Reconstruction of Microbial Haplotypes by Integration of Statistical and Physical Linkage in Scaffolding
Abstract DNA sequencing technologies provide unprecedented opportunities to analyze within-host evolution of microorganism populations. Often, within-host populations are analyzed via pooled sequencing of the population, which contains multiple individuals or “haplotypes.” However, current next-gene...
Gespeichert in:
Veröffentlicht in: | Molecular biology and evolution 2021-05, Vol.38 (6), p.2660-2672 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2672 |
---|---|
container_issue | 6 |
container_start_page | 2660 |
container_title | Molecular biology and evolution |
container_volume | 38 |
creator | Cao, Chen He, Jingni Mak, Lauren Perera, Deshan Kwok, Devin Wang, Jia Li, Minghao Mourier, Tobias Gavriliuc, Stefan Greenberg, Matthew Morrissy, A Sorana Sycuro, Laura K Yang, Guang Jeffares, Daniel C Long, Quan |
description | Abstract
DNA sequencing technologies provide unprecedented opportunities to analyze within-host evolution of microorganism populations. Often, within-host populations are analyzed via pooled sequencing of the population, which contains multiple individuals or “haplotypes.” However, current next-generation sequencing instruments, in conjunction with single-molecule barcoded linked-reads, cannot distinguish long haplotypes directly. Computational reconstruction of haplotypes from pooled sequencing has been attempted in virology, bacterial genomics, metagenomics, and human genetics, using algorithms based on either cross-host genetic sharing or within-host genomic reads. Here, we describe PoolHapX, a flexible computational approach that integrates information from both genetic sharing and genomic sequencing. We demonstrated that PoolHapX outperforms state-of-the-art tools tailored to specific organismal systems, and is robust to within-host evolution. Importantly, together with barcoded linked-reads, PoolHapX can infer whole-chromosome-scale haplotypes from 50 pools each containing 12 different haplotypes. By analyzing real data, we uncovered dynamic variations in the evolutionary processes of within-patient HIV populations previously unobserved in single position-based analysis. |
doi_str_mv | 10.1093/molbev/msab037 |
format | Article |
fullrecord | <record><control><sourceid>oup_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8136496</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/molbev/msab037</oup_id><sourcerecordid>10.1093/molbev/msab037</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-9c5734fb9ffa8e3fcddcea3824fb9d04178ffefec242a9c6ae17606c25cf8cf33</originalsourceid><addsrcrecordid>eNqFkEFPwyAYhonRuDm9ejRcPXQrhZb2YmKMuiUzGqdnQil0aAdNYUv67-3stsyTJz7ged8veQC4RuEYhRmerGyVy81k5XgeYnoChijGNEAUZadH8wBcOPcVhoiQJDkHA4xjQmmaDMHyXQprnG_WwmtroFXwRYvG5ppXcMrryvq2lg7mLZwZL8uG77GF70bntehAbgr4tmzd72WuzTcvJdQGLgRXylaFNuUlOFO8cvJqd47A59Pjx8M0mL8-zx7u54EgEfFBJmKKicozpXgqsRJFISTHabR9K0KCaKqUVFJEJOKZSLhENAkTEcVCpUJhPAJ3fW-9zleyCxvf8IrVjV7xpmWWa_b3x-glK-2GpQgnJEu6gnFf0FlwrpHqkEUh2zpnvXO2c94Fbo43HvC95A647QG7rv8r-wFZVZMa</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Reconstruction of Microbial Haplotypes by Integration of Statistical and Physical Linkage in Scaffolding</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Oxford Journals Open Access Collection</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Cao, Chen ; He, Jingni ; Mak, Lauren ; Perera, Deshan ; Kwok, Devin ; Wang, Jia ; Li, Minghao ; Mourier, Tobias ; Gavriliuc, Stefan ; Greenberg, Matthew ; Morrissy, A Sorana ; Sycuro, Laura K ; Yang, Guang ; Jeffares, Daniel C ; Long, Quan</creator><contributor>Heyer, Evelyne</contributor><creatorcontrib>Cao, Chen ; He, Jingni ; Mak, Lauren ; Perera, Deshan ; Kwok, Devin ; Wang, Jia ; Li, Minghao ; Mourier, Tobias ; Gavriliuc, Stefan ; Greenberg, Matthew ; Morrissy, A Sorana ; Sycuro, Laura K ; Yang, Guang ; Jeffares, Daniel C ; Long, Quan ; Heyer, Evelyne</creatorcontrib><description>Abstract
