A Cas12a‐based gene editing system for Phytophthora infestans reveals monoallelic expression of an elicitor

Phytophthora infestans is a destructive pathogen of potato and a model for investigations of oomycete biology. The successful application of a CRISPR gene editing system to P. infestans is so far unreported. We discovered that it is difficult to express CRISPR/Cas9 but not a catalytically inactive f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular plant pathology 2021-06, Vol.22 (6), p.737-752
Hauptverfasser: Ah‐Fong, Audrey M.V., Boyd, Amy M., Matson, Michael E.H., Judelson, Howard S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 752
container_issue 6
container_start_page 737
container_title Molecular plant pathology
container_volume 22
creator Ah‐Fong, Audrey M.V.
Boyd, Amy M.
Matson, Michael E.H.
Judelson, Howard S.
description Phytophthora infestans is a destructive pathogen of potato and a model for investigations of oomycete biology. The successful application of a CRISPR gene editing system to P. infestans is so far unreported. We discovered that it is difficult to express CRISPR/Cas9 but not a catalytically inactive form in transformants, suggesting that the active nuclease is toxic. We were able to achieve editing with CRISPR/Cas12a using vectors in which the nuclease and its guide RNA were expressed from a single transcript. Using the elicitor gene Inf1 as a target, we observed editing of one or both alleles in up to 13% of transformants. Editing was more efficient when guide RNA processing relied on the Cas12a direct repeat instead of ribozyme sequences. INF1 protein was not made when both alleles were edited in the same transformant, but surprisingly also when only one allele was altered. We discovered that the isolate used for editing, 1306, exhibited monoallelic expression of Inf1 due to insertion of a copia‐like element in the promoter of one allele. The element exhibits features of active retrotransposons, including a target site duplication, long terminal repeats, and an intact polyprotein reading frame. Editing occurred more often on the transcribed allele, presumably due to differences in chromatin structure. The Cas12a system not only provides a tool for modifying genes in P. infestans, but also for other members of the genus by expanding the number of editable sites. Our work also highlights a natural mechanism that remodels oomycete genomes. Successful editing of the INF1 gene by CRISPR/Cas12a in the late blight pathogen Phytophthora infestans expands the CRISPR toolkit for oomycetes.
doi_str_mv 10.1111/mpp.13051
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8126191</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A732178944</galeid><sourcerecordid>A732178944</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5221-f84a2dddb8008998d84781c8084ce6ce016aa4b3eec900c16a0827141044385c3</originalsourceid><addsrcrecordid>eNp1kc1uEzEQxy0EoiVw4AWQJU4ckvpr194LUhTxJRWRA5wtxzubuNq1F3vTkhuPwDPyJEzZUsEB--Dx-Oe_Z_wn5DlnK47jYhjHFZes4g_IOZe1WkrN5EOMFca1FuKMPCnlijGuG1E9JmdSaqHqWp6TYU03rnDhfn7_sXMFWrqHCBTaMIW4p-VUJhholzLdHk5TGg_TIWVHQ-ygTC4WmuEaXF_okGJyfQ998BS-jRlKCSnS1FEX6W02TCk_JY86hOHZ3bogX96--bx5v7z89O7DZn259JUQfNkZ5UTbtjvDmGka0xqlDfeGGeWh9sB47ZzaSQDfMOZxx4zQXHGmlDSVlwvyetYdj7sBWg9xyq63Yw6DyyebXLD_nsRwsPt0bQ0XNW84Cry8E8jp6xFbtVfpmCPWbEUltKlYbTRSq5naux4s_klCMY-zhSH4FKELmF9rKbg2Dda2IK_mCz6nUjJ09yVxZm-ttGil_W0lsi_-7uGe_OMdAhczcIOvnP6vZD9ut7PkL87Nqlw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2527850687</pqid></control><display><type>article</type><title>A Cas12a‐based gene editing system for Phytophthora infestans reveals monoallelic expression of an elicitor</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley-Blackwell Open Access Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library All Journals</source><source>PubMed Central</source><creator>Ah‐Fong, Audrey M.V. ; Boyd, Amy M. ; Matson, Michael E.H. ; Judelson, Howard S.</creator><creatorcontrib>Ah‐Fong, Audrey M.V. ; Boyd, Amy M. ; Matson, Michael E.H. ; Judelson, Howard S.