Assessing Collision Cross Section Calibration Strategies for Traveling Wave-Based Ion Mobility Separations in Structures for Lossless Ion Manipulations
The collision cross section (CCS) is an important property that aids in the structural characterization of molecules. Here, we investigated the CCS calibration accuracy with traveling wave ion mobility spectrometry (TWIMS) separations in structures for lossless ion manipulations (SLIM) using three s...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2020-11, Vol.92 (22), p.14976-14982 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14982 |
---|---|
container_issue | 22 |
container_start_page | 14976 |
container_title | Analytical chemistry (Washington) |
container_volume | 92 |
creator | Li, Ailin Conant, Christopher R Zheng, Xueyun Bloodsworth, Kent J Orton, Daniel J Garimella, Sandilya V.B Attah, Isaac K Nagy, Gabe Smith, Richard D Ibrahim, Yehia M |
description | The collision cross section (CCS) is an important property that aids in the structural characterization of molecules. Here, we investigated the CCS calibration accuracy with traveling wave ion mobility spectrometry (TWIMS) separations in structures for lossless ion manipulations (SLIM) using three sets of calibrants. A series of singly negatively charged phospholipids and bile acids were calibrated in nitrogen buffer gas using two different TW waveform profiles (square and sine) and amplitudes (20, 25, and 30 V0‑p). The calibration errors for the three calibrant sets (Agilent tuning mixture, polyalanine, and one assembled in-house) showed negligible differences using a sine-shaped TW waveform. Calibration errors were all within 1–2% of the drift tube ion mobility spectrometry (DTIMS) measurements, with lower errors for sine waveforms, presumably due to the lower average and maximum fields experienced by ions. Finally, ultrahigh-resolution multipass (long path length) SLIM TWIMS separations demonstrated improved CCS calibration for phospholipid and bile acid isomers. |
doi_str_mv | 10.1021/acs.analchem.0c02829 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8127335</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2457275968</sourcerecordid><originalsourceid>FETCH-LOGICAL-a555t-6fb7697388b507adf535d10871a83de73648df1ba1ad123bfbc064b465348f323</originalsourceid><addsrcrecordid>eNp9kt9u0zAYxS3ExMrgDRCK4GY3KZ_t-E9vkEY1YFInLjbEpeU4TuvJjYudTNqT8Lo4TVeNXXDlz8rvnGPHB6F3GOYYCP6kTZrrTnuzsds5GCCSLF6gGWYESi4leYlmAEBLIgBO0euU7gAwBsxfoVNKMeVUwgz9uUjJpuS6dbEM3rvkQlcsY0ipuLGm3--0d3XU-_mmz4NdO5uKNsTiNup760fxrzyUX3SyTXGVuetQO-_6h2yy05M2FW6vH0w_xIN-lXN8jp80unO7wU_wG3TSap_s28N6hn5-vbxdfi9XP75dLS9WpWaM9SVva8EXgkpZMxC6aRllDQYpsJa0sYLySjYtrjXWDSa0bmsDvKorzmglW0roGfo8-e6GemsbY7t8Q6920W11fFBBO_Xvl85t1DrcK4mJoJRlgw-TQUi9U8m43pqNCV2X_57CglZ8n3J-SInh92BTr7YuGeu97mwYkiIVE0SwBZcZ_fgMvQtDzO88UpxTLgnQTFUTZcanirY9nhiDGuuhcj3UYz3UoR5Z9v7pbY-ixz5kACZglB-D_-v5F6IjzM4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2466368203</pqid></control><display><type>article</type><title>Assessing Collision Cross Section Calibration Strategies for Traveling Wave-Based Ion Mobility Separations in Structures for Lossless Ion Manipulations</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Li, Ailin ; Conant, Christopher R ; Zheng, Xueyun ; Bloodsworth, Kent J ; Orton, Daniel J ; Garimella, Sandilya V.B ; Attah, Isaac K ; Nagy, Gabe ; Smith, Richard D ; Ibrahim, Yehia M</creator><creatorcontrib>Li, Ailin ; Conant, Christopher R ; Zheng, Xueyun ; Bloodsworth, Kent J ; Orton, Daniel J ; Garimella, Sandilya V.B ; Attah, Isaac K ; Nagy, Gabe ; Smith, Richard D ; Ibrahim, Yehia M ; Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><description>The collision cross section (CCS) is an important property that aids in the structural characterization of molecules. Here, we investigated the CCS calibration accuracy with traveling wave ion mobility spectrometry (TWIMS) separations in structures for lossless ion manipulations (SLIM) using three sets of calibrants. A series of singly negatively charged phospholipids and bile acids were calibrated in nitrogen buffer gas using two different TW waveform profiles (square and sine) and amplitudes (20, 25, and 30 V0‑p). The calibration errors for the three calibrant sets (Agilent tuning mixture, polyalanine, and one assembled in-house) showed negligible differences using a sine-shaped TW waveform. Calibration errors were all within 1–2% of the drift tube ion mobility spectrometry (DTIMS) measurements, with lower errors for sine waveforms, presumably due to the lower average and maximum fields experienced by ions. Finally, ultrahigh-resolution multipass (long path length) SLIM TWIMS separations demonstrated improved CCS calibration for phospholipid and bile acid isomers.