Characterization of Epigallocatechin-Gallate-Grafted Chitosan Nanoparticles and Evaluation of Their Antibacterial and Antioxidant Potential

Nanoparticles based on chitosan modified with epigallocatechin gallate (EGCG) were synthetized by nanoprecipitation (EGCG-g-chitosan-P). Chitosan was modified by free-radical-induced grafting, which was verified by Fourier transform infrared (FTIR). Furthermore, the morphology, particle size, polydi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers 2021-04, Vol.13 (9), p.1375, Article 1375
Hauptverfasser: Moreno-Vasquez, Maria J., Plascencia-Jatomea, Maribel, Sanchez-Valdes, Saul, Tanori-Cordova, Judith C., Castillo-Yanez, Francisco J., Quintero-Reyes, Idania E., Graciano-Verdugo, Abril Z.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page 1375
container_title Polymers
container_volume 13
creator Moreno-Vasquez, Maria J.
Plascencia-Jatomea, Maribel
Sanchez-Valdes, Saul
Tanori-Cordova, Judith C.
Castillo-Yanez, Francisco J.
Quintero-Reyes, Idania E.
Graciano-Verdugo, Abril Z.
description Nanoparticles based on chitosan modified with epigallocatechin gallate (EGCG) were synthetized by nanoprecipitation (EGCG-g-chitosan-P). Chitosan was modified by free-radical-induced grafting, which was verified by Fourier transform infrared (FTIR). Furthermore, the morphology, particle size, polydispersity index, and zeta potential of the nanoparticles were investigated. The grafting degree of EGCG, reactive oxygen species (ROS) production, antibacterial and antioxidant activities of EGCG-g-chitosan-P were evaluated and compared with those of pure EGCG and chitosan nanoparticles (Chitosan-P). FTIR results confirmed the modification of the chitosan with EGCG. The EGCG-g-chitosan-P showed spherical shapes and smoother surfaces than those of Chitosan-P. EGCG content of the grafted chitosan nanoparticles was 330 mu g/g. Minimal inhibitory concentration (MIC) of EGCG-g-chitosan-P (15.6 mu g/mL) was lower than Chitosan-P (31.2 mu g/mL) and EGCG (500 mu g/mL) against Pseudomonas fluorescens (p < 0.05). Additionally, EGCG-g-chitosan-P and Chitosan-P presented higher Staphylococcus aureus growth inhibition (100%) than EGCG at the lowest concentration tested. The nanoparticles produced an increase of ROS (p < 0.05) in both bacterial species assayed. Furthermore, EGCG-g-chitosan-P exhibited higher antioxidant activity than that of Chitosan-P (p < 0.05) in 2,2 '-azino-bis (3-ethyl-benzothiazoline-6-sulfonic acid) (ABTS), 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) and ferric-reducing antioxidant power assays. Based on the above results, EGCG-g-chitosan-P shows the potential for food packaging and biomedical applications.
