The clinical effectiveness of using a predictive algorithm to guide antidepressant treatment in primary care (PReDicT): an open-label, randomised controlled trial

Depressed patients often do not respond to the first antidepressant prescribed, resulting in sequential trials of different medications. Personalised medicine offers a means of reducing this delay; however, the clinical effectiveness of personalised approaches to antidepressant treatment has not pre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuropsychopharmacology 2021-06, Vol.46 (7), p.1307-1314
Hauptverfasser: Browning, Michael, Bilderbeck, Amy C, Dias, Rebecca, Dourish, Colin T, Kingslake, Jonathan, Deckert, Jürgen, Goodwin, Guy M, Gorwood, Philip, Guo, Boliang, Harmer, Catherine J, Morriss, Richard, Reif, Andreas, Ruhe, Henricus G, van Schaik, Anneke, Simon, Judit, Sola, Victor Perez, Veltman, Dick J, Elices, Matilde, Lever, Anne G, Menke, Andreas, Scanferla, Elisabetta, Stäblein, Michael, Dawson, Gerard R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1314
container_issue 7
container_start_page 1307
container_title Neuropsychopharmacology
container_volume 46
creator Browning, Michael
Bilderbeck, Amy C
Dias, Rebecca
Dourish, Colin T
Kingslake, Jonathan
Deckert, Jürgen
Goodwin, Guy M
Gorwood, Philip
Guo, Boliang
Harmer, Catherine J
Morriss, Richard
Reif, Andreas
Ruhe, Henricus G
van Schaik, Anneke
Simon, Judit
Sola, Victor Perez
Veltman, Dick J
Elices, Matilde
Lever, Anne G
Menke, Andreas
Scanferla, Elisabetta
Stäblein, Michael
Dawson, Gerard R
description Depressed patients often do not respond to the first antidepressant prescribed, resulting in sequential trials of different medications. Personalised medicine offers a means of reducing this delay; however, the clinical effectiveness of personalised approaches to antidepressant treatment has not previously been tested. We assessed the clinical effectiveness of using a predictive algorithm, based on behavioural tests of affective cognition and subjective symptoms, to guide antidepressant treatment. We conducted a multicentre, open-label, randomised controlled trial in 913 medication-free depressed patients. Patients were randomly assigned to have their antidepressant treatment guided by a predictive algorithm or treatment as usual (TaU). The primary outcome was the response of depression symptoms, defined as a 50% or greater reduction in baseline score of the QIDS-SR-16 scale, at week 8. Additional prespecified outcomes included symptoms of anxiety at week 8, and symptoms of depression and functional outcome at weeks 8, 24 and 48. The response rate of depressive symptoms at week 8 in the PReDicT (55.9%) and TaU (51.8%) arms did not differ significantly (odds ratio: 1.18 (95% CI: 0.89-1.56), P = 0.25). However, there was a significantly greater reduction of anxiety in week 8 and a greater improvement in functional outcome at week 24 in the PReDicT arm. Use of the PReDicT test did not increase the rate of response to antidepressant treatment estimated by depressive symptoms but did improve symptoms of anxiety at week 8 and functional outcome at week 24. Our findings indicate that personalisation of antidepressant treatment may improve outcomes in depressed patients.
