Mixed-Mode Interlaminar Fracture Toughness of Glass and Carbon Fibre Powder Epoxy Composites-For Design of Wind and Tidal Turbine Blades
Powder epoxy composites have several advantages for the processing of large composite structures, including low exotherm, viscosity and material cost, as well as the ability to carry out separate melting and curing operations. This work studies the mode I and mixed-mode toughness, as well as the in-...
Gespeichert in:
Veröffentlicht in: | Materials 2021-04, Vol.14 (9), p.2103 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | 2103 |
container_title | Materials |
container_volume | 14 |
creator | Floreani, Christophe Robert, Colin Alam, Parvez Davies, Peter Ó Brádaigh, Conchúr M |
description | Powder epoxy composites have several advantages for the processing of large composite structures, including low exotherm, viscosity and material cost, as well as the ability to carry out separate melting and curing operations. This work studies the mode I and mixed-mode toughness, as well as the in-plane mechanical properties of unidirectional stitched glass and carbon fibre reinforced powder epoxy composites. The interlaminar fracture toughness is studied in pure mode I by performing Double Cantilever Beam tests and at 25% mode II, 50% mode II and 75% mode II by performing Mixed Mode Bending testing according to the ASTM D5528-13 test standard. The tensile and compressive properties are comparable to that of standard epoxy composites but both the mode I and mixed-mode toughness are shown to be significantly higher than that of other epoxy composites, even when comparing to toughened epoxies. The mixed-mode critical strain energy release rate as a function of the delamination mode ratio is also provided. This paper highlights the potential for powder epoxy composites in the manufacturing of structures where there is a risk of delamination. |
doi_str_mv | 10.3390/ma14092103 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8122687</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2530162402</sourcerecordid><originalsourceid>FETCH-LOGICAL-c440t-dfd5bec90dac9fc66b52fa066eb2a27bcd6683434d6e3cbee7377599e16765c73</originalsourceid><addsrcrecordid>eNpdks9u1DAQxi0EotXSCw-ALHGBSgH_i7O-IJWl21baCg6LOEaOPdl1ldhbOyntG_SxcbSllPrikf37Ps94BqG3lHziXJHPvaaCKEYJf4EOqVKyoEqIl0_iA3SU0hXJi3M6Z-o1OshKqrgqD9H9pbsFW1wGC_jCDxA73TuvI15GbYYxAl6HcbP1kBIOLT7rdA60t3ihYxM8XromMz_CbwsRn-7C7R1ehH4XkhsgFcsQ8TdIbuMn8S-XdZN27azu8HqMjfOAv3baQnqDXrW6S3D0sM_Qz-XpenFerL6fXSxOVoURggyFbW3ZgFHEaqNaI2VTslYTKaFhmlWNsVLOueDCSuCmAah4VZVKAZWVLE3FZ-jL3nc3Nj1YA36Iuqt30fU63tVBu_r_G--29Sbc1HPKmJxPBh_3BttnsvOTVT2dEcEIF6K8oZn98PBYDNcjpKHuXTLQddpDGFPNSkbmQk3NmKH3z9CrMEafvyJTnFDJBGGZOt5TJoaUIrSPGVBST_NQ_5uHDL97Wuoj-rf7_A976bCk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2530162402</pqid></control><display><type>article</type><title>Mixed-Mode Interlaminar Fracture Toughness of Glass and Carbon Fibre Powder Epoxy Composites-For Design of Wind and Tidal Turbine Blades</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Floreani, Christophe ; Robert, Colin ; Alam, Parvez ; Davies, Peter ; Ó Brádaigh, Conchúr M</creator><creatorcontrib>Floreani, Christophe ; Robert, Colin ; Alam, Parvez ; Davies, Peter ; Ó Brádaigh, Conchúr M</creatorcontrib><description>Powder epoxy composites have several advantages for the processing of large composite structures, including low exotherm, viscosity and material cost, as well as the ability to carry out separate melting and curing operations. This work studies the mode I and mixed-mode toughness, as well as the in-plane mechanical properties of unidirectional stitched glass and carbon fibre reinforced powder epoxy composites. The interlaminar fracture toughness is studied in pure mode I by performing Double Cantilever Beam tests and at 25% mode II, 50% mode II and 75% mode II by performing Mixed Mode Bending testing according to the ASTM D5528-13 test standard. The tensile and compressive properties are comparable to that of standard epoxy composites but both the mode I and mixed-mode toughness are shown to be significantly higher than that of other epoxy composites, even when comparing to toughened epoxies. The mixed-mode critical strain energy release rate as a function of the delamination mode ratio is also provided. This paper highlights the potential for powder epoxy composites in the manufacturing of structures where there is a risk of delamination.