Assessing Collision Cross Section Calibration Strategies for Traveling Wave-Based Ion Mobility Separations in Structures for Lossless Ion Manipulations

The collision cross section (CCS) is an important property that aids in the structural characterization of molecules. Here, we investigated the CCS calibration accuracy with traveling wave ion mobility spectrometry (TWIMS) separations in structures for lossless ion manipulations (SLIM) using three s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2020-11, Vol.92 (22), p.14976-14982
Hauptverfasser: Li, Ailin, Conant, Christopher R, Zheng, Xueyun, Bloodsworth, Kent J, Orton, Daniel J, Garimella, Sandilya V.B, Attah, Isaac K, Nagy, Gabe, Smith, Richard D, Ibrahim, Yehia M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14982
container_issue 22
container_start_page 14976
container_title Analytical chemistry (Washington)
container_volume 92
creator Li, Ailin
Conant, Christopher R
Zheng, Xueyun
Bloodsworth, Kent J
Orton, Daniel J
Garimella, Sandilya V.B
Attah, Isaac K
Nagy, Gabe
Smith, Richard D
Ibrahim, Yehia M
description The collision cross section (CCS) is an important property that aids in the structural characterization of molecules. Here, we investigated the CCS calibration accuracy with traveling wave ion mobility spectrometry (TWIMS) separations in structures for lossless ion manipulations (SLIM) using three sets of calibrants. A series of singly negatively charged phospholipids and bile acids were calibrated in nitrogen buffer gas using two different TW waveform profiles (square and sine) and amplitudes (20, 25, and 30 V0‑p). The calibration errors for the three calibrant sets (Agilent tuning mixture, polyalanine, and one assembled in-house) showed negligible differences using a sine-shaped TW waveform. Calibration errors were all within 1–2% of the drift tube ion mobility spectrometry (DTIMS) measurements, with lower errors for sine waveforms, presumably due to the lower average and maximum fields experienced by ions. Finally, ultrahigh-resolution multipass (long path length) SLIM TWIMS separations demonstrated improved CCS calibration for phospholipid and bile acid isomers.
doi_str_mv 10.1021/acs.analchem.0c02829
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8127335</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2457275968</sourcerecordid><originalsourceid>FETCH-LOGICAL-a555t-6fb7697388b507adf535d10871a83de73648df1ba1ad123bfbc064b465348f323</originalsourceid><addsrcrecordid>eNp9kt9u0zAYxS3ExMrgDRCK4GY3KZ_t-E9vkEY1YFInLjbEpeU4TuvJjYudTNqT8Lo4TVeNXXDlz8rvnGPHB6F3GOYYCP6kTZrrTnuzsds5GCCSLF6gGWYESi4leYlmAEBLIgBO0euU7gAwBsxfoVNKMeVUwgz9uUjJpuS6dbEM3rvkQlcsY0ipuLGm3--0d3XU-_mmz4NdO5uKNsTiNup760fxrzyUX3SyTXGVuetQO-_6h2yy05M2FW6vH0w_xIN-lXN8jp80unO7wU_wG3TSap_s28N6hn5-vbxdfi9XP75dLS9WpWaM9SVva8EXgkpZMxC6aRllDQYpsJa0sYLySjYtrjXWDSa0bmsDvKorzmglW0roGfo8-e6GemsbY7t8Q6920W11fFBBO_Xvl85t1DrcK4mJoJRlgw-TQUi9U8m43pqNCV2X_57CglZ8n3J-SInh92BTr7YuGeu97mwYkiIVE0SwBZcZ_fgMvQtDzO88UpxTLgnQTFUTZcanirY9nhiDGuuhcj3UYz3UoR5Z9v7pbY-ixz5kACZglB-D_-v5F6IjzM4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2466368203</pqid></control><display><type>article</type><title>Assessing Collision Cross Section Calibration Strategies for Traveling Wave-Based Ion Mobility Separations in Structures for Lossless Ion Manipulations</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Li, Ailin ; Conant, Christopher R ; Zheng, Xueyun ; Bloodsworth, Kent J ; Orton, Daniel J ; Garimella, Sandilya V.B ; Attah, Isaac K ; Nagy, Gabe ; Smith, Richard D ; Ibrahim, Yehia M</creator><creatorcontrib>Li, Ailin ; Conant, Christopher R ; Zheng, Xueyun ; Bloodsworth, Kent J ; Orton, Daniel J ; Garimella, Sandilya V.B ; Attah, Isaac K ; Nagy, Gabe ; Smith, Richard D ; Ibrahim, Yehia M ; Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><description>The collision cross section (CCS) is an important property that aids in the structural characterization of molecules. Here, we investigated the CCS calibration accuracy with traveling wave ion mobility spectrometry (TWIMS) separations in structures for lossless ion manipulations (SLIM) using three sets of calibrants. A series of singly negatively charged phospholipids and bile acids were calibrated in nitrogen buffer gas using two different TW waveform profiles (square and sine) and amplitudes (20, 25, and 30 V0‑p). The calibration errors for the three calibrant sets (Agilent tuning mixture, polyalanine, and one assembled in-house) showed negligible differences using a sine-shaped TW waveform. Calibration errors were all within 1–2% of the drift tube ion mobility spectrometry (DTIMS) measurements, with lower errors for sine waveforms, presumably due to the lower average and maximum fields experienced by ions. Finally, ultrahigh-resolution multipass (long path length) SLIM TWIMS separations demonstrated improved CCS calibration for phospholipid and bile acid isomers.