A loss‐of‐function of the dirigent gene TaDIR‐B1 improves resistance to Fusarium crown rot in wheat

The TaDIR gene was identified by GWAS and QTL mapping of Fusarium crown rot (FCR) resistance and was functionally verified by VIGS and analysis of tetraploid and hexaploid wheat mutants. (a): Classification of FCR disease index in the surveyed cultivars. (b) Number of accessions with different FCR D...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant biotechnology journal 2021-05, Vol.19 (5), p.866-868
Hauptverfasser: Yang, Xia, Zhong, Shaobin, Zhang, Qijun, Ren, Yan, Sun, Congwei, Chen, Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 868
container_issue 5
container_start_page 866
container_title Plant biotechnology journal
container_volume 19
creator Yang, Xia
Zhong, Shaobin
Zhang, Qijun
Ren, Yan
Sun, Congwei
Chen, Feng
description The TaDIR gene was identified by GWAS and QTL mapping of Fusarium crown rot (FCR) resistance and was functionally verified by VIGS and analysis of tetraploid and hexaploid wheat mutants. (a): Classification of FCR disease index in the surveyed cultivars. (b) Number of accessions with different FCR DI in the association panel. (c) Manhattan and Q‐Q plots for FCR DI in different environments. (d) Distribution of significant SNPs revealed by GWAS on various chromosomes. (e) Haplotype analysis of significant SNPs on 4B identified at multiple environments. (f–g) Comparison of FCR DI of wheat accessions with different alleles in the block on 4B. (h) QTL mapping for FCR DI in the Bainong64/Jingshuang16 (BJ) population. (i) The schematic range of 6 candidate genes including TaDIR identified by haplotype analysis and QTL mapping. (j) Full alignment of amino acid of TaDIR‐B1 alleles between low DI and high DI accessions. (k) Development of the dCAPS marker to distinguish TaDIR‐B1 alleles. Furthermore, TaDIR‐B1 gene was silenced in the FCR‐susceptible cultivar Pingyuan 50 using virus‐induced gene silencing (VIGS) by barley stripe mosaic virus (BSMV). qRT‐PCR analysis showed significant down‐regulation of TaDIR‐B1 in VIGS‐silenced plants (Figure 1l‐2). Compared to the WT and BSMV0 plants, the lignin content in the BSMVTaDIR‐B1 plants was remarkedly increased, and the activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) were also dramatically increased, but the malondialdehyde (MDA) content was significantly decreased in BSMVTaDIR‐B1 plants (Figure 1l‐4). Physiological analysis showed that lignin accumulation was dramatically increased in silenced‐TaDIR‐B1 plants. [...]improvement of FCR resistance caused by loss of function of the TaDIR‐B1 gene may be attributed to accumulation of lignin in wheat plants.
doi_str_mv 10.1111/pbi.13554
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8131038</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2488547237</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4714-ce4628a52f5e2a17b0c5223fb7cefb4025d491b77f938112ecef990dcec14fd3</originalsourceid><addsrcrecordid>eNp9kc9uEzEQxi0EoqVw4AWQJS7lkNZ_17sXpLZQiFQJhHK3vM64cbVrB9vbqDcegWfkSXCbErVI4MN4NPPTp5n5EHpNyRGt73jd-yPKpRRP0D4VjZqpRrKnu1yIPfQi5ytCGG1k8xztcS4bRXmzj_wJHmLOv378jK4GNwVbfAw4OlxWgJc--UsIBdcAeGE-zL9V6pRiP65TvIaME2SfiwkWcIn4fMom-WnENsVNwCkW7APerMCUl-iZM0OGV_f_AVqcf1ycfZ5dfPk0Pzu5mFmhqJhZEA1rjWROAjNU9cRKxrjrlQXXC8LkUnS0V8p1vKWUQS13HVlasFS4JT9A77ey66kfoZZDSWbQ6-RHk250NF4_7gS_0pfxWreUU8LbKnB4L5Di9wly0aPPFobBBIhT1ky0rRSKcVXRt3-hV3FKoW6neR2tJW1D2P8oJlkrOkklrdS7LVUvl3MCtxuZEn3rsq4u6zuXK_vm4Y478o-tFTjeAhs_wM2_lfTX0_lW8jdGkrQf</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2528495151</pqid></control><display><type>article</type><title>A