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma14092103</identifier><identifier>PMID: 33919395</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Bending stresses ; Cantilever beams ; Carbon ; Carbon fiber reinforced plastics ; Carbon-epoxy composites ; Composite structures ; Compressive properties ; Crack propagation ; Delamination ; Epoxy resins ; Fiber composites ; Fiber reinforced polymers ; Fracture toughness ; Manufacturing ; Mechanical properties ; Sciences of the Universe ; Strain energy release rate ; Turbine blades ; Turbines ; Viscosity ; Wind turbines</subject><ispartof>Materials, 2021-04, Vol.14 (9), p.2103</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c440t-dfd5bec90dac9fc66b52fa066eb2a27bcd6683434d6e3cbee7377599e16765c73</citedby><cites>FETCH-LOGICAL-c440t-dfd5bec90dac9fc66b52fa066eb2a27bcd6683434d6e3cbee7377599e16765c73</cites><orcidid>0000-0001-5035-6134 ; 0000-0002-0884-748X ; 0000-0002-8048-4222 ; 0000-0001-9122-9369</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8122687/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8122687/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,883,27907,27908,53774,53776</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33919395$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04203445$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Floreani, Christophe</creatorcontrib><creatorcontrib>Robert, Colin</creatorcontrib><creatorcontrib>Alam, Parvez</creatorcontrib><creatorcontrib>Davies, Peter</creatorcontrib><creatorcontrib>Ó Brádaigh, Conchúr M</creatorcontrib><title>Mixed-Mode Interlaminar Fracture Toughness of Glass and Carbon Fibre Powder Epoxy Composites-For Design of Wind and Tidal Turbine Blades</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>Powder epoxy composites have several advantages for the processing of large composite structures, including low exotherm, viscosity and material cost, as well as the ability to carry out separate melting and curing operations. This work studies the mode I and mixed-mode toughness, as well as the in-plane mechanical properties of unidirectional stitched glass and carbon fibre reinforced powder epoxy composites. The interlaminar fracture toughness is studied in pure mode I by performing Double Cantilever Beam tests and at 25% mode II, 50% mode II and 75% mode II by performing Mixed Mode Bending testing according to the ASTM D5528-13 test standard. The tensile and compressive properties are comparable to that of standard epoxy composites but both the mode I and mixed-mode toughness are shown to be significantly higher than that of other epoxy composites, even when comparing to toughened epoxies. The mixed-mode critical strain energy release rate as a function of the delamination mode ratio is also provided. This paper highlights the potential for powder epoxy composites in the manufacturing of structures where there is a risk of delamination.</description><subject>Bending stresses</subject><subject>Cantilever beams</subject><subject>Carbon</subject><subject>Carbon fiber reinforced plastics</subject><subject>Carbon-epoxy composites</subject><subject>Composite structures</subject><subject>Compressive properties</subject><subject>Crack propagation</subject><subject>Delamination</subject><subject>Epoxy resins</subject><subject>Fiber composites</subject><subject>Fiber reinforced polymers</subject><subject>Fracture toughness</subject><subject>Manufacturing</subject><subject>Mechanical properties</subject><subject>Sciences of the Universe</subject><subject>Strain energy release rate</subject><subject>Turbine blades</subject><subject>Turbines</subject><subject>Viscosity</subject><subject>Wind turbines</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdks9u1DAQxi0EotXSCw-ALHGBSgH_i7O-IJWl21baCg6LOEaOPdl1ldhbOyntG_SxcbSllPrikf37Ps94BqG3lHziXJHPvaaCKEYJf4EOqVKyoEqIl0_iA3SU0hXJi3M6Z-o1OshKqrgqD9H9pbsFW1wGC_jCDxA73TuvI15GbYYxAl6HcbP1kBIOLT7rdA60t3ihYxM8XromMz_CbwsRn-7C7R1ehH4XkhsgFcsQ8TdIbuMn8S-XdZN27azu8HqMjfOAv3baQnqDXrW6S3D0sM_Qz-XpenFerL6fXSxOVoURggyFbW3ZgFHEaqNaI2VTslYTKaFhmlWNsVLOueDCSuCmAah4VZVKAZWVLE3FZ-jL3nc3Nj1YA36Iuqt30fU63tVBu_r_G--29Sbc1HPKmJxPBh_3BttnsvOTVT2dEcEIF6K8oZn98PBYDNcjpKHuXTLQddpDGFPNSkbmQk3NmKH3z9CrMEafvyJTnFDJBGGZOt5TJoaUIrSPGVBST_NQ_5uHDL97Wuoj-rf7_A976bCk</recordid><startdate>20210421</startdate><enddate>20210421</enddate><creator>Floreani, Christophe</creator><creator>Robert, Colin</creator><creator>Alam, Parvez</creator><creator>Davies, Peter</creator><creator>Ó Brádaigh, Conchúr M</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5035-6134</orcidid><orcidid>https://orcid.org/0000-0002-0884-748X</orcidid><orcidid>https://orcid.org/0000-0002-8048-4222</orcidid><orcidid>https://orcid.org/0000-0001-9122-9369</orcidid></search><sort><creationdate>20210421</creationdate><title>Mixed-Mode Interlaminar Fracture Toughness of Glass and Carbon Fibre