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.0c02829</identifier><identifier>PMID: 33136380</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Analytical chemistry ; Bile ; Bile acids ; Bile Acids and Salts - chemistry ; Calibration ; Chemistry ; Cross-sections ; Drift tubes ; electric fields ; Electrodes ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Ion Mobility Spectrometry - instrumentation ; Ion Mobility Spectrometry - methods ; Ionic mobility ; Ions ; Isomerism ; Isomers ; Mass Spectrometry ; Mixtures ; Mobility ; molecular structure ; Peptides - chemistry ; Phospholipids ; Phospholipids - chemistry ; Polyalanine ; Scientific imaging ; Spectrometry ; Spectroscopy ; Structural analysis ; Traveling waves ; Waveforms</subject><ispartof>Analytical chemistry (Washington), 2020-11, Vol.92 (22), p.14976-14982</ispartof><rights>2020 American Chemical Society</rights><rights>Copyright American Chemical Society Nov 17, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a555t-6fb7697388b507adf535d10871a83de73648df1ba1ad123bfbc064b465348f323</citedby><cites>FETCH-LOGICAL-a555t-6fb7697388b507adf535d10871a83de73648df1ba1ad123bfbc064b465348f323</cites><orcidid>0000-0001-9007-4422 ; 0000-0001-9782-4521 ; 0000-0001-6649-9842 ; 0000-0002-2381-2349 ; 0000-0001-6085-193X ; 0000000166499842 ; 0000000197824521 ; 0000000202536859 ; 0000000190074422 ; 0000000275961565 ; 000000016085193X ; 0000000223812349</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.0c02829$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.0c02829$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33136380$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1734632$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Ailin</creatorcontrib><creatorcontrib>Conant, Christopher R</creatorcontrib><creatorcontrib>Zheng, Xueyun</creatorcontrib><creatorcontrib>Bloodsworth, Kent J</creatorcontrib><creatorcontrib>Orton, Daniel J</creatorcontrib><creatorcontrib>Garimella, Sandilya V.B</creatorcontrib><creatorcontrib>Attah, Isaac K</creatorcontrib><creatorcontrib>Nagy, Gabe</creatorcontrib><creatorcontrib>Smith, Richard D</creatorcontrib><creatorcontrib>Ibrahim, Yehia M</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><title>Assessing Collision Cross Section Calibration Strategies for Traveling Wave-Based Ion Mobility Separations in Structures for Lossless Ion Manipulations</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>The collision cross section (CCS) is an important property that aids in the structural characterization of molecules. Here, we investigated the CCS calibration accuracy with traveling wave ion mobility spectrometry (TWIMS) separations in structures for lossless ion manipulations (SLIM) using three sets of calibrants. A series of singly negatively charged phospholipids and bile acids were calibrated in nitrogen buffer gas using two different TW waveform profiles (square and sine) and amplitudes (20, 25, and 30 V0‑p). The calibration errors for the three calibrant sets (Agilent tuning mixture, polyalanine, and one assembled in-house) showed negligible differences using a sine-shaped TW waveform. Calibration errors were all within 1–2% of the drift tube ion mobility spectrometry (DTIMS) measurements, with lower errors for sine waveforms, presumably due to the lower average and maximum fields experienced by ions. Finally, ultrahigh-resolution multipass (long path length) SLIM TWIMS separations demonstrated improved CCS calibration for phospholipid and bile acid isomers.