loss‐of‐function of the dirigent gene TaDIR‐B1 improves resistance to Fusarium crown rot in wheat</title><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley-Blackwell Open Access Titles</source><creator>Yang, Xia ; Zhong, Shaobin ; Zhang, Qijun ; Ren, Yan ; Sun, Congwei ; Chen, Feng</creator><creatorcontrib>Yang, Xia ; Zhong, Shaobin ; Zhang, Qijun ; Ren, Yan ; Sun, Congwei ; Chen, Feng</creatorcontrib><description>The TaDIR gene was identified by GWAS and QTL mapping of Fusarium crown rot (FCR) resistance and was functionally verified by VIGS and analysis of tetraploid and hexaploid wheat mutants. (a): Classification of FCR disease index in the surveyed cultivars. (b) Number of accessions with different FCR DI in the association panel. (c) Manhattan and Q‐Q plots for FCR DI in different environments. (d) Distribution of significant SNPs revealed by GWAS on various chromosomes. (e) Haplotype analysis of significant SNPs on 4B identified at multiple environments. (f–g) Comparison of FCR DI of wheat accessions with different alleles in the block on 4B. (h) QTL mapping for FCR DI in the Bainong64/Jingshuang16 (BJ) population. (i) The schematic range of 6 candidate genes including TaDIR identified by haplotype analysis and QTL mapping. (j) Full alignment of amino acid of TaDIR‐B1 alleles between low DI and high DI accessions. (k) Development of the dCAPS marker to distinguish TaDIR‐B1 alleles. Furthermore, TaDIR‐B1 gene was silenced in the FCR‐susceptible cultivar Pingyuan 50 using virus‐induced gene silencing (VIGS) by barley stripe mosaic virus (BSMV). qRT‐PCR analysis showed significant down‐regulation of TaDIR‐B1 in VIGS‐silenced plants (Figure 1l‐2). Compared to the WT and BSMV0 plants, the lignin content in the BSMVTaDIR‐B1 plants was remarkedly increased, and the activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) were also dramatically increased, but the malondialdehyde (MDA) content was significantly decreased in BSMVTaDIR‐B1 plants (Figure 1l‐4). Physiological analysis showed that lignin accumulation was dramatically increased in silenced‐TaDIR‐B1 plants. [...]improvement of FCR resistance caused by loss of function of the TaDIR‐B1 gene may be attributed to accumulation of lignin in wheat plants.</description><identifier>ISSN: 1467-7644</identifier><identifier>EISSN: 1467-7652</identifier><identifier>DOI: 10.1111/pbi.13554</identifier><identifier>PMID: 33567136</identifier><language>eng</language><publisher>England: John Wiley &amp; Sons, Inc</publisher><subject>Accumulation ; Alleles ; Amino acids ; Antioxidants ; B1 gene ; Brief Communications ; Catalase ; Chromosomes ; common wheat ; Crown rot ; Cultivars ; Enzymes ; Fusarium ; Fusarium crown rot ; Gene mapping ; Gene silencing ; Genes ; Genomes ; Germplasm ; GWAS ; Haplotypes ; Lignin ; Malondialdehyde ; Mapping ; Mutation ; Peroxidase ; Physiology ; Proteins ; QTL mapping ; Quantitative trait loci ; R&amp;D ; Research &amp; development ; Single-nucleotide polymorphism ; Superoxide dismutase ; TaDIR gene ; Viruses ; Wheat</subject><ispartof>Plant biotechnology journal, 2021-05, Vol.19 (5), p.866-868</ispartof><rights>2021 The Authors. Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley &amp; Sons Ltd.</rights><rights>2021. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4714-ce4628a52f5e2a17b0c5223fb7cefb4025d491b77f938112ecef990dcec14fd3</citedby><cites>FETCH-LOGICAL-c4714-ce4628a52f5e2a17b0c5223fb7cefb4025d491b77f938112ecef990dcec14fd3</cites><orcidid>0000-0002-7327-2969</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fpbi.13554$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fpbi.13554$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,864,885,1416,11553,27915,27916,45565,45566,46043,46467</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33567136$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Xia</creatorcontrib><creatorcontrib>Zhong, Shaobin</creatorcontrib><creatorcontrib>Zhang, Qijun</creatorcontrib><creatorcontrib>Ren, Yan</creatorcontrib><creatorcontrib>Sun, Congwei</creatorcontrib><creatorcontrib>Chen, Feng</creatorcontrib><title>A loss‐of‐function of the dirigent gene TaDIR‐B1 improves resistance to Fusarium crown rot in wheat</title><title>Plant biotechnology journal</title><addtitle>Plant Biotechnol J</addtitle><description>The TaDIR gene was identified by GWAS and QTL mapping of Fusarium crown rot (FCR) resistance and was functionally verified by VIGS and analysis of tetraploid and hexaploid wheat mutants. (a): Classification of FCR disease index in the surveyed cultivars. (b) Number of accessions with different FCR DI in the association panel. (c) Manhattan and Q‐Q plots for FCR DI in different environments. (d) Distribution of significant SNPs revealed by GWAS on various chromosomes. (e) Haplotype analysis of significant SNPs on 4B identified at multiple environments. (f–g) Comparison of FCR DI of wheat accessions with different alleles in the block on 4B. (h) QTL mapping for FCR DI in the Bainong64/Jingshuang16 (BJ) population. (i) The schematic range of 6 candidate genes including TaDIR identified by haplotype analysis and QTL mapping. (j) Full alignment of amino acid of TaDIR‐B1 alleles between low DI and high DI accessions. (k) Development of the dCAPS marker to distinguish TaDIR‐B1 alleles. Furthermore, TaDIR‐B1 gene was silenced in the FCR‐susceptible cultivar Pingyuan 50 using virus‐induced gene silencing (VIGS) by barley stripe mosaic virus (BSMV). qRT‐PCR analysis showed significant down‐regulation of TaDIR‐B1 in VIGS‐silenced plants (Figure 1l‐2). Compared to the WT and BSMV0 plants, the lignin content in the BSMVTaDIR‐B1 plants was remarkedly increased, and the activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) were also dramatically increased, but the malondialdehyde (MDA) content was significantly decreased in BSMVTaDIR‐B1 plants (Figure 1l‐4). Physiological analysis showed that lignin accumulation was dramatically increased in silenced‐TaDIR‐B1 plants. [...]improvement of FCR resistance caused by loss of function of the TaDIR‐B1 gene may be attributed to accumulation of lignin in wheat plants.</description><subject>Accumulation</subject><subject>Alleles</subject><subject>Amino acids</subject><subject>Antioxidants</subject><subject>B1 gene</subject><subject>Brief Communications</subject><subject>Catalase</subject><subject>Chromosomes</subject><subject>common wheat</subject><subject>Crown rot</subject><subject>Cultivars</subject><subject>Enzymes</subject><subject>Fusarium</subject><subject>Fusarium crown rot</subject><subject>Gene mapping</subject><subject>Gene silencing</subject><subject>Genes</subject><subject>Genomes</subject><subject>Germplasm</subject><subject>GWAS</subject><subject>Haplotypes</subject><subject>Lignin</subject><subject>Malondialdehyde</subject><subject>Mapping</subject><subject>Mutation</subject><subject>Peroxidase</subject><subject>Physiology</subject><subject>Proteins</subject><subject>QTL