DNA sequencing technologies provide unprecedented opportunities to analyze within-host evolution of microorganism populations. Often, within-host populations are analyzed via pooled sequencing of the population, which contains multiple individuals or “haplotypes.” However, current next-generation sequencing instruments, in conjunction with single-molecule barcoded linked-reads, cannot distinguish long haplotypes directly. Computational reconstruction of haplotypes from pooled sequencing has been attempted in virology, bacterial genomics, metagenomics, and human genetics, using algorithms based on either cross-host genetic sharing or within-host genomic reads. Here, we describe PoolHapX, a flexible computational approach that integrates information from both genetic sharing and genomic sequencing. We demonstrated that PoolHapX outperforms state-of-the-art tools tailored to specific organismal systems, and is robust to within-host evolution. Importantly, together with barcoded linked-reads, PoolHapX can infer whole-chromosome-scale haplotypes from 50 pools each containing 12 different haplotypes. By analyzing real data, we uncovered dynamic variations in the evolutionary processes of within-patient HIV populations previously unobserved in single position-based analysis.</description><identifier>ISSN: 1537-1719</identifier><identifier>ISSN: 0737-4038</identifier><identifier>EISSN: 1537-1719</identifier><identifier>DOI: 10.1093/molbev/msab037</identifier><identifier>PMID: 33547786</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Algorithms ; Biological Evolution ; Genetic Techniques ; Genetics, Microbial - methods ; Haplotypes ; HIV - genetics ; Humans ; Methods ; Plasmodium vivax - genetics ; Software</subject><ispartof>Molecular biology and evolution, 2021-05, Vol.38 (6), p.2660-2672</ispartof><rights>The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. 2021</rights><rights>The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-9c5734fb9ffa8e3fcddcea3824fb9d04178ffefec242a9c6ae17606c25cf8cf33</citedby><cites>FETCH-LOGICAL-c424t-9c5734fb9ffa8e3fcddcea3824fb9d04178ffefec242a9c6ae17606c25cf8cf33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8136496/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8136496/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,1603,27915,27916,53782,53784</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33547786$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Heyer, Evelyne</contributor><creatorcontrib>Cao, Chen</creatorcontrib><creatorcontrib>He, Jingni</creatorcontrib><creatorcontrib>Mak, Lauren</creatorcontrib><creatorcontrib>Perera, Deshan</creatorcontrib><creatorcontrib>Kwok, Devin</creatorcontrib><creatorcontrib>Wang, Jia</creatorcontrib><creatorcontrib>Li, Minghao</creatorcontrib><creatorcontrib>Mourier, Tobias</creatorcontrib><creatorcontrib>Gavriliuc, Stefan</creatorcontrib><creatorcontrib>Greenberg, Matthew</creatorcontrib><creatorcontrib>Morrissy, A Sorana</creatorcontrib><creatorcontrib>Sycuro, Laura K</creatorcontrib><creatorcontrib>Yang, Guang</creatorcontrib><creatorcontrib>Jeffares, Daniel C</creatorcontrib><creatorcontrib>Long, Quan</creatorcontrib><title>Reconstruction of Microbial Haplotypes by Integration of Statistical and Physical Linkage in Scaffolding</title><title>Molecular biology and evolution</title><addtitle>Mol Biol Evol</addtitle><description>Abstract