Powder Epoxy Composites-For Design of Wind and Tidal Turbine Blades</title><author>Floreani, Christophe ; Robert, Colin ; Alam, Parvez ; Davies, Peter ; Ó Brádaigh, Conchúr M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c440t-dfd5bec90dac9fc66b52fa066eb2a27bcd6683434d6e3cbee7377599e16765c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bending stresses</topic><topic>Cantilever beams</topic><topic>Carbon</topic><topic>Carbon fiber reinforced plastics</topic><topic>Carbon-epoxy composites</topic><topic>Composite structures</topic><topic>Compressive properties</topic><topic>Crack propagation</topic><topic>Delamination</topic><topic>Epoxy resins</topic><topic>Fiber composites</topic><topic>Fiber reinforced polymers</topic><topic>Fracture toughness</topic><topic>Manufacturing</topic><topic>Mechanical properties</topic><topic>Sciences of the Universe</topic><topic>Strain energy release rate</topic><topic>Turbine blades</topic><topic>Turbines</topic><topic>Viscosity</topic><topic>Wind turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Floreani, Christophe</creatorcontrib><creatorcontrib>Robert, Colin</creatorcontrib><creatorcontrib>Alam, Parvez</creatorcontrib><creatorcontrib>Davies, Peter</creatorcontrib><creatorcontrib>Ó Brádaigh, Conchúr M</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Floreani, Christophe</au><au>Robert, Colin</au><au>Alam, Parvez</au><au>Davies, Peter</au><au>Ó Brádaigh, Conchúr M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mixed-Mode Interlaminar Fracture Toughness of Glass and Carbon Fibre Powder Epoxy Composites-For Design of Wind and Tidal Turbine Blades</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2021-04-21</date><risdate>2021</risdate><volume>14</volume><issue>9</issue><spage>2103</spage><pages>2103-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Powder epoxy composites have several advantages for the processing of large composite structures, including low exotherm, viscosity and material cost, as well as the ability to carry out separate melting and curing operations. This work studies the mode I and mixed-mode toughness, as well as the in-plane mechanical properties of unidirectional stitched glass and carbon fibre reinforced powder epoxy composites. The interlaminar fracture toughness is studied in pure mode I by performing Double Cantilever Beam tests and at 25% mode II, 50% mode II and 75% mode II by performing Mixed Mode Bending testing according to the ASTM D5528-13 test standard. The tensile and compressive properties are comparable to that of standard epoxy composites but both the mode I and mixed-mode toughness are shown to be significantly higher than that of other epoxy composites, even when comparing to toughened epoxies. The mixed-mode critical strain energy release rate as a function of the delamination mode ratio is also provided. This paper highlights the potential for powder epoxy composites in the manufacturing of structures where there is a risk of delamination.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>33919395</pmid><doi>10.3390/ma14092103</doi><orcidid>https://orcid.org/0000-0001-5035-6134</orcidid><orcidid>https://orcid.org/0000-0002-0884-748X</orcidid><orcidid>https://orcid.org/0000-0002-8048-4222</orcidid><orcidid>https://orcid.org/0000-0001-9122-9369</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2021-04, Vol.14 (9), p.2103 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8122687 |
source | PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Bending stresses Cantilever beams Carbon Carbon fiber reinforced plastics Carbon-epoxy composites Composite structures Compressive properties Crack propagation Delamination Epoxy resins Fiber composites Fiber reinforced polymers Fracture toughness Manufacturing Mechanical properties Sciences of the Universe Strain energy release rate Turbine blades Turbines Viscosity Wind turbines |
title | Mixed-Mode Interlaminar Fracture Toughness of Glass and Carbon Fibre Powder Epoxy Composites-For Design of Wind and Tidal Turbine Blades |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T01%3A20%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mixed-Mode%20Interlaminar%20Fracture%20Toughness%20of%20Glass%20and%20Carbon%20Fibre%20Powder%20Epoxy%20Composites-For%20Design%20of%20Wind%20and%20Tidal%20Turbine%20Blades&rft.jtitle=Materials&rft.au=Floreani,%20Christophe&rft.date=2021-04-21&rft.volume=14&rft.issue=9&rft.spage=2103&rft.pages=2103-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma14092103&rft_dat=%3Cproquest_pubme%3E2530162402%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2530162402&rft_id=info:pmid/33919395&rfr_iscdi=true |