Cashew Gum Polysaccharide Nanoparticles Grafted with Polypropylene Glycol as Carriers for Diclofenac Sodium
This investigation focuses on the development and optimization of cashew gum polysaccharide (CGP) nanoparticles grafted with polypropylene glycol (PPG) as carriers for diclofenac sodium. The optimization of parameters affecting nanoparticles formulation was performed using a central composite rotata...
Gespeichert in:
Veröffentlicht in: | Materials 2021-04, Vol.14 (9), p.2115 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | 2115 |
container_title | Materials |
container_volume | 14 |
creator | Silva, Cassio Nazareno Silva da Di-Medeiros, Maria Carolina Bezerra Lião, Luciano Morais Fernandes, Kátia Flávia Batista, Karla de Aleluia |
description | This investigation focuses on the development and optimization of cashew gum polysaccharide (CGP) nanoparticles grafted with polypropylene glycol (PPG) as carriers for diclofenac sodium. The optimization of parameters affecting nanoparticles formulation was performed using a central composite rotatable design (CCRD). It was demonstrated that the best formulation was achieved when 10 mg of CGP was mixed with 10 μL of PPG and homogenized at 22,000 rpm for 15 min. The physicochemical characterization evidenced that diclofenac was efficiently entrapped, as increases in the thermal stability of the drug were observed. The CGP-PPG@diclofenac nanoparticles showed a globular shape, with smooth surfaces, a hydrodynamic diameter around 275 nm, a polydispersity index (PDI) of 0.342, and a zeta potential of -5.98 mV. The kinetic studies evidenced that diclofenac release followed an anomalous transport mechanism, with a sustained release up to 68 h. These results indicated that CGP-PPG nanoparticles are an effective material for the loading/release of drugs with similar structures to diclofenac sodium. |
doi_str_mv | 10.3390/ma14092115 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8122507</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2530161915</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-d8afd99ef14e082cc63479c275a51e37edde1bf1065a196ac07bea809d4fd2ab3</originalsourceid><addsrcrecordid>eNpdkVFrFTEQhYMottS--AMk4IsI12aSze7mRZBbvQqlCupzmJtMvKm7mzXZtdx_79bWtnZeZmC-OZzhMPYcxBuljDjpESphJIB-xA7BmHoFpqoe35sP2HEpF2IppaCV5ik7WC6lFKAP2c81lh1d8s3c8y-p2xd0boc5euLnOKQR8xRdR4VvMoaJPL-M0-4vOeY07jsaiG-6vUsdx8LXmHOkXHhImZ8uhynQgI5_TT7O_TP2JGBX6PimH7HvH95_W39cnX3efFq_O1u5StTTyrcYvDEUoCLRSudqVTXGyUajBlINeU-wDSBqjWBqdKLZErbC-Cp4iVt1xN5e647ztifvaJgydnbMsce8twmj_X8zxJ39kX7bFqTUolkEXt0I5PRrpjLZPhZHXYcDpblYqaVom0pLvaAvH6AXac7D8t5CKQE1GLiiXl9TLqdSMoVbMyDsVYz2LsYFfnHf_i36LzT1BwrMme4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2530161915</pqid></control><display><type>article</type><title>Cashew Gum Polysaccharide Nanoparticles Grafted with Polypropylene Glycol as Carriers for Diclofenac Sodium</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Silva, Cassio Nazareno Silva da ; Di-Medeiros, Maria Carolina Bezerra ; Lião, Luciano Morais ; Fernandes, Kátia Flávia ; Batista, Karla de Aleluia</creator><creatorcontrib>Silva, Cassio Nazareno Silva da ; Di-Medeiros, Maria Carolina Bezerra ; Lião, Luciano Morais ; Fernandes, Kátia Flávia ; Batista, Karla de Aleluia</creatorcontrib><description>This investigation focuses on the development and optimization of cashew gum polysaccharide (CGP) nanoparticles grafted with polypropylene glycol (PPG) as carriers for diclofenac sodium. The optimization of parameters affecting nanoparticles formulation was performed using a central composite rotatable design (CCRD). It was demonstrated that the best formulation was achieved when 10 mg of CGP was mixed with 10 μL of PPG and homogenized at 22,000 rpm for 15 min. The physicochemical characterization evidenced that diclofenac was efficiently entrapped, as increases in the thermal stability of the drug were observed. The CGP-PPG@diclofenac nanoparticles showed a globular shape, with smooth surfaces, a hydrodynamic diameter around 275 nm, a polydispersity index (PDI) of 0.342, and a zeta potential of -5.98 mV. The kinetic studies evidenced that diclofenac release followed an anomalous transport mechanism, with a sustained release up to 68 h. These results indicated that CGP-PPG nanoparticles are an effective material for the loading/release of drugs with similar structures to diclofenac sodium.