doi_str_mv 10.3390/polym13091375
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8122830</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2520874237</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-f90b7ccb9fd65dd0676cc07da9d1af966a0377e799a22e94a98b56f789f588a63</originalsourceid><addsrcrecordid>eNqNkk1v1DAQhiMEolXpkSuKxAUJpfVHYscXpCpaFqSqcCjnaOKPxlXWDrbTUv4Cfxpvt121nPDFHvvxOx6_UxRvMTqhVKDT2U93G0yRwJQ3L4pDgjitasrQyyfrg-I4xmuUR90whvnr4iBfJqTG6LD4040QQCYd7G9I1rvSm3I12yuYJi8haTlaV61zlNfVOoBJWpXdaJOP4MoLcH6GkKycdCzBqXJ1A9OyV7octQ3lmUt22CWB6Z7a7vhfVoFL5XefdA5helO8MjBFffwwHxU_Pq8uuy_V-bf11-7svJI1blJlBBq4lIMwijVKIcaZlIgrEAqDEYwBopxrLgQQokUNoh0aZngrTNO2wOhR8WmnOy_DRiuZsweY-jnYDYS73oPtn584O_ZX_qZvMSEtRVngw4NA8D8XHVO_sVHq_EdO-yX2pCGo5TWhPKPv_0Gv_RJcLi9TFOGaYFZnqtpRMvgYgzb7x2DUb53unzmd-XdPK9jTj75m4OMOuNWDN1Fa7aTeY7kVWIN4bpBtV-BMt_9Pdzbd29v5xSX6F5sFyQQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2530142164</pqid></control><display><type>article</type><title>Characterization of Epigallocatechin-Gallate-Grafted Chitosan Nanoparticles and Evaluation of Their Antibacterial and Antioxidant Potential</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Moreno-Vasquez, Maria J. ; Plascencia-Jatomea, Maribel ; Sanchez-Valdes, Saul ; Tanori-Cordova, Judith C. ; Castillo-Yanez, Francisco J. ; Quintero-Reyes, Idania E. ; Graciano-Verdugo, Abril Z.</creator><creatorcontrib>Moreno-Vasquez, Maria J. ; Plascencia-Jatomea, Maribel ; Sanchez-Valdes, Saul ; Tanori-Cordova, Judith C. ; Castillo-Yanez, Francisco J. ; Quintero-Reyes, Idania E. ; Graciano-Verdugo, Abril Z.</creatorcontrib><description>Nanoparticles based on chitosan modified with epigallocatechin gallate (EGCG) were synthetized by nanoprecipitation (EGCG-g-chitosan-P). Chitosan was modified by free-radical-induced grafting, which was verified by Fourier transform infrared (FTIR). Furthermore, the morphology, particle size, polydispersity index, and zeta potential of the nanoparticles were investigated. The grafting degree of EGCG, reactive oxygen species (ROS) production, antibacterial and antioxidant activities of EGCG-g-chitosan-P were evaluated and compared with those of pure EGCG and chitosan nanoparticles (Chitosan-P). FTIR results confirmed the modification of the chitosan with EGCG. The EGCG-g-chitosan-P showed spherical shapes and smoother surfaces than those of Chitosan-P. EGCG content of the grafted chitosan nanoparticles was 330 mu g/g. Minimal inhibitory concentration (MIC) of EGCG-g-chitosan-P (15.6 mu g/mL) was lower than Chitosan-P (31.2 mu g/mL) and EGCG (500 mu g/mL) against Pseudomonas fluorescens (p &lt; 0.05). Additionally, EGCG-g-chitosan-P and Chitosan-P presented higher Staphylococcus aureus growth inhibition (100%) than EGCG at the lowest concentration tested. The nanoparticles produced an increase of ROS (p &lt; 0.05) in both bacterial species assayed. Furthermore, EGCG-g-chitosan-P exhibited higher antioxidant activity than that of Chitosan-P (p &lt; 0.05) in 2,2 '-azino-bis (3-ethyl-benzothiazoline-6-sulfonic acid) (ABTS), 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) and ferric-reducing antioxidant power assays. Based on the above results, EGCG-g-chitosan-P shows the potential for food packaging and biomedical applications.