</description><subject>Analytical chemistry</subject><subject>Bile</subject><subject>Bile acids</subject><subject>Bile Acids and Salts - chemistry</subject><subject>Calibration</subject><subject>Chemistry</subject><subject>Cross-sections</subject><subject>Drift tubes</subject><subject>electric fields</subject><subject>Electrodes</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Ion Mobility Spectrometry - instrumentation</subject><subject>Ion Mobility Spectrometry - methods</subject><subject>Ionic mobility</subject><subject>Ions</subject><subject>Isomerism</subject><subject>Isomers</subject><subject>Mass Spectrometry</subject><subject>Mixtures</subject><subject>Mobility</subject><subject>molecular structure</subject><subject>Peptides - chemistry</subject><subject>Phospholipids</subject><subject>Phospholipids - chemistry</subject><subject>Polyalanine</subject><subject>Scientific imaging</subject><subject>Spectrometry</subject><subject>Spectroscopy</subject><subject>Structural analysis</subject><subject>Traveling waves</subject><subject>Waveforms</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kt9u0zAYxS3ExMrgDRCK4GY3KZ_t-E9vkEY1YFInLjbEpeU4TuvJjYudTNqT8Lo4TVeNXXDlz8rvnGPHB6F3GOYYCP6kTZrrTnuzsds5GCCSLF6gGWYESi4leYlmAEBLIgBO0euU7gAwBsxfoVNKMeVUwgz9uUjJpuS6dbEM3rvkQlcsY0ipuLGm3--0d3XU-_mmz4NdO5uKNsTiNup760fxrzyUX3SyTXGVuetQO-_6h2yy05M2FW6vH0w_xIN-lXN8jp80unO7wU_wG3TSap_s28N6hn5-vbxdfi9XP75dLS9WpWaM9SVva8EXgkpZMxC6aRllDQYpsJa0sYLySjYtrjXWDSa0bmsDvKorzmglW0roGfo8-e6GemsbY7t8Q6920W11fFBBO_Xvl85t1DrcK4mJoJRlgw-TQUi9U8m43pqNCV2X_57CglZ8n3J-SInh92BTr7YuGeu97mwYkiIVE0SwBZcZ_fgMvQtDzO88UpxTLgnQTFUTZcanirY9nhiDGuuhcj3UYz3UoR5Z9v7pbY-ixz5kACZglB-D_-v5F6IjzM4</recordid><startdate>20201117</startdate><enddate>20201117</enddate><creator>Li, Ailin</creator><creator>Conant, Christopher R</creator><creator>Zheng, Xueyun</creator><creator>Bloodsworth, Kent J</creator><creator>Orton, Daniel J</creator><creator>Garimella, Sandilya V.B</creator><creator>Attah, Isaac K</creator><creator>Nagy, Gabe</creator><creator>Smith, Richard D</creator><creator>Ibrahim, Yehia M</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9007-4422</orcidid><orcidid>https://orcid.org/0000-0001-9782-4521</orcidid><orcidid>https://orcid.org/0000-0001-6649-9842</orcidid><orcidid>https://orcid.org/0000-0002-2381-2349</orcidid><orcidid>https://orcid.org/0000-0001-6085-193X</orcidid><orcidid>https://orcid.org/0000000166499842</orcidid><orcidid>https://orcid.org/0000000197824521</orcidid><orcidid>https://orcid.org/0000000202536859</orcidid><orcidid>https://orcid.org/0000000190074422</orcidid><orcidid>https://orcid.org/0000000275961565</orcidid><orcidid>https://orcid.org/000000016085193X</orcidid><orcidid>https://orcid.org/0000000223812349</orcidid></search><sort><creationdate>20201117</creationdate><title>Assessing Collision Cross Section Calibration Strategies for Traveling Wave-Based Ion Mobility Separations in Structures for Lossless Ion Manipulations</title><author>Li, Ailin ; Conant, Christopher R ; Zheng, Xueyun ; Bloodsworth, Kent J ; Orton, Daniel J ; Garimella, Sandilya V.B ; Attah, Isaac K ; Nagy, Gabe ; Smith, Richard D ; Ibrahim, Yehia M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a555t-6fb7697388b507adf535d10871a83de73648df1ba1ad123bfbc064b465348f323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analytical chemistry</topic><topic>Bile</topic><topic>Bile acids</topic><topic>Bile Acids and Salts - chemistry</topic><topic>Calibration</topic><topic>Chemistry</topic><topic>Cross-sections</topic><topic>Drift tubes</topic><topic>electric fields</topic><topic>Electrodes</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Ion Mobility Spectrometry - instrumentation</topic><topic>Ion Mobility Spectrometry - methods</topic><topic>Ionic mobility</topic><topic>Ions</topic><topic>Isomerism</topic><topic>Isomers</topic><topic>Mass Spectrometry</topic><topic>Mixtures</topic><topic>Mobility</topic><topic>molecular structure</topic><topic>Peptides - chemistry</topic><topic>Phospholipids</topic><topic>Phospholipids - chemistry</topic><topic>Polyalanine</topic><topic>Scientific imaging</topic><topic>Spectrometry</topic><topic>Spectroscopy</topic><topic>Structural analysis</topic><topic>Traveling waves</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Ailin</creatorcontrib><creatorcontrib>Conant, Christopher R</creatorcontrib><creatorcontrib>Zheng, Xueyun</creatorcontrib><creatorcontrib>Bloodsworth, Kent J</creatorcontrib><creatorcontrib>Orton, Daniel J</creatorcontrib><creatorcontrib>Garimella, Sandilya V.B</creatorcontrib><creatorcontrib>Attah, Isaac K</creatorcontrib><creatorcontrib>Nagy, Gabe</creatorcontrib><creatorcontrib>Smith, Richard