Proper timing of a quiescence period in precursor prospermatogonia is required for stem cell pool establishment in the male germline

The stem cell-containing undifferentiated spermatogonial population in mammals, which ensures continual sperm production, arises during development from prospermatogonial precursors. Although a period of quiescence is known to occur in prospermatogonia prior to postnatal spermatogonial transition, t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Development (Cambridge) 2021-05, Vol.148 (9)
Hauptverfasser: Du, Guihua, Oatley, Melissa J, Law, Nathan C, Robbins, Colton, Wu, Xin, Oatley, Jon M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page
container_title Development (Cambridge)
container_volume 148
creator Du, Guihua
Oatley, Melissa J
Law, Nathan C
Robbins, Colton
Wu, Xin
Oatley, Jon M
description The stem cell-containing undifferentiated spermatogonial population in mammals, which ensures continual sperm production, arises during development from prospermatogonial precursors. Although a period of quiescence is known to occur in prospermatogonia prior to postnatal spermatogonial transition, the importance of this has not been defined. Here, using mouse models with conditional knockout of the master cell cycle regulator Rb1 to disrupt normal timing of the quiescence period, we found that failure to initiate mitotic arrest during fetal development leads to prospermatogonial apoptosis and germline ablation. Outcomes of single-cell RNA-sequencing analysis indicate that oxidative phosphorylation activity and inhibition of meiotic initiation are disrupted in prospermatogonia that fail to enter quiescence on a normal timeline. Taken together, these findings suggest that key layers of programming are laid down during the quiescent period in prospermatogonia to ensure proper fate specification and fitness in postnatal life.
doi_str_mv 10.1242/dev.194571
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8126406</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2520887114</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-4b95de90a3d79dff94a444e97276372ae96faf5ae8deefb6c748d8a1e37a4b753</originalsourceid><addsrcrecordid>eNpVkUFv3CAUhFHUKtlucskPqDhWkZwAxsZcKlWrpK0UqTkkZ_RsHrtUtnHAjpR7fnhZ7TZqT6A3wwfDEHLJ2TUXUtxYfLnmWlaKn5AVl0oVmgv9gayYrljBteZn5FNKvxljZa3UKTkrSy2yplbk7SGGCSOd_eDHLQ2OAn1ePKYOxw5plnyw1I90itgtMYWYdyHl-QBz2IbRA_WJRsyHIlrqsiHNONAO-55OIfQU0wxt79NuwHHeo-Yd0gF6pNtM6f2I5-Sjgz7hxXFdk6e728fNj-L-1_efm2_3RSelnAvZ6sqiZlBapa1zWkKeo1ZC1aUSgLp24CrAxiK6tu6UbGwDHEsFslVVuSZfD9xpaQe0OeIcoTdT9APEVxPAm_-V0e_MNryYhotasjoDvhwBMTwvOZgZfNonhRHDkoyoBGsaxbnM1quDtcvflSK692s4M_vaTK7NHGrL5s__Puzd-ren8g9OZZhA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2520887114</pqid></control><display><type>article</type><title>Proper timing of a quiescence period in precursor prospermatogonia is required for stem cell pool establishment in the male germline</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><source>Company of Biologists</source><creator>Du, Guihua ; Oatley, Melissa J ; Law, Nathan C ; Robbins, Colton ; Wu, Xin ; Oatley, Jon M</creator><creatorcontrib>Du, Guihua ; Oatley, Melissa J ; Law, Nathan C ; Robbins, Colton ; Wu, Xin ; Oatley, Jon M</creatorcontrib><description>The stem cell-containing undifferentiated spermatogonial population in mammals, which ensures continual sperm production, arises during development from prospermatogonial precursors. Although a period of quiescence is known to occur in prospermatogonia prior to postnatal spermatogonial transition, the importance of this has not been defined. Here, using mouse models with conditional knockout of the master cell cycle regulator Rb1 to disrupt normal timing of the quiescence period, we found that failure to initiate mitotic arrest during fetal development leads to prospermatogonial apoptosis and germline ablation. Outcomes of single-cell RNA-sequencing analysis indicate that oxidative phosphorylation activity and inhibition of meiotic initiation are disrupted in prospermatogonia that fail to enter quiescence on a normal timeline. Taken together, these findings suggest that key layers of programming are laid down during the quiescent period in prospermatogonia to ensure proper fate specification and fitness in postnatal life.