</description><identifier>ISSN: 2073-4360</identifier><identifier>EISSN: 2073-4360</identifier><identifier>DOI: 10.3390/polym13091375</identifier><identifier>PMID: 33922410</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>Acids ; Antioxidants ; Biomedical materials ; Chitosan ; Food packaging ; Fourier transforms ; Grafting ; Herbs ; Hydrogen peroxide ; Infrared spectroscopy ; Lipids ; Morphology ; Nanoparticles ; Particle size ; Physical Sciences ; Polydispersity ; Polymer Science ; Polyphenols ; Pseudomonas fluorescens ; Science &amp; Technology ; Sulfonic acid ; Zeta potential</subject><ispartof>Polymers, 2021-04, Vol.13 (9), p.1375, Article 1375</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>31</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000650707300001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c415t-f90b7ccb9fd65dd0676cc07da9d1af966a0377e799a22e94a98b56f789f588a63</citedby><cites>FETCH-LOGICAL-c415t-f90b7ccb9fd65dd0676cc07da9d1af966a0377e799a22e94a98b56f789f588a63</cites><orcidid>0000-0003-0339-3658 ; 0000-0003-2071-4353 ; 0000-0003-1020-3840 ; 0000-0002-7441-1932</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8122830/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8122830/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33922410$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Moreno-Vasquez, Maria J.</creatorcontrib><creatorcontrib>Plascencia-Jatomea, Maribel</creatorcontrib><creatorcontrib>Sanchez-Valdes, Saul</creatorcontrib><creatorcontrib>Tanori-Cordova, Judith C.</creatorcontrib><creatorcontrib>Castillo-Yanez, Francisco J.</creatorcontrib><creatorcontrib>Quintero-Reyes, Idania E.</creatorcontrib><creatorcontrib>Graciano-Verdugo, Abril Z.</creatorcontrib><title>Characterization of Epigallocatechin-Gallate-Grafted Chitosan Nanoparticles and Evaluation of Their Antibacterial and Antioxidant Potential</title><title>Polymers</title><addtitle>POLYMERS-BASEL</addtitle><addtitle>Polymers (Basel)</addtitle><description>Nanoparticles based on chitosan modified with epigallocatechin gallate (EGCG) were synthetized by nanoprecipitation (EGCG-g-chitosan-P). Chitosan was modified by free-radical-induced grafting, which was verified by Fourier transform infrared (FTIR). Furthermore, the morphology, particle size, polydispersity index, and zeta potential of the nanoparticles were investigated. The grafting degree of EGCG, reactive oxygen species (ROS) production, antibacterial and antioxidant activities of EGCG-g-chitosan-P were evaluated and compared with those of pure EGCG and chitosan nanoparticles (Chitosan-P). FTIR results confirmed the modification of the chitosan with EGCG. The EGCG-g-chitosan-P showed spherical shapes and smoother surfaces than those of Chitosan-P. EGCG content of the grafted chitosan nanoparticles was 330 mu g/g. Minimal inhibitory concentration (MIC) of EGCG-g-chitosan-P (15.6 mu g/mL) was lower than Chitosan-P (31.2 mu g/mL) and EGCG (500 mu g/mL) against Pseudomonas fluorescens (p &lt; 0.05). Additionally, EGCG-g-chitosan-P and Chitosan-P presented higher Staphylococcus aureus growth inhibition (100%) than EGCG at the lowest concentration tested. The nanoparticles produced an increase of ROS (p &lt; 0.05) in both bacterial species assayed. Furthermore, EGCG-g-chitosan-P exhibited higher antioxidant activity than that of Chitosan-P (p &lt; 0.05) in 2,2 '-azino-bis (3-ethyl-benzothiazoline-6-sulfonic acid) (ABTS), 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) and ferric-reducing antioxidant power assays. Based on the above results, EGCG-g-chitosan-P shows the potential for food packaging and biomedical applications.