doi_str_mv 10.1038/s41386-021-00981-z
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8134561</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2529008231</sourcerecordid><originalsourceid>FETCH-LOGICAL-c467t-ff010b2cd58aeb10fc3189823afee6a0ec5626fa828f04c3c1cf12373d832103</originalsourceid><addsrcrecordid>eNpdUstuEzEUtRCIhsIPsECW2BSpA7bvPBwWSFV5FCkSCGXRneV4rhNXHjvYM5Ho5_ClOE2ooKt75XvOuQ8fQl5y9pYzkO9yzUG2FRO8YmwueXX7iMx4V7Oqhfr6MZkxOYeKA1yfkGc53zDGm66VT8kJQAudhG5Gfi83SI13wRntKVqLZnQ7DJgzjZZO2YU11XSbsHd3Far9OiY3bgY6RrqeXF-ewlhCweRcUjom1OOAJXOhMN2g0y9qdEJ69v0HfnRm-eZ94dC4xVB5vUJ_TpMOfRxcxp6aGMYUvS_pmJz2z8kTq33GF8d4SpafPy0vr6rFty9fLy8WlanbbqysZZythOkbqXHFmTXA5VwK0Bax1QxN04rWaimkZbUBw43lAjroJYhyz1Py4SC7nVYD9qbMn7RXx_lV1E79Xwluo9ZxpySHuml5ETg_CGwe0K4uFsqFjGlQDIRk0IjdHn527JfizwnzqMr6Br3XAeOUlajnNZS_resCff0AehOnFMoxlGjEnLGy5V5QHFAmxZwT2vshOFN7w6iDYVQRVXeGUbeF9Orfre8pfx0CfwDtwL-g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2529008231</pqid></control><display><type>article</type><title>The clinical effectiveness of using a predictive algorithm to guide antidepressant treatment in primary care (PReDicT): an open-label, randomised controlled trial</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>SpringerLink Journals - AutoHoldings</source><creator>Browning, Michael ; Bilderbeck, Amy C ; Dias, Rebecca ; Dourish, Colin T ; Kingslake, Jonathan ; Deckert, Jürgen ; Goodwin, Guy M ; Gorwood, Philip ; Guo, Boliang ; Harmer, Catherine J ; Morriss, Richard ; Reif, Andreas ; Ruhe, Henricus G ; van Schaik, Anneke ; Simon, Judit ; Sola, Victor Perez ; Veltman, Dick J ; Elices, Matilde ; Lever, Anne G ; Menke, Andreas ; Scanferla, Elisabetta ; Stäblein, Michael ; Dawson, Gerard R</creator><creatorcontrib>Browning, Michael ; Bilderbeck, Amy C ; Dias, Rebecca ; Dourish, Colin T ; Kingslake, Jonathan ; Deckert, Jürgen ; Goodwin, Guy M ; Gorwood, Philip ; Guo, Boliang ; Harmer, Catherine J ; Morriss, Richard ; Reif, Andreas ; Ruhe, Henricus G ; van Schaik, Anneke ; Simon, Judit ; Sola, Victor Perez ; Veltman, Dick J ; Elices, Matilde ; Lever, Anne G ; Menke, Andreas ; Scanferla, Elisabetta ; Stäblein, Michael ; Dawson, Gerard R</creatorcontrib><description>Depressed patients often do not respond to the first antidepressant prescribed, resulting in sequential trials of different medications. Personalised medicine offers a means of reducing this delay; however, the clinical effectiveness of personalised approaches to antidepressant treatment has not previously been tested. We assessed the clinical effectiveness of using a predictive algorithm, based on behavioural tests of affective cognition and subjective symptoms, to guide antidepressant treatment. We conducted a multicentre, open-label, randomised controlled trial in 913 medication-free depressed patients. Patients were randomly assigned to have their antidepressant treatment guided by a predictive algorithm or treatment as usual (TaU). The primary outcome was the response of depression symptoms, defined as a 50% or greater reduction in baseline score of the QIDS-SR-16 scale, at week 8. Additional prespecified outcomes included symptoms of anxiety at week 8, and symptoms of depression and functional outcome at weeks 8, 24 and 48. The response rate of depressive symptoms at week 8 in the PReDicT (55.9%) and TaU (51.8%) arms did not differ significantly (odds ratio: 1.18 (95% CI: 0.89-1.56), P = 0.25). However, there was a significantly greater reduction of anxiety in week 8 and a greater improvement in functional outcome at week 24 in the PReDicT arm. Use of the PReDicT test did not increase the rate of response to antidepressant treatment estimated by depressive symptoms but did improve symptoms of anxiety at week 8 and functional outcome at week 24. Our findings indicate that personalisation of antidepressant treatment may improve outcomes in depressed patients.