FID-Net: A versatile deep neural network architecture for NMR spectral reconstruction and virtual decoupling

In recent years, the transformative potential of deep neural networks (DNNs) for analysing and interpreting NMR data has clearly been recognised. However, most applications of DNNs in NMR to date either struggle to outperform existing methodologies or are limited in scope to a narrow range of data t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomolecular NMR 2021-05, Vol.75 (4-5), p.179-191
Hauptverfasser: Karunanithy, Gogulan, Hansen, D. Flemming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 191
container_issue 4-5
container_start_page 179
container_title Journal of biomolecular NMR
container_volume 75
creator Karunanithy, Gogulan
Hansen, D. Flemming
description In recent years, the transformative potential of deep neural networks (DNNs) for analysing and interpreting NMR data has clearly been recognised. However, most applications of DNNs in NMR to date either struggle to outperform existing methodologies or are limited in scope to a narrow range of data that closely resemble the data that the network was trained on. These limitations have prevented a widescale uptake of DNNs in NMR. Addressing this, we introduce FID-Net, a deep neural network architecture inspired by WaveNet, for performing analyses on time domain NMR data. We first demonstrate the effectiveness of this architecture in reconstructing non-uniformly sampled (NUS) biomolecular NMR spectra. It is shown that a single network is able to reconstruct a diverse range of 2D NUS spectra that have been obtained with arbitrary sampling schedules, with a range of sweep widths, and a variety of other acquisition parameters. The performance of the trained FID-Net in this case exceeds or matches existing methods currently used for the reconstruction of NUS NMR spectra. Secondly, we present a network based on the FID-Net architecture that can efficiently virtually decouple 13 C α - 13 C β couplings in HNCA protein NMR spectra in a single shot analysis, while at the same time leaving glycine residues unmodulated. The ability for these DNNs to work effectively in a wide range of scenarios, without retraining, paves the way for their widespread usage in analysing NMR data.
doi_str_mv 10.1007/s10858-021-00366-w
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8131344</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2528635492</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-f1c694b5f437e8849cc54c1c2258c43383ff35d52525289d5f8ba8ac6c18d7903</originalsourceid><addsrcrecordid>eNp9kU1rFTEYhYMo9lr9Ay4k4MZNNJ-TjAuhVKuFWkF0HXIzmdvUuck0H_fivzfjrfVjIVm8kPPk5LwcAJ4S_JJgLF9lgpVQCFOCMGZdh_b3wIoIyZDAmNwHK9xTgahk6gg8yvkaY9wr2j0ER4wpibmkKzCdnb9Fl668hidw51I2xU8ODs7NMLiazNRG2cf0DZpkr3xxttTk4BgTvPz4Gea5XSxUcjaGXFK1xccATRjgzqdSmzQ0qc6TD5vH4MFopuye3M5j8PXs3ZfTD-ji0_vz05MLZLnkBY3Edj1fi5Ez6ZTivbWCW2IpFcrylp2NIxODoMtR_SBGtTbK2M4SNcges2Pw5uA71_XWDdaFJaOek9-a9F1H4_XfSvBXehN3WhFGGOfN4MWtQYo31eWitz5bN00muFizpoIILInsF_T5P-h1rCm09fSSrmOC97RR9EDZFHNObrwLQ7BeytSHMnUrU_8sU-_bo2d_rnH35Fd7DWAHIDcpbFz6_fd_bH8AS5GsKg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2528635492</pqid></control><display><type>article</type><title>FID-Net: A versatile deep neural network architecture for NMR spectral reconstruction and virtual decoupling</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Karunanithy, Gogulan ; Hansen, D. Flemming</creator><creatorcontrib>Karunanithy, Gogulan ; Hansen, D. Flemming</creatorcontrib><description>In recent years, the transformative potential of deep neural networks (DNNs) for analysing and interpreting NMR data has clearly been recognised. However, most applications of DNNs in NMR to date either struggle to outperform existing methodologies or are limited in scope to a narrow range of data that closely resemble the data that the network was trained on. These limitations have prevented a widescale uptake of DNNs in NMR. Addressing this, we introduce FID-Net, a deep neural network architecture inspired by WaveNet, for performing analyses on time domain NMR data. We first demonstrate the effectiveness of this architecture in reconstructing non-uniformly sampled (NUS) biomolecular NMR spectra. It is shown that a single network is able to reconstruct a diverse range of 2D NUS spectra that have been obtained with arbitrary sampling schedules, with a range of sweep widths, and a variety of other acquisition parameters. The performance of the trained FID-Net in this case exceeds or matches existing methods currently used for the reconstruction of NUS NMR spectra. Secondly, we present a network based on the FID-Net architecture that can efficiently virtually decouple 13 C α - 13 C β couplings in HNCA protein NMR spectra in a single shot analysis, while at the same time leaving glycine residues unmodulated. The ability for these DNNs to work effectively in a wide range of scenarios, without retraining, paves the way for their widespread usage in analysing NMR data.