</description><subject>Acids</subject><subject>Antioxidants</subject><subject>Biomedical materials</subject><subject>Chitosan</subject><subject>Food packaging</subject><subject>Fourier transforms</subject><subject>Grafting</subject><subject>Herbs</subject><subject>Hydrogen peroxide</subject><subject>Infrared spectroscopy</subject><subject>Lipids</subject><subject>Morphology</subject><subject>Nanoparticles</subject><subject>Particle size</subject><subject>Physical Sciences</subject><subject>Polydispersity</subject><subject>Polymer Science</subject><subject>Polyphenols</subject><subject>Pseudomonas fluorescens</subject><subject>Science &amp; Technology</subject><subject>Sulfonic acid</subject><subject>Zeta potential</subject><issn>2073-4360</issn><issn>2073-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNkk1v1DAQhiMEolXpkSuKxAUJpfVHYscXpCpaFqSqcCjnaOKPxlXWDrbTUv4Cfxpvt121nPDFHvvxOx6_UxRvMTqhVKDT2U93G0yRwJQ3L4pDgjitasrQyyfrg-I4xmuUR90whvnr4iBfJqTG6LD4040QQCYd7G9I1rvSm3I12yuYJi8haTlaV61zlNfVOoBJWpXdaJOP4MoLcH6GkKycdCzBqXJ1A9OyV7octQ3lmUt22CWB6Z7a7vhfVoFL5XefdA5helO8MjBFffwwHxU_Pq8uuy_V-bf11-7svJI1blJlBBq4lIMwijVKIcaZlIgrEAqDEYwBopxrLgQQokUNoh0aZngrTNO2wOhR8WmnOy_DRiuZsweY-jnYDYS73oPtn584O_ZX_qZvMSEtRVngw4NA8D8XHVO_sVHq_EdO-yX2pCGo5TWhPKPv_0Gv_RJcLi9TFOGaYFZnqtpRMvgYgzb7x2DUb53unzmd-XdPK9jTj75m4OMOuNWDN1Fa7aTeY7kVWIN4bpBtV-BMt_9Pdzbd29v5xSX6F5sFyQQ</recordid><startdate>20210423</startdate><enddate>20210423</enddate><creator>Moreno-Vasquez, Maria J.</creator><creator>Plascencia-Jatomea, Maribel</creator><creator>Sanchez-Valdes, Saul</creator><creator>Tanori-Cordova, Judith C.</creator><creator>Castillo-Yanez, Francisco J.</creator><creator>Quintero-Reyes, Idania E.</creator><creator>Graciano-Verdugo, Abril Z.</creator><general>Mdpi</general><general>MDPI AG</general><general>MDPI</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0339-3658</orcidid><orcidid>https://orcid.org/0000-0003-2071-4353</orcidid><orcidid>https://orcid.org/0000-0003-1020-3840</orcidid><orcidid>https://orcid.org/0000-0002-7441-1932</orcidid></search><sort><creationdate>20210423</creationdate><title>Characterization of Epigallocatechin-Gallate-Grafted Chitosan Nanoparticles and Evaluation of Their Antibacterial and Antioxidant Potential</title><author>Moreno-Vasquez, Maria J. ; Plascencia-Jatomea, Maribel ; Sanchez-Valdes, Saul ; Tanori-Cordova, Judith C. ; Castillo-Yanez, Francisco J. ; Quintero-Reyes, Idania E. ; Graciano-Verdugo, Abril Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-f90b7ccb9fd65dd0676cc07da9d1af966a0377e799a22e94a98b56f789f588a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acids</topic><topic>Antioxidants</topic><topic>Biomedical materials</topic><topic>Chitosan</topic><topic>Food packaging</topic><topic>Fourier transforms</topic><topic>Grafting</topic><topic>Herbs</topic><topic>Hydrogen peroxide</topic><topic>Infrared spectroscopy</topic><topic>Lipids</topic><topic>Morphology</topic><topic>Nanoparticles</topic><topic>Particle size</topic><topic>Physical Sciences</topic><topic>Polydispersity</topic><topic>Polymer Science</topic><topic>Polyphenols</topic><topic>Pseudomonas fluorescens</topic><topic>Science &amp; Technology</topic><topic>Sulfonic acid</topic><topic>Zeta potential</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moreno-Vasquez, Maria J.</creatorcontrib><creatorcontrib>Plascencia-Jatomea, Maribel</creatorcontrib><creatorcontrib>Sanchez-Valdes, Saul</creatorcontrib><creatorcontrib>Tanori-Cordova, Judith C.</creatorcontrib><creatorcontrib>Castillo-Yanez, Francisco J.</creatorcontrib><creatorcontrib>Quintero-Reyes, Idania E.</creatorcontrib><creatorcontrib>Graciano-Verdugo, Abril Z.</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moreno-Vasquez, Maria J.</au><au>Plascencia-Jatomea, Maribel</au><au>Sanchez-Valdes, Saul</au><au>Tanori-Cordova, Judith C.</au><au>Castillo-Yanez, Francisco J.</au><au>Quintero-Reyes, Idania E.</au><au>Graciano-Verdugo, Abril Z.