</description><identifier>ISSN: 0893-133X</identifier><identifier>EISSN: 1740-634X</identifier><identifier>EISSN: 0007-0920</identifier><identifier>DOI: 10.1038/s41386-021-00981-z</identifier><identifier>PMID: 33637837</identifier><language>eng</language><publisher>England: Nature Publishing Group</publisher><subject>Algorithms ; Antidepressants ; Anxiety ; Clinical trials ; Cognition ; Human health and pathology ; Life Sciences ; Mental depression ; Patients ; Precision medicine</subject><ispartof>Neuropsychopharmacology, 2021-06, Vol.46 (7), p.1307-1314</ispartof><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>The Author(s) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c467t-ff010b2cd58aeb10fc3189823afee6a0ec5626fa828f04c3c1cf12373d832103</citedby><cites>FETCH-LOGICAL-c467t-ff010b2cd58aeb10fc3189823afee6a0ec5626fa828f04c3c1cf12373d832103</cites><orcidid>0000-0002-1609-8335 ; 0000-0002-3403-6330 ; 0000-0002-0992-634X ; 0000-0002-1426-2816 ; 0000-0002-1498-1992 ; 0000-0002-6985-6662</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8134561/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8134561/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33637837$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://inserm.hal.science/inserm-03280352$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Browning, Michael</creatorcontrib><creatorcontrib>Bilderbeck, Amy C</creatorcontrib><creatorcontrib>Dias, Rebecca</creatorcontrib><creatorcontrib>Dourish, Colin T</creatorcontrib><creatorcontrib>Kingslake, Jonathan</creatorcontrib><creatorcontrib>Deckert, Jürgen</creatorcontrib><creatorcontrib>Goodwin, Guy M</creatorcontrib><creatorcontrib>Gorwood, Philip</creatorcontrib><creatorcontrib>Guo, Boliang</creatorcontrib><creatorcontrib>Harmer, Catherine J</creatorcontrib><creatorcontrib>Morriss, Richard</creatorcontrib><creatorcontrib>Reif, Andreas</creatorcontrib><creatorcontrib>Ruhe, Henricus G</creatorcontrib><creatorcontrib>van Schaik, Anneke</creatorcontrib><creatorcontrib>Simon, Judit</creatorcontrib><creatorcontrib>Sola, Victor Perez</creatorcontrib><creatorcontrib>Veltman, Dick J</creatorcontrib><creatorcontrib>Elices, Matilde</creatorcontrib><creatorcontrib>Lever, Anne G</creatorcontrib><creatorcontrib>Menke, Andreas</creatorcontrib><creatorcontrib>Scanferla, Elisabetta</creatorcontrib><creatorcontrib>Stäblein, Michael</creatorcontrib><creatorcontrib>Dawson, Gerard R</creatorcontrib><title>The clinical effectiveness of using a predictive algorithm to guide antidepressant treatment in primary care (PReDicT): an open-label, randomised controlled trial</title><title>Neuropsychopharmacology</title><addtitle>Neuropsychopharmacology</addtitle><description>Depressed patients often do not respond to the first antidepressant prescribed, resulting in sequential trials of different medications. Personalised medicine offers a means of reducing this delay; however, the clinical effectiveness of personalised approaches to antidepressant treatment has not previously been tested. We assessed the clinical effectiveness of using a predictive algorithm, based on behavioural tests of affective cognition and subjective symptoms, to guide antidepressant treatment. We conducted a multicentre, open-label, randomised controlled trial in 913 medication-free depressed patients. Patients were randomly assigned to have their antidepressant treatment guided by a predictive algorithm or treatment as usual (TaU). The primary outcome was the response of depression symptoms, defined as a 50% or greater reduction in baseline score of the QIDS-SR-16 scale, at week 8. Additional prespecified outcomes included symptoms of anxiety at week 8, and symptoms of depression and functional outcome at weeks 8, 24 and 48. The response rate of depressive symptoms at week 8 in the PReDicT (55.9%) and TaU (51.8%) arms did not differ significantly (odds ratio: 1.18 (95% CI: 0.89-1.56), P = 0.25). However, there was a significantly greater reduction of anxiety in week 8 and a greater improvement in functional outcome at week 24 in the PReDicT arm. Use of the PReDicT test did not increase the rate of response to antidepressant treatment estimated by depressive symptoms but did improve symptoms of anxiety at week 8 and functional outcome at week 24. Our findings indicate that personalisation of antidepressant treatment may improve outcomes in depressed patients.