DNA sequencing technologies provide unprecedented opportunities to analyze within-host evolution of microorganism populations. Often, within-host populations are analyzed via pooled sequencing of the population, which contains multiple individuals or “haplotypes.” However, current next-generation sequencing instruments, in conjunction with single-molecule barcoded linked-reads, cannot distinguish long haplotypes directly. Computational reconstruction of haplotypes from pooled sequencing has been attempted in virology, bacterial genomics, metagenomics, and human genetics, using algorithms based on either cross-host genetic sharing or within-host genomic reads. Here, we describe PoolHapX, a flexible computational approach that integrates information from both genetic sharing and genomic sequencing. We demonstrated that PoolHapX outperforms state-of-the-art tools tailored to specific organismal systems, and is robust to within-host evolution. Importantly, together with barcoded linked-reads, PoolHapX can infer whole-chromosome-scale haplotypes from 50 pools each containing 12 different haplotypes. By analyzing real data, we uncovered dynamic variations in the evolutionary processes of within-patient HIV populations previously unobserved in single position-based analysis.</description><subject>Algorithms</subject><subject>Biological Evolution</subject><subject>Genetic Techniques</subject><subject>Genetics, Microbial - methods</subject><subject>Haplotypes</subject><subject>HIV - genetics</subject><subject>Humans</subject><subject>Methods</subject><subject>Plasmodium vivax - genetics</subject><subject>Software</subject><issn>1537-1719</issn><issn>0737-4038</issn><issn>1537-1719</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNqFkEFPwyAYhonRuDm9ejRcPXQrhZb2YmKMuiUzGqdnQil0aAdNYUv67-3stsyTJz7ged8veQC4RuEYhRmerGyVy81k5XgeYnoChijGNEAUZadH8wBcOPcVhoiQJDkHA4xjQmmaDMHyXQprnG_WwmtroFXwRYvG5ppXcMrryvq2lg7mLZwZL8uG77GF70bntehAbgr4tmzd72WuzTcvJdQGLgRXylaFNuUlOFO8cvJqd47A59Pjx8M0mL8-zx7u54EgEfFBJmKKicozpXgqsRJFISTHabR9K0KCaKqUVFJEJOKZSLhENAkTEcVCpUJhPAJ3fW-9zleyCxvf8IrVjV7xpmWWa_b3x-glK-2GpQgnJEu6gnFf0FlwrpHqkEUh2zpnvXO2c94Fbo43HvC95A647QG7rv8r-wFZVZMa</recordid><startdate>20210519</startdate><enddate>20210519</enddate><creator>Cao, Chen</creator><creator>He, Jingni</creator><creator>Mak, Lauren</creator><creator>Perera, Deshan</creator><creator>Kwok, Devin</creator><creator>Wang, Jia</creator><creator>Li, Minghao</creator><creator>Mourier, Tobias</creator><creator>Gavriliuc, Stefan</creator><creator>Greenberg, Matthew</creator><creator>Morrissy, A Sorana</creator><creator>Sycuro, Laura K</creator><creator>Yang, Guang</creator><creator>Jeffares, Daniel C</creator><creator>Long, Quan</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20210519</creationdate><title>Reconstruction of Microbial Haplotypes by Integration of Statistical and Physical Linkage in Scaffolding</title><author>Cao, Chen ; He, Jingni ; Mak, Lauren ; Perera, Deshan ; Kwok, Devin ; Wang, Jia ; Li, Minghao ; Mourier, Tobias ; Gavriliuc, Stefan ; Greenberg, Matthew ; Morrissy, A Sorana ; Sycuro, Laura K ; Yang, Guang ; Jeffares, Daniel C ; Long, Quan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-9c5734fb9ffa8e3fcddcea3824fb9d04178ffefec242a9c6ae17606c25cf8cf33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Biological Evolution</topic><topic>Genetic Techniques</topic><topic>Genetics, Microbial - methods</topic><topic>Haplotypes</topic><topic>HIV - genetics</topic><topic>Humans</topic><topic>Methods</topic><topic>Plasmodium vivax - genetics</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Chen</creatorcontrib><creatorcontrib>He, Jingni</creatorcontrib><creatorcontrib>Mak, Lauren</creatorcontrib><creatorcontrib>Perera, Deshan</creatorcontrib><creatorcontrib>Kwok, Devin</creatorcontrib><creatorcontrib>Wang, Jia</creatorcontrib><creatorcontrib>Li, Minghao</creatorcontrib><creatorcontrib>Mourier, Tobias</creatorcontrib><creatorcontrib>Gavriliuc, Stefan</creatorcontrib><creatorcontrib>Greenberg, Matthew</creatorcontrib><creatorcontrib>Morrissy, A