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.0c02829</identifier><identifier>PMID: 33136380</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Analytical chemistry ; Bile ; Bile acids ; Bile Acids and Salts - chemistry ; Calibration ; Chemistry ; Cross-sections ; Drift tubes ; electric fields ; Electrodes ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Ion Mobility Spectrometry - instrumentation ; Ion Mobility Spectrometry - methods ; Ionic mobility ; Ions ; Isomerism ; Isomers ; Mass Spectrometry ; Mixtures ; Mobility ; molecular structure ; Peptides - chemistry ; Phospholipids ; Phospholipids - chemistry ; Polyalanine ; Scientific imaging ; Spectrometry ; Spectroscopy ; Structural analysis ; Traveling waves ; Waveforms</subject><ispartof>Analytical chemistry (Washington), 2020-11, Vol.92 (22), p.14976-14982</ispartof><rights>2020 American Chemical Society</rights><rights>Copyright American Chemical Society Nov 17, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a555t-6fb7697388b507adf535d10871a83de73648df1ba1ad123bfbc064b465348f323</citedby><cites>FETCH-LOGICAL-a555t-6fb7697388b507adf535d10871a83de73648df1ba1ad123bfbc064b465348f323</cites><orcidid>0000-0001-9007-4422 ; 0000-0001-9782-4521 ; 0000-0001-6649-9842 ; 0000-0002-2381-2349 ; 0000-0001-6085-193X ; 0000000166499842 ; 0000000197824521 ; 0000000202536859 ; 0000000190074422 ; 0000000275961565 ; 000000016085193X ; 0000000223812349</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.0c02829$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.0c02829$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33136380$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1734632$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Ailin</creatorcontrib><creatorcontrib>Conant, Christopher R</creatorcontrib><creatorcontrib>Zheng, Xueyun</creatorcontrib><creatorcontrib>Bloodsworth, Kent J</creatorcontrib><creatorcontrib>Orton, Daniel J</creatorcontrib><creatorcontrib>Garimella, Sandilya V.B</creatorcontrib><creatorcontrib>Attah, Isaac K</creatorcontrib><creatorcontrib>Nagy, Gabe</creatorcontrib><creatorcontrib>Smith, Richard D</creatorcontrib><creatorcontrib>Ibrahim, Yehia M</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><title>Assessing Collision Cross Section Calibration Strategies for Traveling Wave-Based Ion Mobility Separations in Structures for Lossless Ion Manipulations</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>The collision cross section (CCS) is an important property that aids in the structural characterization of molecules. Here, we investigated the CCS calibration accuracy with traveling wave ion mobility spectrometry (TWIMS) separations in structures for lossless ion manipulations (SLIM) using three sets of calibrants. A series of singly negatively charged phospholipids and bile acids were calibrated in nitrogen buffer gas using two different TW waveform profiles (square and sine) and amplitudes (20, 25, and 30 V0‑p). The calibration errors for the three calibrant sets (Agilent tuning mixture, polyalanine, and one assembled in-house) showed negligible differences using a sine-shaped TW waveform. Calibration errors were all within 1–2% of the drift tube ion mobility spectrometry (DTIMS) measurements, with lower errors for sine waveforms, presumably due to the lower average and maximum fields experienced by ions. Finally, ultrahigh-resolution multipass (long path length) SLIM TWIMS separations demonstrated improved CCS calibration for phospholipid and bile acid isomers.