Proper timing of a quiescence period in precursor prospermatogonia is required for stem cell pool establishment in the male germline
The stem cell-containing undifferentiated spermatogonial population in mammals, which ensures continual sperm production, arises during development from prospermatogonial precursors. Although a period of quiescence is known to occur in prospermatogonia prior to postnatal spermatogonial transition, t...
Gespeichert in:
Veröffentlicht in: | Development (Cambridge) 2021-05, Vol.148 (9) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | |
container_title | Development (Cambridge) |
container_volume | 148 |
creator | Du, Guihua Oatley, Melissa J Law, Nathan C Robbins, Colton Wu, Xin Oatley, Jon M |
description | The stem cell-containing undifferentiated spermatogonial population in mammals, which ensures continual sperm production, arises during development from prospermatogonial precursors. Although a period of quiescence is known to occur in prospermatogonia prior to postnatal spermatogonial transition, the importance of this has not been defined. Here, using mouse models with conditional knockout of the master cell cycle regulator Rb1 to disrupt normal timing of the quiescence period, we found that failure to initiate mitotic arrest during fetal development leads to prospermatogonial apoptosis and germline ablation. Outcomes of single-cell RNA-sequencing analysis indicate that oxidative phosphorylation activity and inhibition of meiotic initiation are disrupted in prospermatogonia that fail to enter quiescence on a normal timeline. Taken together, these findings suggest that key layers of programming are laid down during the quiescent period in prospermatogonia to ensure proper fate specification and fitness in postnatal life. |
doi_str_mv | 10.1242/dev.194571 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8126406</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2520887114</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-4b95de90a3d79dff94a444e97276372ae96faf5ae8deefb6c748d8a1e37a4b753</originalsourceid><addsrcrecordid>eNpVkUFv3CAUhFHUKtlucskPqDhWkZwAxsZcKlWrpK0UqTkkZ_RsHrtUtnHAjpR7fnhZ7TZqT6A3wwfDEHLJ2TUXUtxYfLnmWlaKn5AVl0oVmgv9gayYrljBteZn5FNKvxljZa3UKTkrSy2yplbk7SGGCSOd_eDHLQ2OAn1ePKYOxw5plnyw1I90itgtMYWYdyHl-QBz2IbRA_WJRsyHIlrqsiHNONAO-55OIfQU0wxt79NuwHHeo-Yd0gF6pNtM6f2I5-Sjgz7hxXFdk6e728fNj-L-1_efm2_3RSelnAvZ6sqiZlBapa1zWkKeo1ZC1aUSgLp24CrAxiK6tu6UbGwDHEsFslVVuSZfD9xpaQe0OeIcoTdT9APEVxPAm_-V0e_MNryYhotasjoDvhwBMTwvOZgZfNonhRHDkoyoBGsaxbnM1quDtcvflSK692s4M_vaTK7NHGrL5s__Puzd-ren8g9OZZhA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2520887114</pqid></control><display><type>article</type><title>Proper timing of a quiescence period in precursor prospermatogonia is required for stem cell pool establishment in the male germline</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><source>Company of Biologists</source><creator>Du, Guihua ; Oatley, Melissa J ; Law, Nathan C ; Robbins, Colton ; Wu, Xin ; Oatley, Jon M</creator><creatorcontrib>Du, Guihua ; Oatley, Melissa J ; Law, Nathan C ; Robbins, Colton ; Wu, Xin ; Oatley, Jon M</creatorcontrib><description>The stem cell-containing undifferentiated spermatogonial population in mammals, which ensures continual sperm production, arises during development from prospermatogonial precursors. Although a period of quiescence is known to occur in prospermatogonia prior to postnatal spermatogonial transition, the importance of this has not been defined. Here, using mouse models with conditional knockout of the master cell cycle regulator Rb1 to disrupt normal timing of the quiescence period, we found that failure to initiate mitotic arrest during fetal development leads to prospermatogonial apoptosis and germline ablation. Outcomes of single-cell RNA-sequencing analysis indicate that oxidative phosphorylation activity and inhibition of meiotic initiation are disrupted in prospermatogonia that fail to enter quiescence on a normal timeline. Taken together, these findings suggest that key layers of programming are laid down during the quiescent period in prospermatogonia to ensure proper fate specification and fitness in postnatal life.