</creatorcontrib><description>Phytophthora infestans is a destructive pathogen of potato and a model for investigations of oomycete biology. The successful application of a CRISPR gene editing system to P. infestans is so far unreported. We discovered that it is difficult to express CRISPR/Cas9 but not a catalytically inactive form in transformants, suggesting that the active nuclease is toxic. We were able to achieve editing with CRISPR/Cas12a using vectors in which the nuclease and its guide RNA were expressed from a single transcript. Using the elicitor gene Inf1 as a target, we observed editing of one or both alleles in up to 13% of transformants. Editing was more efficient when guide RNA processing relied on the Cas12a direct repeat instead of ribozyme sequences. INF1 protein was not made when both alleles were edited in the same transformant, but surprisingly also when only one allele was altered. We discovered that the isolate used for editing, 1306, exhibited monoallelic expression of Inf1 due to insertion of a copia‐like element in the promoter of one allele. The element exhibits features of active retrotransposons, including a target site duplication, long terminal repeats, and an intact polyprotein reading frame. Editing occurred more often on the transcribed allele, presumably due to differences in chromatin structure. The Cas12a system not only provides a tool for modifying genes in P. infestans, but also for other members of the genus by expanding the number of editable sites. Our work also highlights a natural mechanism that remodels oomycete genomes. Successful editing of the INF1 gene by CRISPR/Cas12a in the late blight pathogen Phytophthora infestans expands the CRISPR toolkit for oomycetes.</description><identifier>ISSN: 1464-6722</identifier><identifier>EISSN: 1364-3703</identifier><identifier>DOI: 10.1111/mpp.13051</identifier><identifier>PMID: 33724663</identifier><language>eng</language><publisher>England: John Wiley &amp; Sons, Inc</publisher><subject>Alleles ; Analysis ; Binding sites ; Catalytic RNA ; Chromatin ; Chromatin - genetics ; CRISPR ; CRISPR-Cas Systems ; CRISPR/Cas12a ; functional genomics ; Gene Editing ; Genes ; Genetic modification ; Genetic research ; genome editing ; Genomes ; Genomics ; late blight disease ; Localization ; Microscopy ; Nuclease ; oomycete ; Phytophthora infestans ; Phytophthora infestans - genetics ; Phytophthora infestans - physiology ; Plant Diseases - parasitology ; Plasmids ; Potatoes ; Proteins ; Ribonucleic acid ; RNA ; RNA processing ; Solanum tuberosum - parasitology ; Success ; Technical Advance ; Transcription ; transposable element</subject><ispartof>Molecular plant pathology, 2021-06, Vol.22 (6), p.737-752</ispartof><rights>2021 The Authors. published by British Society for Plant Pathology and John Wiley &amp; Sons Ltd</rights><rights>2021 The Authors. Molecular Plant Pathology published by British Society for Plant Pathology and John Wiley &amp; Sons Ltd.</rights><rights>COPYRIGHT 2021 John Wiley &amp; Sons, Inc.</rights><rights>2021. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5221-f84a2dddb8008998d84781c8084ce6ce016aa4b3eec900c16a0827141044385c3</citedby><cites>FETCH-LOGICAL-c5221-f84a2dddb8008998d84781c8084ce6ce016aa4b3eec900c16a0827141044385c3</cites><orcidid>0000-0001-7865-6235</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8126191/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8126191/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,1417,11561,27923,27924,45573,45574,46051,46475,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33724663$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ah‐Fong, Audrey M.V.</creatorcontrib><creatorcontrib>Boyd, Amy M.</creatorcontrib><creatorcontrib>Matson, Michael E.H.</creatorcontrib><creatorcontrib>Judelson, Howard S.</creatorcontrib><title>A Cas12a‐based gene editing system for Phytophthora infestans reveals monoallelic expression of an elicitor</title><title>Molecular plant pathology</title><addtitle>Mol Plant Pathol</addtitle><description>Phytophthora infestans is a destructive pathogen of potato and a model for investigations of oomycete biology. The successful application of a CRISPR gene editing system to P. infestans is so far unreported. We discovered that it is difficult to express CRISPR/Cas9 but not a catalytically inactive form in transformants, suggesting that the active nuclease is toxic. We were able to achieve editing with CRISPR/Cas12a using vectors in which the nuclease and its guide RNA were expressed from a single transcript. Using the elicitor gene Inf1 as a target, we observed editing of one or both alleles in up to 13% of transformants. Editing was more efficient when guide RNA processing relied on the Cas12a direct repeat instead of ribozyme sequences. INF1 protein was not made when both alleles were edited in the same transformant, but surprisingly also when only one allele was altered. We discovered