</description><subject>Analytical chemistry</subject><subject>Bile</subject><subject>Bile acids</subject><subject>Bile Acids and Salts - chemistry</subject><subject>Calibration</subject><subject>Chemistry</subject><subject>Cross-sections</subject><subject>Drift tubes</subject><subject>electric fields</subject><subject>Electrodes</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Ion Mobility Spectrometry - instrumentation</subject><subject>Ion Mobility Spectrometry - methods</subject><subject>Ionic mobility</subject><subject>Ions</subject><subject>Isomerism</subject><subject>Isomers</subject><subject>Mass Spectrometry</subject><subject>Mixtures</subject><subject>Mobility</subject><subject>molecular structure</subject><subject>Peptides - chemistry</subject><subject>Phospholipids</subject><subject>Phospholipids - chemistry</subject><subject>Polyalanine</subject><subject>Scientific imaging</subject><subject>Spectrometry</subject><subject>Spectroscopy</subject><subject>Structural analysis</subject><subject>Traveling waves</subject><subject>Waveforms</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kt9u0zAYxS3ExMrgDRCK4GY3KZ_t-E9vkEY1YFInLjbEpeU4TuvJjYudTNqT8Lo4TVeNXXDlz8rvnGPHB6F3GOYYCP6kTZrrTnuzsds5GCCSLF6gGWYESi4leYlmAEBLIgBO0euU7gAwBsxfoVNKMeVUwgz9uUjJpuS6dbEM3rvkQlcsY0ipuLGm3--0d3XU-_mmz4NdO5uKNsTiNup760fxrzyUX3SyTXGVuetQO-_6h2yy05M2FW6vH0w_xIN-lXN8jp80unO7wU_wG3TSap_s28N6hn5-vbxdfi9XP75dLS9WpWaM9SVva8EXgkpZMxC6aRllDQYpsJa0sYLySjYtrjXWDSa0bmsDvKorzmglW0roGfo8-e6GemsbY7t8Q6920W11fFBBO_Xvl85t1DrcK4mJoJRlgw-TQUi9U8m43pqNCV2X_57CglZ8n3J-SInh92BTr7YuGeu97mwYkiIVE0SwBZcZ_fgMvQtDzO88UpxTLgnQTFUTZcanirY9nhiDGuuhcj3UYz3UoR5Z9v7pbY-ixz5kACZglB-D_-v5F6IjzM4</recordid><startdate>20201117</startdate><enddate>20201117</enddate><creator>Li, Ailin</creator><creator>Conant, Christopher R</creator><creator>Zheng, Xueyun</creator><creator>Bloodsworth, Kent J</creator><creator>Orton, Daniel J</creator><creator>Garimella, Sandilya V.B</creator><creator>Attah, Isaac K</creator><creator>Nagy, Gabe</creator><creator>Smith, Richard D</creator><creator>Ibrahim, Yehia M</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9007-4422</orcidid><orcidid>https://orcid.org/0000-0001-9782-4521</orcidid><orcidid>https://orcid.org/0000-0001-6649-9842</orcidid><orcidid>https://orcid.org/0000-0002-2381-2349</orcidid><orcidid>https://orcid.org/0000-0001-6085-193X</orcidid><orcidid>https://orcid.org/0000000166499842</orcidid><orcidid>https://orcid.org/0000000197824521</orcidid><orcidid>https://orcid.org/0000000202536859</orcidid><orcidid>https://orcid.org/0000000190074422</orcidid><orcidid>https://orcid.org/0000000275961565</orcidid><orcidid>https://orcid.org/000000016085193X</orcidid><orcidid>https://orcid.org/0000000223812349</orcidid></search><sort><creationdate>20201117</creationdate><title>Assessing Collision Cross Section Calibration Strategies for Traveling Wave-Based Ion Mobility Separations in Structures for Lossless Ion Manipulations</title><author>Li, Ailin ; Conant, Christopher R ; Zheng, Xueyun ; Bloodsworth, Kent J ; Orton, Daniel J ; Garimella, Sandilya V.B ; Attah, Isaac K ; Nagy, Gabe ; Smith, Richard D ; Ibrahim, Yehia M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a555t-6fb7697388b507adf535d10871a83de73648df1ba1ad123bfbc064b465348f323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analytical chemistry</topic><topic>Bile</topic><topic>Bile acids</topic><topic>Bile Acids and Salts - chemistry</topic><topic>Calibration</topic><topic>Chemistry</topic><topic>Cross-sections</topic><topic>Drift tubes</topic><topic>electric fields</topic><topic>Electrodes</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Ion Mobility Spectrometry - instrumentation</topic><topic>Ion Mobility Spectrometry - methods</topic><topic>Ionic mobility</topic><topic>Ions</topic><topic>Isomerism</topic><topic>Isomers</topic><topic>Mass Spectrometry</topic><topic>Mixtures</topic><topic>Mobility</topic><topic>molecular structure</topic><topic>Peptides - chemistry</topic><topic>Phospholipids</topic><topic>Phospholipids - chemistry</topic><topic>Polyalanine</topic><topic>Scientific imaging</topic><topic>Spectrometry</topic><topic>Spectroscopy</topic><topic>Structural analysis</topic><topic>Traveling waves</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Ailin</creatorcontrib><creatorcontrib>Conant, Christopher R</creatorcontrib><creatorcontrib>Zheng, Xueyun</creatorcontrib><creatorcontrib>Bloodsworth, Kent J</creatorcontrib><creatorcontrib>Orton, Daniel J</creatorcontrib><creatorcontrib>Garimella, Sandilya V.B</creatorcontrib><creatorcontrib>Attah, Isaac K</creatorcontrib><creatorcontrib>Nagy, Gabe</creatorcontrib><creatorcontrib>Smith, Richard