</description><identifier>ISSN: 0950-1991</identifier><identifier>EISSN: 1477-9129</identifier><identifier>DOI: 10.1242/dev.194571</identifier><identifier>PMID: 33929507</identifier><language>eng</language><publisher>England: The Company of Biologists Ltd</publisher><subject>Animals ; Apoptosis ; Cell Division - physiology ; Cell Proliferation ; Gene Expression Regulation, Developmental ; Male ; Mice ; Mice, Knockout ; Positive Regulatory Domain I-Binding Factor 1 - genetics ; Reproductive Biology ; Retinoblastoma Binding Proteins - genetics ; Sequence Analysis, RNA ; Spermatogenesis - physiology ; Spermatogonia - cytology ; Spermatogonia - growth & development ; Spermatogonia - metabolism ; Spermatozoa ; Stem Cells & Regeneration ; Stem Cells - cytology ; Stem Cells and Regeneration ; Transcriptome</subject><ispartof>Development (Cambridge), 2021-05, Vol.148 (9)</ispartof><rights>2021. Published by The Company of Biologists Ltd.</rights><rights>2021. Published by The Company of Biologists Ltd 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-4b95de90a3d79dff94a444e97276372ae96faf5ae8deefb6c748d8a1e37a4b753</citedby><cites>FETCH-LOGICAL-c444t-4b95de90a3d79dff94a444e97276372ae96faf5ae8deefb6c748d8a1e37a4b753</cites><orcidid>0000-0001-6692-4351 ; 0000-0001-7938-9407</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,3665,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33929507$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Du, Guihua</creatorcontrib><creatorcontrib>Oatley, Melissa J</creatorcontrib><creatorcontrib>Law, Nathan C</creatorcontrib><creatorcontrib>Robbins, Colton</creatorcontrib><creatorcontrib>Wu, Xin</creatorcontrib><creatorcontrib>Oatley, Jon M</creatorcontrib><title>Proper timing of a quiescence period in precursor prospermatogonia is required for stem cell pool establishment in the male germline</title><title>Development (Cambridge)</title><addtitle>Development</addtitle><description>The stem cell-containing undifferentiated spermatogonial population in mammals, which ensures continual sperm production, arises during development from prospermatogonial precursors. Although a period of quiescence is known to occur in prospermatogonia prior to postnatal spermatogonial transition, the importance of this has not been defined. Here, using mouse models with conditional knockout of the master cell cycle regulator Rb1 to disrupt normal timing of the quiescence period, we found that failure to initiate mitotic arrest during fetal development leads to prospermatogonial apoptosis and germline ablation. Outcomes of single-cell RNA-sequencing analysis indicate that oxidative phosphorylation activity and inhibition of meiotic initiation are disrupted in prospermatogonia that fail to enter quiescence on a normal timeline. Taken together, these findings suggest that key layers of programming are laid down during the quiescent period in prospermatogonia to ensure proper fate specification and fitness in postnatal life.</description><subject>Animals</subject><subject>Apoptosis</subject><subject>Cell Division - physiology</subject><subject>Cell Proliferation</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Positive Regulatory Domain I-Binding Factor 1 - genetics</subject><subject>Reproductive Biology</subject><subject>Retinoblastoma Binding Proteins - genetics</subject><subject>Sequence Analysis, RNA</subject><subject>Spermatogenesis - physiology</subject><subject>Spermatogonia - cytology</subject><subject>Spermatogonia - growth & development</subject><subject>Spermatogonia - metabolism</subject><subject>Spermatozoa</subject><subject>Stem Cells & Regeneration</subject><subject>Stem Cells - cytology</subject><subject>Stem Cells and Regeneration</subject><subject>Transcriptome</subject><issn>0950-1991</issn><issn>1477-9129</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkUFv3CAUhFHUKtlucskPqDhWkZwAxsZcKlWrpK0UqTkkZ_RsHrtUtnHAjpR7fnhZ7TZqT6A3wwfDEHLJ2TUXUtxYfLnmWlaKn5AVl0oVmgv9gayYrljBteZn5FNKvxljZa3UKTkrSy2yplbk7SGGCSOd_eDHLQ2OAn1ePKYOxw5plnyw1I90itgtMYWYdyHl-QBz2IbRA_WJRsyHIlrqsiHNONAO-55OIfQU0wxt79NuwHHeo-Yd0gF6pNtM6f2I5-Sjgz7hxXFdk6e728fNj-L-1_efm2_3RSelnAvZ6sqiZlBapa1zWkKeo1ZC1aUSgLp24CrAxiK6tu6UbGwDHEsFslVVuSZfD9xpaQe0OeIcoTdT9APEVxPAm_-V0e_MNryYhotasjoDvhwBMTwvOZgZfNonhRHDkoyoBGsaxbnM1quDtcvflSK692s4M_vaTK7NHGrL5s__Puzd-ren8g9OZZhA</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Du, Guihua</creator><creator>Oatley, Melissa J</creator><creator>Law, Nathan C</creator><creator>Robbins, Colton</creator><creator>Wu, Xin</creator><creator>Oatley, Jon M</creator><general>The Company of Biologists Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6692-4351</orcidid><orcidid>https://orcid.org/0000-0001-7938-9407</orcidid></search><sort><creationdate>20210501</creationdate><title>Proper timing of a quiescence period in precursor prospermatogonia is required for stem cell pool establishment in the male germline</title><author>Du, Guihua ; Oatley, Melissa J ; Law, Nathan C ; Robbins, Colton ; Wu, Xin ; Oatley, Jon M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-4b95de90a3d79dff94a444e97276372ae96faf5ae8deefb6c748d8a1e37a4b753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Apoptosis</topic><topic>Cell Division - physiology</topic><topic>Cell Proliferation</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Positive Regulatory Domain I-Binding Factor 1 - genetics</topic><topic>Reproductive Biology</topic><topic>Retinoblastoma Binding Proteins - genetics</topic><topic>Sequence Analysis, RNA</topic><topic>Spermatogenesis - physiology</topic><topic>Spermatogonia - cytology</topic><topic>Spermatogonia - growth & development</topic><topic>Spermatogonia - metabolism</topic><topic>Spermatozoa</topic><topic>Stem Cells & Regeneration</topic><topic>Stem Cells - cytology</topic><topic>Stem Cells and Regeneration</topic><topic>Transcriptome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Du, Guihua</creatorcontrib><creatorcontrib>Oatley, Melissa J</creatorcontrib><creatorcontrib>Law, Nathan C</creatorcontrib><creatorcontrib>Robbins, Colton</creatorcontrib><creatorcontrib>Wu, Xin</creatorcontrib><creatorcontrib>Oatley, Jon M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Development (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Du, Guihua</au><au>Oatley, Melissa J</au><au>Law, Nathan C</au><au>Robbins, Colton</au><au>Wu, Xin</au><au>Oatley, Jon M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Proper timing of a quiescence period in precursor prospermatogonia is required for stem cell pool establishment in the male germline</atitle><jtitle>Development (Cambridge)</jtitle><addtitle>Development</addtitle><date>2021-05-01</date><risdate>2021</risdate><volume>148</volume><issue>9</issue><issn>0950-1991</issn><eissn>1477-9129</eissn><abstract>The stem cell-containing undifferentiated spermatogonial population in mammals, which ensures continual sperm production, arises during development from prospermatogonial precursors. Although a period of quiescence is known to occur in prospermatogonia prior to postnatal spermatogonial transition, the importance of this has not been defined. Here, using mouse models with conditional knockout of the master cell cycle regulator Rb1 to disrupt normal timing of the quiescence period, we found that failure to initiate mitotic arrest during fetal development leads to prospermatogonial apoptosis and germline ablation. Outcomes of single-cell RNA-sequencing analysis indicate that oxidative phosphorylation activity and inhibition of meiotic initiation are disrupted in prospermatogonia that fail to enter quiescence on a normal timeline. Taken together, these findings suggest that key layers of programming are laid down during the quiescent period in prospermatogonia to ensure proper fate specification and fitness in postnatal life.</abstract><cop>England</cop><pub>The Company of Biologists Ltd</pub><pmid>33929507</pmid><doi>10.1242/dev.194571</doi><orcidid>https://orcid.org/0000-0001-6692-4351</orcidid><orcidid>https://orcid.org/0000-0001-7938-9407</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0950-1991 |
ispartof | Development (Cambridge), 2021-05, Vol.148 (9) |
issn | 0950-1991 1477-9129 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8126406 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection; Company of Biologists |
subjects | Animals Apoptosis Cell Division - physiology Cell Proliferation Gene Expression Regulation, Developmental Male Mice Mice, Knockout Positive Regulatory Domain I-Binding Factor 1 - genetics Reproductive Biology Retinoblastoma Binding Proteins - genetics Sequence Analysis, RNA Spermatogenesis - physiology Spermatogonia - cytology Spermatogonia - growth & development Spermatogonia - metabolism Spermatozoa Stem Cells & Regeneration Stem Cells - cytology Stem Cells and Regeneration Transcriptome |
title | Proper timing of a quiescence period in precursor prospermatogonia is required for stem cell pool establishment in the male germline |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T01%3A05%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Proper%20timing%20of%20a%20quiescence%20period%20in%20precursor%20prospermatogonia%20is%20required%20for%20stem%20cell%20pool%20establishment%20in%20the%20male%20germline&rft.jtitle=Development%20(Cambridge)&rft.au=Du,%20Guihua&rft.date=2021-05-01&rft.volume=148&rft.issue=9&rft.issn=0950-1991&rft.eissn=1477-9129&rft_id=info:doi/10.1242/dev.194571&rft_dat=%3Cproquest_pubme%3E2520887114%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2520887114&rft_id=info:pmid/33929507&rfr_iscdi=true |