</description><subject>Algorithms</subject><subject>Antidepressants</subject><subject>Anxiety</subject><subject>Clinical trials</subject><subject>Cognition</subject><subject>Human health and pathology</subject><subject>Life Sciences</subject><subject>Mental depression</subject><subject>Patients</subject><subject>Precision medicine</subject><issn>0893-133X</issn><issn>1740-634X</issn><issn>0007-0920</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdUstuEzEUtRCIhsIPsECW2BSpA7bvPBwWSFV5FCkSCGXRneV4rhNXHjvYM5Ho5_ClOE2ooKt75XvOuQ8fQl5y9pYzkO9yzUG2FRO8YmwueXX7iMx4V7Oqhfr6MZkxOYeKA1yfkGc53zDGm66VT8kJQAudhG5Gfi83SI13wRntKVqLZnQ7DJgzjZZO2YU11XSbsHd3Far9OiY3bgY6RrqeXF-ewlhCweRcUjom1OOAJXOhMN2g0y9qdEJ69v0HfnRm-eZ94dC4xVB5vUJ_TpMOfRxcxp6aGMYUvS_pmJz2z8kTq33GF8d4SpafPy0vr6rFty9fLy8WlanbbqysZZythOkbqXHFmTXA5VwK0Bax1QxN04rWaimkZbUBw43lAjroJYhyz1Py4SC7nVYD9qbMn7RXx_lV1E79Xwluo9ZxpySHuml5ETg_CGwe0K4uFsqFjGlQDIRk0IjdHn527JfizwnzqMr6Br3XAeOUlajnNZS_resCff0AehOnFMoxlGjEnLGy5V5QHFAmxZwT2vshOFN7w6iDYVQRVXeGUbeF9Orfre8pfx0CfwDtwL-g</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Browning, Michael</creator><creator>Bilderbeck, Amy C</creator><creator>Dias, Rebecca</creator><creator>Dourish, Colin T</creator><creator>Kingslake, Jonathan</creator><creator>Deckert, Jürgen</creator><creator>Goodwin, Guy M</creator><creator>Gorwood, Philip</creator><creator>Guo, Boliang</creator><creator>Harmer, Catherine J</creator><creator>Morriss, Richard</creator><creator>Reif, Andreas</creator><creator>Ruhe, Henricus G</creator><creator>van Schaik, Anneke</creator><creator>Simon, Judit</creator><creator>Sola, Victor Perez</creator><creator>Veltman, Dick J</creator><creator>Elices, Matilde</creator><creator>Lever, Anne G</creator><creator>Menke, Andreas</creator><creator>Scanferla, Elisabetta</creator><creator>Stäblein, Michael</creator><creator>Dawson, Gerard R</creator><general>Nature Publishing Group</general><general>Springer International Publishing</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1609-8335</orcidid><orcidid>https://orcid.org/0000-0002-3403-6330</orcidid><orcidid>https://orcid.org/0000-0002-0992-634X</orcidid><orcidid>https://orcid.org/0000-0002-1426-2816</orcidid><orcidid>https://orcid.org/0000-0002-1498-1992</orcidid><orcidid>https://orcid.org/0000-0002-6985-6662</orcidid></search><sort><creationdate>20210601</creationdate><title>The clinical effectiveness of using a predictive algorithm to guide antidepressant treatment in primary care (PReDicT): an open-label, randomised controlled trial</title><author>Browning, Michael ; Bilderbeck, Amy C ; Dias, Rebecca ; Dourish, Colin T ; Kingslake, Jonathan ; Deckert, Jürgen ; Goodwin, Guy M ; Gorwood, Philip ; Guo, Boliang ; Harmer, Catherine J ; Morriss, Richard ; Reif, Andreas ; Ruhe, Henricus G ; van Schaik, Anneke ; Simon, Judit ; Sola, Victor Perez ; Veltman, Dick J ; Elices, Matilde ; Lever, Anne G ; Menke, Andreas ; Scanferla, Elisabetta ; Stäblein, Michael ; Dawson, Gerard R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c467t-ff010b2cd58aeb10fc3189823afee6a0ec5626fa828f04c3c1cf12373d832103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Antidepressants</topic><topic>Anxiety</topic><topic>Clinical trials</topic><topic>Cognition</topic><topic>Human health and pathology</topic><topic>Life Sciences</topic><topic>Mental depression</topic><topic>Patients</topic><topic>Precision medicine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Browning, Michael</creatorcontrib><creatorcontrib>Bilderbeck, Amy C</creatorcontrib><creatorcontrib>Dias, Rebecca</creatorcontrib><creatorcontrib>Dourish, Colin T</creatorcontrib><creatorcontrib>Kingslake, Jonathan</creatorcontrib><creatorcontrib>Deckert, Jürgen</creatorcontrib><creatorcontrib>Goodwin, Guy M</creatorcontrib><creatorcontrib>Gorwood, Philip</creatorcontrib><creatorcontrib>Guo, Boliang</creatorcontrib><creatorcontrib>Harmer, Catherine J</creatorcontrib><creatorcontrib>Morriss, Richard</creatorcontrib><creatorcontrib>Reif, Andreas</creatorcontrib><creatorcontrib>Ruhe, Henricus G</creatorcontrib><creatorcontrib>van Schaik, Anneke</creatorcontrib><creatorcontrib>Simon, Judit</creatorcontrib><creatorcontrib>Sola, Victor Perez</creatorcontrib><creatorcontrib>Veltman, Dick J</creatorcontrib><creatorcontrib>Elices, Matilde</creatorcontrib><creatorcontrib>Lever, Anne G</creatorcontrib><creatorcontrib>Menke, Andreas</creatorcontrib><creatorcontrib>Scanferla, Elisabetta</creatorcontrib><creatorcontrib>Stäblein, Michael</creatorcontrib><creatorcontrib>Dawson, Gerard R</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuropsychopharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Browning, Michael</au><au>Bilderbeck, Amy C</au><au>Dias, Rebecca</au><au>Dourish, Colin T</au><au>Kingslake, Jonathan</au><au>Deckert, Jürgen</au><au>Goodwin, Guy