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma14092115</identifier><identifier>PMID: 33922015</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Bioavailability ; Diclofenac ; Drug delivery systems ; Efficiency ; Ethanol ; Gums ; Nanoparticles ; Nonsteroidal anti-inflammatory drugs ; Optimization ; Particle size ; Polydispersity ; Polyethylene glycol ; Polymers ; Polypropylene glycol ; Polysaccharides ; Scanning electron microscopy ; Sodium ; Software ; Spectrum analysis ; Sustained release ; Thermal stability ; Zeta potential</subject><ispartof>Materials, 2021-04, Vol.14 (9), p.2115</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-d8afd99ef14e082cc63479c275a51e37edde1bf1065a196ac07bea809d4fd2ab3</citedby><cites>FETCH-LOGICAL-c406t-d8afd99ef14e082cc63479c275a51e37edde1bf1065a196ac07bea809d4fd2ab3</cites><orcidid>0000-0001-5474-9728</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8122507/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8122507/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33922015$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Silva, Cassio Nazareno Silva da</creatorcontrib><creatorcontrib>Di-Medeiros, Maria Carolina Bezerra</creatorcontrib><creatorcontrib>Lião, Luciano Morais</creatorcontrib><creatorcontrib>Fernandes, Kátia Flávia</creatorcontrib><creatorcontrib>Batista, Karla de Aleluia</creatorcontrib><title>Cashew Gum Polysaccharide Nanoparticles Grafted with Polypropylene Glycol as Carriers for Diclofenac Sodium</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>This investigation focuses on the development and optimization of cashew gum polysaccharide (CGP) nanoparticles grafted with polypropylene glycol (PPG) as carriers for diclofenac sodium. The optimization of parameters affecting nanoparticles formulation was performed using a central composite rotatable design (CCRD). It was demonstrated that the best formulation was achieved when 10 mg of CGP was mixed with 10 μL of PPG and homogenized at 22,000 rpm for 15 min. The physicochemical characterization evidenced that diclofenac was efficiently entrapped, as increases in the thermal stability of the drug were observed. The CGP-PPG@diclofenac nanoparticles showed a globular shape, with smooth surfaces, a hydrodynamic diameter around 275 nm, a polydispersity index (PDI) of 0.342, and a zeta potential of -5.98 mV. The kinetic studies evidenced that diclofenac release followed an anomalous transport mechanism, with a sustained release up to 68 h. These results indicated that CGP-PPG nanoparticles are an effective material for the loading/release of drugs with similar structures to diclofenac sodium.</description><subject>Bioavailability</subject><subject>Diclofenac</subject><subject>Drug delivery systems</subject><subject>Efficiency</subject><subject>Ethanol</subject><subject>Gums</subject><subject>Nanoparticles</subject><subject>Nonsteroidal anti-inflammatory drugs</subject><subject>Optimization</subject><subject>Particle size</subject><subject>Polydispersity</subject><subject>Polyethylene glycol</subject><subject>Polymers</subject><subject>Polypropylene glycol</subject><subject>Polysaccharides</subject><subject>Scanning electron microscopy</subject><subject>Sodium</subject><subject>Software</subject><subject>Spectrum analysis</subject><subject>Sustained release</subject><subject>Thermal stability</subject><subject>Zeta potential</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkVFrFTEQhYMottS--AMk4IsI12aSze7mRZBbvQqlCupzmJtMvKm7mzXZtdx_79bWtnZeZmC-OZzhMPYcxBuljDjpESphJIB-xA7BmHoFpqoe35sP2HEpF2IppaCV5ik7WC6lFKAP2c81lh1d8s3c8y-p2xd0boc5euLnOKQR8xRdR4VvMoaJPL-M0-4vOeY07jsaiG-6vUsdx8LXmHOkXHhImZ8uhynQgI5_TT7O_TP2JGBX6PimH7HvH95_W39cnX3efFq_O1u5StTTyrcYvDEUoCLRSudqVTXGyUajBlINeU-wDSBqjWBqdKLZErbC-Cp4iVt1xN5e647ztifvaJgydnbMsce8twmj_X8zxJ39kX7bFqTUolkEXt0I5PRrpjLZPhZHXYcDpblYqaVom0pLvaAvH6AXac7D8t5CKQE1GLiiXl9TLqdSMoVbMyDsVYz2LsYFfnHf_i36LzT1BwrMme4</recordid><startdate>20210422</startdate><enddate>20210422</enddate><creator>Silva, Cassio Nazareno Silva da</creator><creator>Di-Medeiros, Maria Carolina Bezerra</creator><creator>Lião, Luciano Morais</creator><creator>Fernandes, Kátia Flávia</creator><creator>Batista, Karla de Aleluia</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5474-9728</orcidid></search><sort><creationdate>20210422</creationdate><title>Cashew Gum Polysaccharide Nanoparticles Grafted with Polypropylene Glycol as Carriers for Diclofenac