</description><identifier>ISSN: 0950-1991</identifier><identifier>EISSN: 1477-9129</identifier><identifier>DOI: 10.1242/dev.194571</identifier><identifier>PMID: 33929507</identifier><language>eng</language><publisher>England: The Company of Biologists Ltd</publisher><subject>Animals ; Apoptosis ; Cell Division - physiology ; Cell Proliferation ; Gene Expression Regulation, Developmental ; Male ; Mice ; Mice, Knockout ; Positive Regulatory Domain I-Binding Factor 1 - genetics ; Reproductive Biology ; Retinoblastoma Binding Proteins - genetics ; Sequence Analysis, RNA ; Spermatogenesis - physiology ; Spermatogonia - cytology ; Spermatogonia - growth &amp; development ; Spermatogonia - metabolism ; Spermatozoa ; Stem Cells &amp; Regeneration ; Stem Cells - cytology ; Stem Cells and Regeneration ; Transcriptome</subject><ispartof>Development (Cambridge), 2021-05, Vol.148 (9)</ispartof><rights>2021. Published by The Company of Biologists Ltd.</rights><rights>2021. Published by The Company of Biologists Ltd 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-4b95de90a3d79dff94a444e97276372ae96faf5ae8deefb6c748d8a1e37a4b753</citedby><cites>FETCH-LOGICAL-c444t-4b95de90a3d79dff94a444e97276372ae96faf5ae8deefb6c748d8a1e37a4b753</cites><orcidid>0000-0001-6692-4351 ; 0000-0001-7938-9407</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,3665,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33929507$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Du, Guihua</creatorcontrib><creatorcontrib>Oatley, Melissa J</creatorcontrib><creatorcontrib>Law, Nathan C</creatorcontrib><creatorcontrib>Robbins, Colton</creatorcontrib><creatorcontrib>Wu, Xin</creatorcontrib><creatorcontrib>Oatley, Jon M</creatorcontrib><title>Proper timing of a quiescence period in precursor prospermatogonia is required for stem cell pool establishment in the male germline</title><title>Development (Cambridge)</title><addtitle>Development</addtitle><description>The stem cell-containing undifferentiated spermatogonial population in mammals, which ensures continual sperm production, arises during development from prospermatogonial precursors. Although a period of quiescence is known to occur in prospermatogonia prior to postnatal spermatogonial transition, the importance of this has not been defined. Here, using mouse models with conditional knockout of the master cell cycle regulator Rb1 to disrupt normal timing of the quiescence period, we found that failure to initiate mitotic arrest during fetal development leads to prospermatogonial apoptosis and germline ablation. Outcomes of single-cell RNA-sequencing analysis indicate that oxidative phosphorylation activity and inhibition of meiotic initiation are disrupted in prospermatogonia that fail to enter quiescence on a normal timeline. Taken together, these findings suggest that key layers of programming are laid down during the quiescent period in prospermatogonia to ensure proper fate specification and fitness in postnatal life.</description><subject>Animals</subject><subject>Apoptosis</subject><subject>Cell Division - physiology</subject><subject>Cell Proliferation</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Positive Regulatory Domain I-Binding Factor 1 - genetics</subject><subject>Reproductive Biology</subject><subject>Retinoblastoma Binding Proteins - genetics</subject><subject>Sequence Analysis, RNA</subject><subject>Spermatogenesis - physiology</subject><subject>Spermatogonia - cytology</subject><subject>Spermatogonia - growth &amp; development</subject><subject>Spermatogonia - metabolism</subject><subject>Spermatozoa</subject><subject>Stem Cells &amp; Regeneration</subject><subject>Stem Cells - cytology</subject><subject>Stem Cells and Regeneration</subject><subject>Transcriptome</subject><issn>0950-1991</issn><issn>1477-9129</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkUFv3CAUhFHUKtlucskPqDhWkZwAxsZcKlWrpK0UqTkkZ_RsHrtUtnHAjpR7fnhZ7TZqT6A3wwfDEHLJ2TUXUtxYfLnmWlaKn5AVl0oVmgv9gayYrljBteZn5FNKvxljZa3UKTkrSy2yplbk7SGGCSOd_eDHLQ2OAn1ePKYOxw5plnyw1I90itgtMYWYdyHl-QBz2IbRA_WJRsyHIlrqsiHNONAO-55OIfQU0wxt79NuwHHeo-Yd0gF6pNtM6f2I5-Sjgz7hxXFdk6e728fNj-L-1_efm2_3RSelnAvZ6sqiZlBapa1zWkKeo1ZC1aUSgLp24CrAxiK6tu6UbGwDHEsFslVVuSZfD9xpaQe0OeIcoTdT9APEVxPAm_-V0e_MNryYhotasjoDvhwBMTwvOZgZfNonhRHDkoyoBGsaxbnM1quDtcvflSK692s4M_vaTK7NHGrL5s__Puzd-ren8g9OZZhA</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Du, Guihua</creator><creator>Oatley, Melissa J</creator><creator>Law, Nathan C</creator><creator>Robbins, Colton</creator><creator>Wu, Xin</creator><creator>Oatley, Jon M</creator><general>The Company of Biologists Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6692-4351</orcidid><orcidid>https://orcid.org/0000-0001-7938-9407</orcidid></search><sort><creationdate>20210501</creationdate><title>Proper timing of a quiescence period in precursor prospermatogonia is required for stem cell pool establishment in the male germline</title><author>Du, Guihua ; Oatley, Melissa