mapping</subject><subject>Quantitative trait loci</subject><subject>R&amp;D</subject><subject>Research &amp; development</subject><subject>Single-nucleotide polymorphism</subject><subject>Superoxide dismutase</subject><subject>TaDIR gene</subject><subject>Viruses</subject><subject>Wheat</subject><issn>1467-7644</issn><issn>1467-7652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kc9uEzEQxi0EoqVw4AWQJS7lkNZ_17sXpLZQiFQJhHK3vM64cbVrB9vbqDcegWfkSXCbErVI4MN4NPPTp5n5EHpNyRGt73jd-yPKpRRP0D4VjZqpRrKnu1yIPfQi5ytCGG1k8xztcS4bRXmzj_wJHmLOv378jK4GNwVbfAw4OlxWgJc--UsIBdcAeGE-zL9V6pRiP65TvIaME2SfiwkWcIn4fMom-WnENsVNwCkW7APerMCUl-iZM0OGV_f_AVqcf1ycfZ5dfPk0Pzu5mFmhqJhZEA1rjWROAjNU9cRKxrjrlQXXC8LkUnS0V8p1vKWUQS13HVlasFS4JT9A77ey66kfoZZDSWbQ6-RHk250NF4_7gS_0pfxWreUU8LbKnB4L5Di9wly0aPPFobBBIhT1ky0rRSKcVXRt3-hV3FKoW6neR2tJW1D2P8oJlkrOkklrdS7LVUvl3MCtxuZEn3rsq4u6zuXK_vm4Y478o-tFTjeAhs_wM2_lfTX0_lW8jdGkrQf</recordid><startdate>202105</startdate><enddate>202105</enddate><creator>Yang, Xia</creator><creator>Zhong, Shaobin</creator><creator>Zhang, Qijun</creator><creator>Ren, Yan</creator><creator>Sun, Congwei</creator><creator>Chen, Feng</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LK8</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7327-2969</orcidid></search><sort><creationdate>202105</creationdate><title>A loss‐of‐function of the dirigent gene TaDIR‐B1 improves resistance to Fusarium crown rot in wheat</title><author>Yang, Xia ; Zhong, Shaobin ; Zhang, Qijun ; Ren, Yan ; Sun, Congwei ; Chen, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4714-ce4628a52f5e2a17b0c5223fb7cefb4025d491b77f938112ecef990dcec14fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accumulation</topic><topic>Alleles</topic><topic>Amino acids</topic><topic>Antioxidants</topic><topic>B1 gene</topic><topic>Brief Communications</topic><topic>Catalase</topic><topic>Chromosomes</topic><topic>common wheat</topic><topic>Crown rot</topic><topic>Cultivars</topic><topic>Enzymes</topic><topic>Fusarium</topic><topic>Fusarium crown rot</topic><topic>Gene mapping</topic><topic>Gene silencing</topic><topic>Genes</topic><topic>Genomes</topic><topic>Germplasm</topic><topic>GWAS</topic><topic>Haplotypes</topic><topic>Lignin</topic><topic>Malondialdehyde</topic><topic>Mapping</topic><topic>Mutation</topic><topic>Peroxidase</topic><topic>Physiology</topic><topic>Proteins</topic><topic>QTL mapping</topic><topic>Quantitative trait loci</topic><topic>R&amp;D</topic><topic>Research &amp; development</topic><topic>Single-nucleotide polymorphism</topic><topic>Superoxide dismutase</topic><topic>TaDIR gene</topic><topic>Viruses</topic><topic>Wheat</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Xia</creatorcontrib><creatorcontrib>Zhong, Shaobin</creatorcontrib><creatorcontrib>Zhang, Qijun</creatorcontrib><creatorcontrib>Ren, Yan</creatorcontrib><creatorcontrib>Sun, Congwei</creatorcontrib><creatorcontrib>Chen, Feng</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant biotechnology journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Xia</au><au>Zhong, Shaobin</au><au>Zhang, Qijun</au><au>Ren, Yan</au><au>Sun, Congwei</au><au>Chen, Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A loss‐of‐function of the dirigent gene TaDIR‐B1 improves resistance to Fusarium crown rot in wheat</atitle><jtitle>Plant biotechnology journal</jtitle><addtitle>Plant Biotechnol J</addtitle><date>2021-05</date><risdate>2021</risdate><volume>19</volume><issue>5</issue><spage>866</spage><epage>868</epage><pages>866-868</pages><issn>1467-7644</issn><eissn>1467-7652</eissn><abstract>The