that the isolate used for editing, 1306, exhibited monoallelic expression of Inf1 due to insertion of a copia‐like element in the promoter of one allele. The element exhibits features of active retrotransposons, including a target site duplication, long terminal repeats, and an intact polyprotein reading frame. Editing occurred more often on the transcribed allele, presumably due to differences in chromatin structure. The Cas12a system not only provides a tool for modifying genes in P. infestans, but also for other members of the genus by expanding the number of editable sites. Our work also highlights a natural mechanism that remodels oomycete genomes. Successful editing of the INF1 gene by CRISPR/Cas12a in the late blight pathogen Phytophthora infestans expands the CRISPR toolkit for oomycetes.</description><subject>Alleles</subject><subject>Analysis</subject><subject>Binding sites</subject><subject>Catalytic RNA</subject><subject>Chromatin</subject><subject>Chromatin - genetics</subject><subject>CRISPR</subject><subject>CRISPR-Cas Systems</subject><subject>CRISPR/Cas12a</subject><subject>functional genomics</subject><subject>Gene Editing</subject><subject>Genes</subject><subject>Genetic modification</subject><subject>Genetic research</subject><subject>genome editing</subject><subject>Genomes</subject><subject>Genomics</subject><subject>late blight disease</subject><subject>Localization</subject><subject>Microscopy</subject><subject>Nuclease</subject><subject>oomycete</subject><subject>Phytophthora infestans</subject><subject>Phytophthora infestans - genetics</subject><subject>Phytophthora infestans - physiology</subject><subject>Plant Diseases - parasitology</subject><subject>Plasmids</subject><subject>Potatoes</subject><subject>Proteins</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA processing</subject><subject>Solanum tuberosum - parasitology</subject><subject>Success</subject><subject>Technical Advance</subject><subject>Transcription</subject><subject>transposable element</subject><issn>1464-6722</issn><issn>1364-3703</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kc1uEzEQxy0EoiVw4AWQJU4ckvpr194LUhTxJRWRA5wtxzubuNq1F3vTkhuPwDPyJEzZUsEB--Dx-Oe_Z_wn5DlnK47jYhjHFZes4g_IOZe1WkrN5EOMFca1FuKMPCnlijGuG1E9JmdSaqHqWp6TYU03rnDhfn7_sXMFWrqHCBTaMIW4p-VUJhholzLdHk5TGg_TIWVHQ-ygTC4WmuEaXF_okGJyfQ998BS-jRlKCSnS1FEX6W02TCk_JY86hOHZ3bogX96--bx5v7z89O7DZn259JUQfNkZ5UTbtjvDmGka0xqlDfeGGeWh9sB47ZzaSQDfMOZxx4zQXHGmlDSVlwvyetYdj7sBWg9xyq63Yw6DyyebXLD_nsRwsPt0bQ0XNW84Cry8E8jp6xFbtVfpmCPWbEUltKlYbTRSq5naux4s_klCMY-zhSH4FKELmF9rKbg2Dda2IK_mCz6nUjJ09yVxZm-ttGil_W0lsi_-7uGe_OMdAhczcIOvnP6vZD9ut7PkL87Nqlw</recordid><startdate>202106</startdate><enddate>202106</enddate><creator>Ah‐Fong, Audrey M.V.</creator><creator>Boyd, Amy M.</creator><creator>Matson, Michael E.H.</creator><creator>Judelson, Howard S.</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7U9</scope><scope>7X2</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7865-6235</orcidid></search><sort><creationdate>202106</creationdate><title>A Cas12a‐based gene editing system for Phytophthora infestans reveals monoallelic expression of an elicitor</title><author>Ah‐Fong, Audrey M.V. ; Boyd, Amy M. ; Matson, Michael E.H. ; Judelson, Howard S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5221-f84a2dddb8008998d84781c8084ce6ce016aa4b3eec900c16a0827141044385c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alleles</topic><topic>Analysis</topic><topic>Binding sites</topic><topic>Catalytic RNA</topic><topic>Chromatin</topic><topic>Chromatin - genetics</topic><topic>CRISPR</topic><topic>CRISPR-Cas Systems</topic><topic>CRISPR/Cas12a</topic><topic>functional genomics</topic><topic>Gene Editing</topic><topic>Genes</topic><topic>Genetic modification</topic><topic>Genetic research</topic><topic>genome editing</topic><topic>Genomes</topic><topic>Genomics</topic><topic>late blight disease</topic><topic>Localization</topic><topic>Microscopy</topic><topic>Nuclease</topic><topic>oomycete</topic><topic>Phytophthora infestans</topic><topic>Phytophthora infestans - genetics</topic><topic>Phytophthora infestans - physiology</topic><topic>Plant Diseases - parasitology</topic><topic>Plasmids</topic><topic>Potatoes</topic><topic>Proteins</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA processing</topic><topic>Solanum tuberosum - parasitology</topic><topic>Success</topic><topic>Technical Advance</topic><topic>Transcription</topic><topic>transposable element</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ah‐Fong, Audrey M.V.