Sorana</creatorcontrib><creatorcontrib>Sycuro, Laura K</creatorcontrib><creatorcontrib>Yang, Guang</creatorcontrib><creatorcontrib>Jeffares, Daniel C</creatorcontrib><creatorcontrib>Long, Quan</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular biology and evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Chen</au><au>He, Jingni</au><au>Mak, Lauren</au><au>Perera, Deshan</au><au>Kwok, Devin</au><au>Wang, Jia</au><au>Li, Minghao</au><au>Mourier, Tobias</au><au>Gavriliuc, Stefan</au><au>Greenberg, Matthew</au><au>Morrissy, A Sorana</au><au>Sycuro, Laura K</au><au>Yang, Guang</au><au>Jeffares, Daniel C</au><au>Long, Quan</au><au>Heyer, Evelyne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reconstruction of Microbial Haplotypes by Integration of Statistical and Physical Linkage in Scaffolding</atitle><jtitle>Molecular biology and evolution</jtitle><addtitle>Mol Biol Evol</addtitle><date>2021-05-19</date><risdate>2021</risdate><volume>38</volume><issue>6</issue><spage>2660</spage><epage>2672</epage><pages>2660-2672</pages><issn>1537-1719</issn><issn>0737-4038</issn><eissn>1537-1719</eissn><abstract>Abstract
DNA sequencing technologies provide unprecedented opportunities to analyze within-host evolution of microorganism populations. Often, within-host populations are analyzed via pooled sequencing of the population, which contains multiple individuals or “haplotypes.” However, current next-generation sequencing instruments, in conjunction with single-molecule barcoded linked-reads, cannot distinguish long haplotypes directly. Computational reconstruction of haplotypes from pooled sequencing has been attempted in virology, bacterial genomics, metagenomics, and human genetics, using algorithms based on either cross-host genetic sharing or within-host genomic reads. Here, we describe PoolHapX, a flexible computational approach that integrates information from both genetic sharing and genomic sequencing. We demonstrated that PoolHapX outperforms state-of-the-art tools tailored to specific organismal systems, and is robust to within-host evolution. Importantly, together with barcoded linked-reads, PoolHapX can infer whole-chromosome-scale haplotypes from 50 pools each containing 12 different haplotypes. By analyzing real data, we uncovered dynamic variations in the evolutionary processes of within-patient HIV populations previously unobserved in single position-based analysis.</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>33547786</pmid><doi>10.1093/molbev/msab037</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1537-1719 |
ispartof | Molecular biology and evolution, 2021-05, Vol.38 (6), p.2660-2672 |
issn | 1537-1719 0737-4038 1537-1719 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8136496 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Oxford Journals Open Access Collection; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Algorithms Biological Evolution Genetic Techniques Genetics, Microbial - methods Haplotypes HIV - genetics Humans Methods Plasmodium vivax - genetics Software |
title | Reconstruction of Microbial Haplotypes by Integration of Statistical and Physical Linkage in Scaffolding |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T21%3A41%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reconstruction%20of%20Microbial%20Haplotypes%20by%20Integration%20of%20Statistical%20and%20Physical%20Linkage%20in%20Scaffolding&rft.jtitle=Molecular%20biology%20and%20evolution&rft.au=Cao,%20Chen&rft.date=2021-05-19&rft.volume=38&rft.issue=6&rft.spage=2660&rft.epage=2672&rft.pages=2660-2672&rft.issn=1537-1719&rft.eissn=1537-1719&rft_id=info:doi/10.1093/molbev/msab037&rft_dat=%3Coup_pubme%3E10.1093/molbev/msab037%3C/oup_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/33547786&rft_oup_id=10.1093/molbev/msab037&rfr_iscdi=true |