TaDIR gene was identified by GWAS and QTL mapping of Fusarium crown rot (FCR) resistance and was functionally verified by VIGS and analysis of tetraploid and hexaploid wheat mutants. (a): Classification of FCR disease index in the surveyed cultivars. (b) Number of accessions with different FCR DI in the association panel. (c) Manhattan and Q‐Q plots for FCR DI in different environments. (d) Distribution of significant SNPs revealed by GWAS on various chromosomes. (e) Haplotype analysis of significant SNPs on 4B identified at multiple environments. (f–g) Comparison of FCR DI of wheat accessions with different alleles in the block on 4B. (h) QTL mapping for FCR DI in the Bainong64/Jingshuang16 (BJ) population. (i) The schematic range of 6 candidate genes including TaDIR identified by haplotype analysis and QTL mapping. (j) Full alignment of amino acid of TaDIR‐B1 alleles between low DI and high DI accessions. (k) Development of the dCAPS marker to distinguish TaDIR‐B1 alleles. Furthermore, TaDIR‐B1 gene was silenced in the FCR‐susceptible cultivar Pingyuan 50 using virus‐induced gene silencing (VIGS) by barley stripe mosaic virus (BSMV). qRT‐PCR analysis showed significant down‐regulation of TaDIR‐B1 in VIGS‐silenced plants (Figure 1l‐2). Compared to the WT and BSMV0 plants, the lignin content in the BSMVTaDIR‐B1 plants was remarkedly increased, and the activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) were also dramatically increased, but the malondialdehyde (MDA) content was significantly decreased in BSMVTaDIR‐B1 plants (Figure 1l‐4). Physiological analysis showed that lignin accumulation was dramatically increased in silenced‐TaDIR‐B1 plants. [...]improvement of FCR resistance caused by loss of function of the TaDIR‐B1 gene may be attributed to accumulation of lignin in wheat plants.</abstract><cop>England</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>33567136</pmid><doi>10.1111/pbi.13554</doi><tpages>3</tpages><orcidid>https://orcid.org/0000-0002-7327-2969</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1467-7644
ispartof Plant biotechnology journal, 2021-05, Vol.19 (5), p.866-868
issn 1467-7644
1467-7652
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8131038
source DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley-Blackwell Open Access Titles
subjects Accumulation
Alleles
Amino acids
Antioxidants
B1 gene
Brief Communications
Catalase
Chromosomes
common wheat
Crown rot
Cultivars
Enzymes
Fusarium
Fusarium crown rot
Gene mapping
Gene silencing
Genes
Genomes
Germplasm
GWAS
Haplotypes
Lignin
Malondialdehyde
Mapping
Mutation
Peroxidase
Physiology
Proteins
QTL mapping
Quantitative trait loci
R&D
Research & development
Single-nucleotide polymorphism
Superoxide dismutase
TaDIR gene
Viruses
Wheat
title A loss‐of‐function of the dirigent gene TaDIR‐B1 improves resistance to Fusarium crown rot in wheat
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T02%3A43%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20loss%E2%80%90of%E2%80%90function%20of%20the%20dirigent%20gene%20TaDIR%E2%80%90B1%20improves%20resistance%20to%20Fusarium%20crown%20rot%20in%20wheat&rft.jtitle=Plant%20biotechnology%20journal&rft.au=Yang,%20Xia&rft.date=2021-05&rft.volume=19&rft.issue=5&rft.spage=866&rft.epage=868&rft.pages=866-868&rft.issn=1467-7644&rft.eissn=1467-7652&rft_id=info:doi/10.1111/pbi.13554&rft_dat=%3Cproquest_pubme%3E2488547237%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2528495151&rft_id=info:pmid/33567136&rfr_iscdi=true