</description><identifier>ISSN: 0925-2738</identifier><identifier>EISSN: 1573-5001</identifier><identifier>DOI: 10.1007/s10858-021-00366-w</identifier><identifier>PMID: 33870472</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algorithms ; Artificial neural networks ; Biochemistry ; Biological and Medical Physics ; Biophysics ; Computational Biology - methods ; Computer architecture ; Couplings ; Decoupling ; Deep Learning ; Glycine ; Histone Deacetylases - chemistry ; Magnetic Resonance Imaging - methods ; Muramidase - chemistry ; Neural networks ; Neural Networks, Computer ; NMR ; Nuclear magnetic resonance ; Nuclear Magnetic Resonance, Biomolecular - methods ; Physics ; Physics and Astronomy ; Reconstruction ; Schedules ; Spectra ; Spectroscopy/Spectrometry ; src Homology Domains - physiology ; Time domain analysis</subject><ispartof>Journal of biomolecular NMR, 2021-05, Vol.75 (4-5), p.179-191</ispartof><rights>Crown 2021</rights><rights>Crown 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-f1c694b5f437e8849cc54c1c2258c43383ff35d52525289d5f8ba8ac6c18d7903</citedby><cites>FETCH-LOGICAL-c474t-f1c694b5f437e8849cc54c1c2258c43383ff35d52525289d5f8ba8ac6c18d7903</cites><orcidid>0000-0003-0891-220X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10858-021-00366-w$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10858-021-00366-w$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33870472$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Karunanithy, Gogulan</creatorcontrib><creatorcontrib>Hansen, D. Flemming</creatorcontrib><title>FID-Net: A versatile deep neural network architecture for NMR spectral reconstruction and virtual decoupling</title><title>Journal of biomolecular NMR</title><addtitle>J Biomol NMR</addtitle><addtitle>J Biomol NMR</addtitle><description>In recent years, the transformative potential of deep neural networks (DNNs) for analysing and interpreting NMR data has clearly been recognised. However, most applications of DNNs in NMR to date either struggle to outperform existing methodologies or are limited in scope to a narrow range of data that closely resemble the data that the network was trained on. These limitations have prevented a widescale uptake of DNNs in NMR. Addressing this, we introduce FID-Net, a deep neural network architecture inspired by WaveNet, for performing analyses on time domain NMR data. We first demonstrate the effectiveness of this architecture in reconstructing non-uniformly sampled (NUS) biomolecular NMR spectra. It is shown that a single network is able to reconstruct a diverse range of 2D NUS spectra that have been obtained with arbitrary sampling schedules, with a range of sweep widths, and a variety of other acquisition parameters. The performance of the trained FID-Net in this case exceeds or matches existing methods currently used for the reconstruction of NUS NMR spectra. Secondly, we present a network based on the FID-Net architecture that can efficiently virtually decouple 13 C α - 13 C β couplings in HNCA protein NMR spectra in a single shot analysis, while at the same time leaving glycine residues unmodulated. The ability for these DNNs to work effectively in a wide range of scenarios, without retraining, paves the way for their widespread usage in analysing NMR data.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Biochemistry</subject><subject>Biological and Medical Physics</subject><subject>Biophysics</subject><subject>Computational Biology - methods</subject><subject>Computer architecture</subject><subject>Couplings</subject><subject>Decoupling</subject><subject>Deep Learning</subject><subject>Glycine</subject><subject>Histone Deacetylases - chemistry</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Muramidase - chemistry</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Nuclear Magnetic Resonance, Biomolecular - methods</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Reconstruction</subject><subject>Schedules</subject><subject>Spectra</subject><subject>Spectroscopy/Spectrometry</subject><subject>src Homology Domains - physiology</subject><subject>Time domain analysis</subject><issn>0925-2738</issn><issn>1573-5001</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kU1rFTEYhYMo9lr9Ay4k4MZNNJ-TjAuhVKuFWkF0HXIzmdvUuck0H_fivzfjrfVjIVm8kPPk5LwcAJ4S_JJgLF9lgpVQCFOCMGZdh_b3wIoIyZDAmNwHK9xTgahk6gg8yvkaY9wr2j0ER4wpibmkKzCdnb9Fl668hidw51I2xU8ODs7NMLiazNRG2cf0DZpkr3xxttTk4BgTvPz4Gea5XSxUcjaGXFK1xccATRjgzqdSmzQ0qc6TD5vH4MFopuye3M5j8PXs3ZfTD-ji0_vz05MLZLnkBY3Edj1fi5Ez6ZTivbWCW2IpFcrylp2NIxODoMtR_SBGtTbK2M4SNcges2Pw5uA71_XWDdaFJaOek9-a9F1H4_XfSvBXehN3WhFGGOfN4MWtQYo31eWitz5bN00muFizpoIILInsF_T5P-h1rCm09fSSrmOC97RR9EDZFHNObrwLQ7BeytSHMnUrU_8sU-_bo2d_rnH35Fd7DWAHIDcpbFz6_fd_bH8AS5GsKg</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Karunanithy, Gogulan</creator><creator>Hansen, D. Flemming</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0891-220X</orcidid></search><sort><creationdate>20210501</creationdate><title>FID-Net: A versatile deep neural