J ; Law, Nathan C ; Robbins, Colton ; Wu, Xin ; Oatley, Jon M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-4b95de90a3d79dff94a444e97276372ae96faf5ae8deefb6c748d8a1e37a4b753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Apoptosis</topic><topic>Cell Division - physiology</topic><topic>Cell Proliferation</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Positive Regulatory Domain I-Binding Factor 1 - genetics</topic><topic>Reproductive Biology</topic><topic>Retinoblastoma Binding Proteins - genetics</topic><topic>Sequence Analysis, RNA</topic><topic>Spermatogenesis - physiology</topic><topic>Spermatogonia - cytology</topic><topic>Spermatogonia - growth &amp; development</topic><topic>Spermatogonia - metabolism</topic><topic>Spermatozoa</topic><topic>Stem Cells &amp; Regeneration</topic><topic>Stem Cells - cytology</topic><topic>Stem Cells and Regeneration</topic><topic>Transcriptome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Du, Guihua</creatorcontrib><creatorcontrib>Oatley, Melissa J</creatorcontrib><creatorcontrib>Law, Nathan C</creatorcontrib><creatorcontrib>Robbins, Colton</creatorcontrib><creatorcontrib>Wu, Xin</creatorcontrib><creatorcontrib>Oatley, Jon M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Development (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Du, Guihua</au><au>Oatley, Melissa J</au><au>Law, Nathan C</au><au>Robbins, Colton</au><au>Wu, Xin</au><au>Oatley, Jon M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Proper timing of a quiescence period in precursor prospermatogonia is required for stem cell pool establishment in the male germline</atitle><jtitle>Development (Cambridge)</jtitle><addtitle>Development</addtitle><date>2021-05-01</date><risdate>2021</risdate><volume>148</volume><issue>9</issue><issn>0950-1991</issn><eissn>1477-9129</eissn><abstract>The stem cell-containing undifferentiated spermatogonial population in mammals, which ensures continual sperm production, arises during development from prospermatogonial precursors. Although a period of quiescence is known to occur in prospermatogonia prior to postnatal spermatogonial transition, the importance of this has not been defined. Here, using mouse models with conditional knockout of the master cell cycle regulator Rb1 to disrupt normal timing of the quiescence period, we found that failure to initiate mitotic arrest during fetal development leads to prospermatogonial apoptosis and germline ablation. Outcomes of single-cell RNA-sequencing analysis indicate that oxidative phosphorylation activity and inhibition of meiotic initiation are disrupted in prospermatogonia that fail to enter quiescence on a normal timeline. Taken together, these findings suggest that key layers of programming are laid down during the quiescent period in prospermatogonia to ensure proper fate specification and fitness in postnatal life.</abstract><cop>England</cop><pub>The Company of Biologists Ltd</pub><pmid>33929507</pmid><doi>10.1242/dev.194571</doi><orcidid>https://orcid.org/0000-0001-6692-4351</orcidid><orcidid>https://orcid.org/0000-0001-7938-9407</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0950-1991
ispartof Development (Cambridge), 2021-05, Vol.148 (9)
issn 0950-1991
1477-9129
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8126406
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection; Company of Biologists
subjects Animals
Apoptosis
Cell Division - physiology
Cell Proliferation
Gene Expression Regulation, Developmental
Male
Mice
Mice, Knockout
Positive Regulatory Domain I-Binding Factor 1 - genetics
Reproductive Biology
Retinoblastoma Binding Proteins - genetics
Sequence Analysis, RNA
Spermatogenesis - physiology
Spermatogonia - cytology
Spermatogonia - growth & development
Spermatogonia - metabolism
Spermatozoa
Stem Cells & Regeneration
Stem Cells - cytology
Stem Cells and Regeneration
Transcriptome
title Proper timing of a quiescence period in precursor prospermatogonia is required for stem cell pool establishment in the male germline
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T01%3A05%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Proper%20timing%20of%20a%20quiescence%20period%20in%20precursor%20prospermatogonia%20is%20required%20for%20stem%20cell%20pool%20establishment%20in%20the%20male%20germline&rft.jtitle=Development%20(Cambridge)&rft.au=Du,%20Guihua&rft.date=2021-05-01&rft.volume=148&rft.issue=9&rft.issn=0950-1991&rft.eissn=1477-9129&rft_id=info:doi/10.1242/dev.194571&rft_dat=%3Cproquest_pubme%3E2520887114%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2520887114&rft_id=info:pmid/33929507&rfr_iscdi=true