</creatorcontrib><creatorcontrib>Boyd, Amy M.</creatorcontrib><creatorcontrib>Matson, Michael E.H.</creatorcontrib><creatorcontrib>Judelson, Howard S.</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular plant pathology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ah‐Fong, Audrey M.V.</au><au>Boyd, Amy M.</au><au>Matson, Michael E.H.</au><au>Judelson, Howard S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Cas12a‐based gene editing system for Phytophthora infestans reveals monoallelic expression of an elicitor</atitle><jtitle>Molecular plant pathology</jtitle><addtitle>Mol Plant Pathol</addtitle><date>2021-06</date><risdate>2021</risdate><volume>22</volume><issue>6</issue><spage>737</spage><epage>752</epage><pages>737-752</pages><issn>1464-6722</issn><eissn>1364-3703</eissn><abstract>Phytophthora infestans is a destructive pathogen of potato and a model for investigations of oomycete biology. The successful application of a CRISPR gene editing system to P. infestans is so far unreported. We discovered that it is difficult to express CRISPR/Cas9 but not a catalytically inactive form in transformants, suggesting that the active nuclease is toxic. We were able to achieve editing with CRISPR/Cas12a using vectors in which the nuclease and its guide RNA were expressed from a single transcript. Using the elicitor gene Inf1 as a target, we observed editing of one or both alleles in up to 13% of transformants. Editing was more efficient when guide RNA processing relied on the Cas12a direct repeat instead of ribozyme sequences. INF1 protein was not made when both alleles were edited in the same transformant, but surprisingly also when only one allele was altered. We discovered that the isolate used for editing, 1306, exhibited monoallelic expression of Inf1 due to insertion of a copia‐like element in the promoter of one allele. The element exhibits features of active retrotransposons, including a target site duplication, long terminal repeats, and an intact polyprotein reading frame. Editing occurred more often on the transcribed allele, presumably due to differences in chromatin structure. The Cas12a system not only provides a tool for modifying genes in P. infestans, but also for other members of the genus by expanding the number of editable sites. Our work also highlights a natural mechanism that remodels oomycete genomes. Successful editing of the INF1 gene by CRISPR/Cas12a in the late blight pathogen Phytophthora infestans expands the CRISPR toolkit for oomycetes.</abstract><cop>England</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>33724663</pmid><doi>10.1111/mpp.13051</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-7865-6235</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1464-6722
ispartof Molecular plant pathology, 2021-06, Vol.22 (6), p.737-752
issn 1464-6722
1364-3703
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8126191
source MEDLINE; DOAJ Directory of Open Access Journals; Wiley-Blackwell Open Access Titles; EZB-FREE-00999 freely available EZB journals; Wiley Online Library All Journals; PubMed Central
subjects Alleles
Analysis
Binding sites
Catalytic RNA
Chromatin
Chromatin - genetics
CRISPR
CRISPR-Cas Systems
CRISPR/Cas12a
functional genomics
Gene Editing
Genes
Genetic modification
Genetic research
genome editing
Genomes
Genomics
late blight disease
Localization
Microscopy
Nuclease
oomycete
Phytophthora infestans
Phytophthora infestans - genetics
Phytophthora infestans - physiology
Plant Diseases - parasitology
Plasmids
Potatoes
Proteins
Ribonucleic acid
RNA
RNA processing
Solanum tuberosum - parasitology
Success
Technical Advance
Transcription
transposable element
title A Cas12a‐based gene editing system for Phytophthora infestans reveals monoallelic expression of an elicitor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A23%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Cas12a%E2%80%90based%20gene%20editing%20system%20for%20Phytophthora%20infestans%20reveals%20monoallelic%20expression%20of%20an%20elicitor&rft.jtitle=Molecular%20plant%20pathology&rft.au=Ah%E2%80%90Fong,%20Audrey%20M.V.&rft.date=2021-06&rft.volume=22&rft.issue=6&rft.spage=737&rft.epage=752&rft.pages=737-752&rft.issn=1464-6722&rft.eissn=1364-3703&rft_id=info:doi/10.1111/mpp.13051&rft_dat=%3Cgale_pubme%3EA732178944%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2527850687&rft_id=info:pmid/33724663&rft_galeid=A732178944&rfr_iscdi=true