D</creatorcontrib><creatorcontrib>Ibrahim, Yehia M</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Ailin</au><au>Conant, Christopher R</au><au>Zheng, Xueyun</au><au>Bloodsworth, Kent J</au><au>Orton, Daniel J</au><au>Garimella, Sandilya V.B</au><au>Attah, Isaac K</au><au>Nagy, Gabe</au><au>Smith, Richard D</au><au>Ibrahim, Yehia M</au><aucorp>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessing Collision Cross Section Calibration Strategies for Traveling Wave-Based Ion Mobility Separations in Structures for Lossless Ion Manipulations</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2020-11-17</date><risdate>2020</risdate><volume>92</volume><issue>22</issue><spage>14976</spage><epage>14982</epage><pages>14976-14982</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>The collision cross section (CCS) is an important property that aids in the structural characterization of molecules. Here, we investigated the CCS calibration accuracy with traveling wave ion mobility spectrometry (TWIMS) separations in structures for lossless ion manipulations (SLIM) using three sets of calibrants. A series of singly negatively charged phospholipids and bile acids were calibrated in nitrogen buffer gas using two different TW waveform profiles (square and sine) and amplitudes (20, 25, and 30 V0‑p). The calibration errors for the three calibrant sets (Agilent tuning mixture, polyalanine, and one assembled in-house) showed negligible differences using a sine-shaped TW waveform. Calibration errors were all within 1–2% of the drift tube ion mobility spectrometry (DTIMS) measurements, with lower errors for sine waveforms, presumably due to the lower average and maximum fields experienced by ions. Finally, ultrahigh-resolution multipass (long path length) SLIM TWIMS separations demonstrated improved CCS calibration for phospholipid and bile acid isomers.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33136380</pmid><doi>10.1021/acs.analchem.0c02829</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-9007-4422</orcidid><orcidid>https://orcid.org/0000-0001-9782-4521</orcidid><orcidid>https://orcid.org/0000-0001-6649-9842</orcidid><orcidid>https://orcid.org/0000-0002-2381-2349</orcidid><orcidid>https://orcid.org/0000-0001-6085-193X</orcidid><orcidid>https://orcid.org/0000000166499842</orcidid><orcidid>https://orcid.org/0000000197824521</orcidid><orcidid>https://orcid.org/0000000202536859</orcidid><orcidid>https://orcid.org/0000000190074422</orcidid><orcidid>https://orcid.org/0000000275961565</orcidid><orcidid>https://orcid.org/000000016085193X</orcidid><orcidid>https://orcid.org/0000000223812349</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2020-11, Vol.92 (22), p.14976-14982
issn 0003-2700
1520-6882
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8127335
source MEDLINE; American Chemical Society Journals
subjects Analytical chemistry
Bile
Bile acids
Bile Acids and Salts - chemistry
Calibration
Chemistry
Cross-sections
Drift tubes
electric fields
Electrodes
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Ion Mobility Spectrometry - instrumentation
Ion Mobility Spectrometry - methods
Ionic mobility
Ions
Isomerism
Isomers
Mass Spectrometry
Mixtures
Mobility
molecular structure
Peptides - chemistry
Phospholipids
Phospholipids - chemistry
Polyalanine
Scientific imaging
Spectrometry
Spectroscopy
Structural analysis
Traveling waves
Waveforms
title Assessing Collision Cross Section Calibration Strategies for Traveling Wave-Based Ion Mobility Separations in Structures for Lossless Ion Manipulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T16%3A25%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessing%20Collision%20Cross%20Section%20Calibration%20Strategies%20for%20Traveling%20Wave-Based%20Ion%20Mobility%20Separations%20in%20Structures%20for%20Lossless%20Ion%20Manipulations&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Li,%20Ailin&rft.aucorp=Pacific%20Northwest%20National%20Laboratory%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2020-11-17&rft.volume=92&rft.issue=22&rft.spage=14976&rft.epage=14982&rft.pages=14976-14982&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.0c02829&rft_dat=%3Cproquest_pubme%3E2457275968%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2466368203&rft_id=info:pmid/33136380&rfr_iscdi=true