D</creatorcontrib><creatorcontrib>Ibrahim, Yehia M</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Ailin</au><au>Conant, Christopher R</au><au>Zheng, Xueyun</au><au>Bloodsworth, Kent J</au><au>Orton, Daniel J</au><au>Garimella, Sandilya V.B</au><au>Attah, Isaac K</au><au>Nagy, Gabe</au><au>Smith, Richard D</au><au>Ibrahim, Yehia M</au><aucorp>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessing Collision Cross Section Calibration Strategies for Traveling Wave-Based Ion Mobility Separations in Structures for Lossless Ion Manipulations</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2020-11-17</date><risdate>2020</risdate><volume>92</volume><issue>22</issue><spage>14976</spage><epage>14982</epage><pages>14976-14982</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>The collision cross section (CCS) is an important property that aids in the structural characterization of molecules. Here, we investigated the CCS calibration accuracy with traveling wave ion mobility spectrometry (TWIMS) separations in structures for lossless ion manipulations (SLIM) using three sets of calibrants. A series of singly negatively charged phospholipids and bile acids were calibrated in nitrogen buffer gas using two different TW waveform profiles (square and sine) and amplitudes (20, 25, and 30 V0‑p). The calibration errors for the three calibrant sets (Agilent tuning mixture, polyalanine, and one assembled in-house) showed negligible differences using a sine-shaped TW waveform. Calibration errors were all within 1–2% of the drift tube ion mobility spectrometry (DTIMS) measurements, with lower errors for sine waveforms, presumably due to the lower average and maximum fields experienced by ions. Finally, ultrahigh-resolution multipass (long path length) SLIM TWIMS separations demonstrated improved CCS calibration for phospholipid and bile acid isomers.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33136380</pmid><doi>10.1021/acs.analchem.0c02829</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-9007-4422</orcidid><orcidid>https://orcid.org/0000-0001-9782-4521</orcidid><orcidid>https://orcid.org/0000-0001-6649-9842</orcidid><orcidid>https://orcid.org/0000-0002-2381-2349</orcidid><orcidid>https://orcid.org/0000-0001-6085-193X</orcidid><orcidid>https://orcid.org/0000000166499842</orcidid><orcidid>https://orcid.org/0000000197824521</orcidid><orcidid>https://orcid.org/0000000202536859</orcidid><orcidid>https://orcid.org/0000000190074422</orcidid><orcidid>https://orcid.org/0000000275961565</orcidid><orcidid>https://orcid.org/000000016085193X</orcidid><orcidid>https://orcid.org/0000000223812349</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2020-11, Vol.92 (22), p.14976-14982 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8127335 |
source | MEDLINE; American Chemical Society Journals |
subjects | Analytical chemistry Bile Bile acids Bile Acids and Salts - chemistry Calibration Chemistry Cross-sections Drift tubes electric fields Electrodes INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Ion Mobility Spectrometry - instrumentation Ion Mobility Spectrometry - methods Ionic mobility Ions Isomerism Isomers Mass Spectrometry Mixtures Mobility molecular structure Peptides - chemistry Phospholipids Phospholipids - chemistry Polyalanine Scientific imaging Spectrometry Spectroscopy Structural analysis Traveling waves Waveforms |
title | Assessing Collision Cross Section Calibration Strategies for Traveling Wave-Based Ion Mobility Separations in Structures for Lossless Ion Manipulations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T16%3A25%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessing%20Collision%20Cross%20Section%20Calibration%20Strategies%20for%20Traveling%20Wave-Based%20Ion%20Mobility%20Separations%20in%20Structures%20for%20Lossless%20Ion%20Manipulations&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Li,%20Ailin&rft.aucorp=Pacific%20Northwest%20National%20Laboratory%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2020-11-17&rft.volume=92&rft.issue=22&rft.spage=14976&rft.epage=14982&rft.pages=14976-14982&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.0c02829&rft_dat=%3Cproquest_pubme%3E2457275968%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2466368203&rft_id=info:pmid/33136380&rfr_iscdi=true |