Sodium</title><author>Silva, Cassio Nazareno Silva da ; Di-Medeiros, Maria Carolina Bezerra ; Lião, Luciano Morais ; Fernandes, Kátia Flávia ; Batista, Karla de Aleluia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-d8afd99ef14e082cc63479c275a51e37edde1bf1065a196ac07bea809d4fd2ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bioavailability</topic><topic>Diclofenac</topic><topic>Drug delivery systems</topic><topic>Efficiency</topic><topic>Ethanol</topic><topic>Gums</topic><topic>Nanoparticles</topic><topic>Nonsteroidal anti-inflammatory drugs</topic><topic>Optimization</topic><topic>Particle size</topic><topic>Polydispersity</topic><topic>Polyethylene glycol</topic><topic>Polymers</topic><topic>Polypropylene glycol</topic><topic>Polysaccharides</topic><topic>Scanning electron microscopy</topic><topic>Sodium</topic><topic>Software</topic><topic>Spectrum analysis</topic><topic>Sustained release</topic><topic>Thermal stability</topic><topic>Zeta potential</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Silva, Cassio Nazareno Silva da</creatorcontrib><creatorcontrib>Di-Medeiros, Maria Carolina Bezerra</creatorcontrib><creatorcontrib>Lião, Luciano Morais</creatorcontrib><creatorcontrib>Fernandes, Kátia Flávia</creatorcontrib><creatorcontrib>Batista, Karla de Aleluia</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Silva, Cassio Nazareno Silva da</au><au>Di-Medeiros, Maria Carolina Bezerra</au><au>Lião, Luciano Morais</au><au>Fernandes, Kátia Flávia</au><au>Batista, Karla de Aleluia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cashew Gum Polysaccharide Nanoparticles Grafted with Polypropylene Glycol as Carriers for Diclofenac Sodium</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2021-04-22</date><risdate>2021</risdate><volume>14</volume><issue>9</issue><spage>2115</spage><pages>2115-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>This investigation focuses on the development and optimization of cashew gum polysaccharide (CGP) nanoparticles grafted with polypropylene glycol (PPG) as carriers for diclofenac sodium. The optimization of parameters affecting nanoparticles formulation was performed using a central composite rotatable design (CCRD). It was demonstrated that the best formulation was achieved when 10 mg of CGP was mixed with 10 μL of PPG and homogenized at 22,000 rpm for 15 min. The physicochemical characterization evidenced that diclofenac was efficiently entrapped, as increases in the thermal stability of the drug were observed. The CGP-PPG@diclofenac nanoparticles showed a globular shape, with smooth surfaces, a hydrodynamic diameter around 275 nm, a polydispersity index (PDI) of 0.342, and a zeta potential of -5.98 mV. The kinetic studies evidenced that diclofenac release followed an anomalous transport mechanism, with a sustained release up to 68 h. These results indicated that CGP-PPG nanoparticles are an effective material for the loading/release of drugs with similar structures to diclofenac sodium.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>33922015</pmid><doi>10.3390/ma14092115</doi><orcidid>https://orcid.org/0000-0001-5474-9728</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2021-04, Vol.14 (9), p.2115 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8122507 |
source | PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Bioavailability Diclofenac Drug delivery systems Efficiency Ethanol Gums Nanoparticles Nonsteroidal anti-inflammatory drugs Optimization Particle size Polydispersity Polyethylene glycol Polymers Polypropylene glycol Polysaccharides Scanning electron microscopy Sodium Software Spectrum analysis Sustained release Thermal stability Zeta potential |
title | Cashew Gum Polysaccharide Nanoparticles Grafted with Polypropylene Glycol as Carriers for Diclofenac Sodium |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T08%3A06%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cashew%20Gum%20Polysaccharide%20Nanoparticles%20Grafted%20with%20Polypropylene%20Glycol%20as%20Carriers%20for%20Diclofenac%20Sodium&rft.jtitle=Materials&rft.au=Silva,%20Cassio%20Nazareno%20Silva%20da&rft.date=2021-04-22&rft.volume=14&rft.issue=9&rft.spage=2115&rft.pages=2115-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma14092115&rft_dat=%3Cproquest_pubme%3E2530161915%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2530161915&rft_id=info:pmid/33922015&rfr_iscdi=true |