network architecture for NMR spectral reconstruction and virtual decoupling</title><author>Karunanithy, Gogulan ; Hansen, D. Flemming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-f1c694b5f437e8849cc54c1c2258c43383ff35d52525289d5f8ba8ac6c18d7903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Biochemistry</topic><topic>Biological and Medical Physics</topic><topic>Biophysics</topic><topic>Computational Biology - methods</topic><topic>Computer architecture</topic><topic>Couplings</topic><topic>Decoupling</topic><topic>Deep Learning</topic><topic>Glycine</topic><topic>Histone Deacetylases - chemistry</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Muramidase - chemistry</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Nuclear Magnetic Resonance, Biomolecular - methods</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Reconstruction</topic><topic>Schedules</topic><topic>Spectra</topic><topic>Spectroscopy/Spectrometry</topic><topic>src Homology Domains - physiology</topic><topic>Time domain analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karunanithy, Gogulan</creatorcontrib><creatorcontrib>Hansen, D. Flemming</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of biomolecular NMR</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karunanithy, Gogulan</au><au>Hansen, D. Flemming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FID-Net: A versatile deep neural network architecture for NMR spectral reconstruction and virtual decoupling</atitle><jtitle>Journal of biomolecular NMR</jtitle><stitle>J Biomol NMR</stitle><addtitle>J Biomol NMR</addtitle><date>2021-05-01</date><risdate>2021</risdate><volume>75</volume><issue>4-5</issue><spage>179</spage><epage>191</epage><pages>179-191</pages><issn>0925-2738</issn><eissn>1573-5001</eissn><abstract>In recent years, the transformative potential of deep neural networks (DNNs) for analysing and interpreting NMR data has clearly been recognised. However, most applications of DNNs in NMR to date either struggle to outperform existing methodologies or are limited in scope to a narrow range of data that closely resemble the data that the network was trained on. These limitations have prevented a widescale uptake of DNNs in NMR. Addressing this, we introduce FID-Net, a deep neural network architecture inspired by WaveNet, for performing analyses on time domain NMR data. We first demonstrate the effectiveness of this architecture in reconstructing non-uniformly sampled (NUS) biomolecular NMR spectra. It is shown that a single network is able to reconstruct a diverse range of 2D NUS spectra that have been obtained with arbitrary sampling schedules, with a range of sweep widths, and a variety of other acquisition parameters. The performance of the trained FID-Net in this case exceeds or matches existing methods currently used for the reconstruction of NUS NMR spectra. Secondly, we present a network based on the FID-Net architecture that can efficiently virtually decouple 13 C α - 13 C β couplings in HNCA protein NMR spectra in a single shot analysis, while at the same time leaving glycine residues unmodulated. The ability for these DNNs to work effectively in a wide range of scenarios, without retraining, paves the way for their widespread usage in analysing NMR data.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>33870472</pmid><doi>10.1007/s10858-021-00366-w</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0891-220X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0925-2738
ispartof Journal of biomolecular NMR, 2021-05, Vol.75 (4-5), p.179-191
issn 0925-2738
1573-5001
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8131344
source MEDLINE; SpringerLink Journals
subjects Algorithms
Artificial neural networks
Biochemistry
Biological and Medical Physics
Biophysics
Computational Biology - methods
Computer architecture
Couplings
Decoupling
Deep Learning
Glycine
Histone Deacetylases - chemistry
Magnetic Resonance Imaging - methods
Muramidase - chemistry
Neural networks
Neural Networks, Computer
NMR
Nuclear magnetic resonance
Nuclear Magnetic Resonance, Biomolecular - methods
Physics
Physics and Astronomy
Reconstruction
Schedules
Spectra
Spectroscopy/Spectrometry
src Homology Domains - physiology
Time domain analysis
title FID-Net: A versatile deep neural network architecture for NMR spectral reconstruction and virtual decoupling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T05%3A51%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FID-Net:%20A%20versatile%20deep%20neural%20network%20architecture%20for%20NMR%20spectral%20reconstruction%20and%20virtual%20decoupling&rft.jtitle=Journal%20of%20biomolecular%20NMR&rft.au=Karunanithy,%20Gogulan&rft.date=2021-05-01&rft.volume=75&rft.issue=4-5&rft.spage=179&rft.epage=191&rft.pages=179-191&rft.issn=0925-2738&rft.eissn=1573-5001&rft_id=info:doi/10.1007/s10858-021-00366-w&rft_dat=%3Cproquest_pubme%3E2528635492%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2528635492&rft_id=info:pmid/33870472&rfr_iscdi=true