</au><au>Himmelfarb, Jonathan</au><au>Shih, Andy Y.</au><au>Zheng, Ying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiphoton‐Guided Creation of Complex Organ‐Specific Microvasculature</atitle><jtitle>Advanced healthcare materials</jtitle><addtitle>Adv Healthc Mater</addtitle><date>2021-05-01</date><risdate>2021</risdate><volume>10</volume><issue>10</issue><spage>e2100031</spage><epage>n/a</epage><pages>e2100031-n/a</pages><issn>2192-2640</issn><issn>2192-2659</issn><eissn>2192-2659</eissn><abstract>Engineering functional human tissues in vitro is currently limited by difficulty replicating the small caliber, complex connectivity, cellularity, and 3D curvature of the native microvasculature. Multiphoton ablation has emerged as a promising technique for fabrication of microvascular structures with high resolution and full 3D control, but cellularization and perfusion of complex capillary‐scale structures has remained challenging. Here, multiphoton ablation combined with guided endothelial cell growth from pre‐formed microvessels is used to successfully create perfusable and cellularized organ‐specific microvascular structures at anatomic scale within collagen hydrogels. Fabrication and perfusion of model 3D pulmonary and renal microvascular beds is demonstrated, as is replication and perfusion of a brain microvascular unit derived from in vivo data. Successful endothelialization and blood perfusion of a kidney‐specific microvascular structure is achieved, using laser‐guided angiogenesis. Finally, proof‐of‐concept hierarchical blood vessels and complex multicellular models are created, using multistep patterning with multiphoton ablation techniques. These successes open new doors for the creation of engineered tissues and organ‐on‐a‐chip devices. Engineering functional tissues for regenerative medicine and human disease modeling is limited by difficulty re‐creating in vivo‐like microvasculature. This paper reports success combining multiphoton microscopy with directed angiogenesis to precisely generate perfusable 3D organ‐specific capillary beds within natural extracellular matrices. These methods enable full cellularization of complex capillary models and the creation of multicellular, heterogeneous, and hierarchical vasculature.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33586357</pmid><doi>10.1002/adhm.202100031</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-6564-7265</orcidid><orcidid>https://orcid.org/0000-0003-2723-9022</orcidid><orcidid>https://orcid.org/0000-0002-2541-4221</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2192-2640
ispartof Advanced healthcare materials, 2021-05, Vol.10 (10), p.e2100031-n/a
issn 2192-2640
2192-2659
2192-2659
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8137585
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Ablation
Ablation Techniques
Angiogenesis
Biochips
biomaterials
Blood vessels
Collagen
Endothelial Cells
Human tissues
Humans
Hydrogels
microphysiological systems
Microvasculature
Microvessels
multiphoton ablation
Neural networks
organ‐on‐a‐chip
Perfusion
Three dimensional models
Tissue Engineering
Veins
title Multiphoton‐Guided Creation of Complex Organ‐Specific Microvasculature
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T22%3A53%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiphoton%E2%80%90Guided%20Creation%20of%20Complex%20Organ%E2%80%90Specific%20Microvasculature&rft.jtitle=Advanced%20healthcare%20materials&rft.au=Rayner,%20Samuel%20G.&rft.date=2021-05-01&rft.volume=10&rft.issue=10&rft.spage=e2100031&rft.epage=n/a&rft.pages=e2100031-n/a&rft.issn=2192-2640&rft.eissn=2192-2659&rft_id=info:doi/10.1002/adhm.202100031&rft_dat=%3Cproquest_pubme%3E2528845591%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2528845591&rft_id=info:pmid/33586357&rfr_iscdi=true