M</au><au>Gorwood, Philip</au><au>Guo, Boliang</au><au>Harmer, Catherine J</au><au>Morriss, Richard</au><au>Reif, Andreas</au><au>Ruhe, Henricus G</au><au>van Schaik, Anneke</au><au>Simon, Judit</au><au>Sola, Victor Perez</au><au>Veltman, Dick J</au><au>Elices, Matilde</au><au>Lever, Anne G</au><au>Menke, Andreas</au><au>Scanferla, Elisabetta</au><au>Stäblein, Michael</au><au>Dawson, Gerard R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The clinical effectiveness of using a predictive algorithm to guide antidepressant treatment in primary care (PReDicT): an open-label, randomised controlled trial</atitle><jtitle>Neuropsychopharmacology</jtitle><addtitle>Neuropsychopharmacology</addtitle><date>2021-06-01</date><risdate>2021</risdate><volume>46</volume><issue>7</issue><spage>1307</spage><epage>1314</epage><pages>1307-1314</pages><issn>0893-133X</issn><eissn>1740-634X</eissn><eissn>0007-0920</eissn><abstract>Depressed patients often do not respond to the first antidepressant prescribed, resulting in sequential trials of different medications. Personalised medicine offers a means of reducing this delay; however, the clinical effectiveness of personalised approaches to antidepressant treatment has not previously been tested. We assessed the clinical effectiveness of using a predictive algorithm, based on behavioural tests of affective cognition and subjective symptoms, to guide antidepressant treatment. We conducted a multicentre, open-label, randomised controlled trial in 913 medication-free depressed patients. Patients were randomly assigned to have their antidepressant treatment guided by a predictive algorithm or treatment as usual (TaU). The primary outcome was the response of depression symptoms, defined as a 50% or greater reduction in baseline score of the QIDS-SR-16 scale, at week 8. Additional prespecified outcomes included symptoms of anxiety at week 8, and symptoms of depression and functional outcome at weeks 8, 24 and 48. The response rate of depressive symptoms at week 8 in the PReDicT (55.9%) and TaU (51.8%) arms did not differ significantly (odds ratio: 1.18 (95% CI: 0.89-1.56), P = 0.25). However, there was a significantly greater reduction of anxiety in week 8 and a greater improvement in functional outcome at week 24 in the PReDicT arm. Use of the PReDicT test did not increase the rate of response to antidepressant treatment estimated by depressive symptoms but did improve symptoms of anxiety at week 8 and functional outcome at week 24. Our findings indicate that personalisation of antidepressant treatment may improve outcomes in depressed patients.</abstract><cop>England</cop><pub>Nature Publishing Group</pub><pmid>33637837</pmid><doi>10.1038/s41386-021-00981-z</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-1609-8335</orcidid><orcidid>https://orcid.org/0000-0002-3403-6330</orcidid><orcidid>https://orcid.org/0000-0002-0992-634X</orcidid><orcidid>https://orcid.org/0000-0002-1426-2816</orcidid><orcidid>https://orcid.org/0000-0002-1498-1992</orcidid><orcidid>https://orcid.org/0000-0002-6985-6662</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0893-133X
ispartof Neuropsychopharmacology, 2021-06, Vol.46 (7), p.1307-1314
issn 0893-133X
1740-634X
0007-0920
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8134561
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; SpringerLink Journals - AutoHoldings
subjects Algorithms
Antidepressants
Anxiety
Clinical trials
Cognition
Human health and pathology
Life Sciences
Mental depression
Patients
Precision medicine
title The clinical effectiveness of using a predictive algorithm to guide antidepressant treatment in primary care (PReDicT): an open-label, randomised controlled trial
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A39%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20clinical%20effectiveness%20of%20using%20a%20predictive%20algorithm%20to%20guide%20antidepressant%20treatment%20in%20primary%20care%20(PReDicT):%20an%20open-label,%20randomised%20controlled%20trial&rft.jtitle=Neuropsychopharmacology&rft.au=Browning,%20Michael&rft.date=2021-06-01&rft.volume=46&rft.issue=7&rft.spage=1307&rft.epage=1314&rft.pages=1307-1314&rft.issn=0893-133X&rft.eissn=1740-634X&rft_id=info:doi/10.1038/s41386-021-00981-z&rft_dat=%3Cproquest_pubme%3E2529008231%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2529008231&rft_id=info:pmid/33637837&rfr_iscdi=true