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of Epigallocatechin-Gallate-Grafted Chitosan Nanoparticles and Evaluation of Their Antibacterial and Antioxidant Potential</atitle><jtitle>Polymers</jtitle><stitle>POLYMERS-BASEL</stitle><addtitle>Polymers (Basel)</addtitle><date>2021-04-23</date><risdate>2021</risdate><volume>13</volume><issue>9</issue><spage>1375</spage><pages>1375-</pages><artnum>1375</artnum><issn>2073-4360</issn><eissn>2073-4360</eissn><abstract>Nanoparticles based on chitosan modified with epigallocatechin gallate (EGCG) were synthetized by nanoprecipitation (EGCG-g-chitosan-P). Chitosan was modified by free-radical-induced grafting, which was verified by Fourier transform infrared (FTIR). Furthermore, the morphology, particle size, polydispersity index, and zeta potential of the nanoparticles were investigated. The grafting degree of EGCG, reactive oxygen species (ROS) production, antibacterial and antioxidant activities of EGCG-g-chitosan-P were evaluated and compared with those of pure EGCG and chitosan nanoparticles (Chitosan-P). FTIR results confirmed the modification of the chitosan with EGCG. The EGCG-g-chitosan-P showed spherical shapes and smoother surfaces than those of Chitosan-P. EGCG content of the grafted chitosan nanoparticles was 330 mu g/g. Minimal inhibitory concentration (MIC) of EGCG-g-chitosan-P (15.6 mu g/mL) was lower than Chitosan-P (31.2 mu g/mL) and EGCG (500 mu g/mL) against Pseudomonas fluorescens (p &lt; 0.05). Additionally, EGCG-g-chitosan-P and Chitosan-P presented higher Staphylococcus aureus growth inhibition (100%) than EGCG at the lowest concentration tested. The nanoparticles produced an increase of ROS (p &lt; 0.05) in both bacterial species assayed. Furthermore, EGCG-g-chitosan-P exhibited higher antioxidant activity than that of Chitosan-P (p &lt; 0.05) in 2,2 '-azino-bis (3-ethyl-benzothiazoline-6-sulfonic acid) (ABTS), 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) and ferric-reducing antioxidant power assays. Based on the above results, EGCG-g-chitosan-P shows the potential for food packaging and biomedical applications.</abstract><cop>BASEL</cop><pub>Mdpi</pub><pmid>33922410</pmid><doi>10.3390/polym13091375</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0003-0339-3658</orcidid><orcidid>https://orcid.org/0000-0003-2071-4353</orcidid><orcidid>https://orcid.org/0000-0003-1020-3840</orcidid><orcidid>https://orcid.org/0000-0002-7441-1932</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4360
ispartof Polymers, 2021-04, Vol.13 (9), p.1375, Article 1375
issn 2073-4360
2073-4360
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8122830
source PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Acids
Antioxidants
Biomedical materials
Chitosan
Food packaging
Fourier transforms
Grafting
Herbs
Hydrogen peroxide
Infrared spectroscopy
Lipids
Morphology
Nanoparticles
Particle size
Physical Sciences
Polydispersity
Polymer Science
Polyphenols
Pseudomonas fluorescens
Science & Technology
Sulfonic acid
Zeta potential
title Characterization of Epigallocatechin-Gallate-Grafted Chitosan Nanoparticles and Evaluation of Their Antibacterial and Antioxidant Potential
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T16%3A20%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20Epigallocatechin-Gallate-Grafted%20Chitosan%20Nanoparticles%20and%20Evaluation%20of%20Their%20Antibacterial%20and%20Antioxidant%20Potential&rft.jtitle=Polymers&rft.au=Moreno-Vasquez,%20Maria%20J.&rft.date=2021-04-23&rft.volume=13&rft.issue=9&rft.spage=1375&rft.pages=1375-&rft.artnum=1375&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/10.3390/polym13091375&rft_dat=%3Cproquest_webof%3E2520874237%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2530142164&rft_id=info:pmid/33922410&rfr_iscdi=true