Machine and Deep Learning in Molecular and Genetic Aspects of Sleep Research

Epidemiological sleep research strives to identify the interactions and causal mechanisms by which sleep affects human health, and to design intervention strategies for improving sleep throughout the lifespan. These goals can be advanced by further focusing on the environmental and genetic etiology...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neurotherapeutics 2021, Vol.18 (1), p.228-243
Hauptverfasser: Elgart, Michael, Redline, Susan, Sofer, Tamar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 243
container_issue 1
container_start_page 228
container_title Neurotherapeutics
container_volume 18
creator Elgart, Michael
Redline, Susan
Sofer, Tamar
description Epidemiological sleep research strives to identify the interactions and causal mechanisms by which sleep affects human health, and to design intervention strategies for improving sleep throughout the lifespan. These goals can be advanced by further focusing on the environmental and genetic etiology of sleep disorders, and by development of risk stratification algorithms, to identify people who are at risk or are affected by, sleep disorders. These studies rely on comprehensive sleep-related data which often contains complex multi-dimensional physiological and molecular measurements across multiple timepoints. Thus, sleep research is well-suited for the application of computational approaches that can handle high-dimensional data. Here, we survey recent advances in machine and deep learning together with the availability of large human cohort studies with sleep data that can jointly drive the next breakthroughs in the sleep-research field. We describe sleep-related data types and datasets, and present some of the tasks in the field that can be targets for algorithmic approaches, as well as the challenges and opportunities in pursuing them.
doi_str_mv 10.1007/s13311-021-01014-9
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8116376</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2525895764</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-c907dadb803f7ed42559736059a0239bfbe04b48e22a86b97655222e2b330c283</originalsourceid><addsrcrecordid>eNp9UUtLJDEQDqKsj90_4EEaPLcmqaSTXATxMbswIuh6Dul09UxLmx6THsF_b5wZH3vZQ1EF36OK-gg5ZPSEUapOEwNgrKQ8F6NMlGaL7DGtdKmEMtt5NgCl4gx2yX5Kj5RKAKN_kF0AzY2gZo9Mb5yfdwELF5riEnFRTNHF0IVZ0YXiZujRL3sXV_AEA46dL87TAv2YiqEt7vt3yR2mLPLzn2SndX3CX5t-QB6ur_5e_C6nt5M_F-fT0gslxtIbqhrX1JpCq7ARXEqjoKLSOMrB1G2NVNRCI-dOV7VRlZScc-Q1APVcwwE5W_sulvUTNh7DGF1vF7F7cvHVDq6z_yKhm9vZ8GI1YxWoKhscbwzi8LzENNrHYRlDvtlyyaU2UlUis_ia5eOQUsT2cwOj9j0Bu07A5gTsKgFrsujo-22fko-XZwKsCSlDYYbxa_d_bN8AOkOQKA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2525895764</pqid></control><display><type>article</type><title>Machine and Deep Learning in Molecular and Genetic Aspects of Sleep Research</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Elgart, Michael ; Redline, Susan ; Sofer, Tamar</creator><creatorcontrib>Elgart, Michael ; Redline, Susan ; Sofer, Tamar</creatorcontrib><description>Epidemiological sleep research strives to identify the interactions and causal mechanisms by which sleep affects human health, and to design intervention strategies for improving sleep throughout the lifespan. These goals can be advanced by further focusing on the environmental and genetic etiology of sleep disorders, and by development of risk stratification algorithms, to identify people who are at risk or are affected by, sleep disorders. These studies rely on comprehensive sleep-related data which often contains complex multi-dimensional physiological and molecular measurements across multiple timepoints. Thus, sleep research is well-suited for the application of computational approaches that can handle high-dimensional data. Here, we survey recent advances in machine and deep learning together with the availability of large human cohort studies with sleep data that can jointly drive the next breakthroughs in the sleep-research field. We describe sleep-related data types and datasets, and present some of the tasks in the field that can be targets for algorithmic approaches, as well as the challenges and opportunities in pursuing them.</description><identifier>ISSN: 1933-7213</identifier><identifier>ISSN: 1878-7479</identifier><identifier>EISSN: 1878-7479</identifier><identifier>DOI: 10.1007/s13311-021-01014-9</identifier><identifier>PMID: 33829409</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Biomedical and Life Sciences ; Biomedicine ; Computer applications ; Deep Learning ; Epidemiology ; Etiology ; Humans ; Learning algorithms ; Life span ; Machine Learning ; Neurobiology ; Neurology ; Neurosciences ; Neurosurgery ; Review ; Sleep ; Sleep - genetics ; Sleep disorders ; Sleep Wake Disorders - genetics</subject><ispartof>Neurotherapeutics, 2021, Vol.18 (1), p.228-243</ispartof><rights>The American Society for Experimental NeuroTherapeutics, Inc. 2021</rights><rights>The American Society for Experimental NeuroTherapeutics, Inc. 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-c907dadb803f7ed42559736059a0239bfbe04b48e22a86b97655222e2b330c283</citedby><cites>FETCH-LOGICAL-c474t-c907dadb803f7ed42559736059a0239bfbe04b48e22a86b97655222e2b330c283</cites><orcidid>0000-0001-8608-4505</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8116376/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8116376/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27922,27923,41486,42555,51317,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33829409$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Elgart, Michael</creatorcontrib><creatorcontrib>Redline, Susan</creatorcontrib><creatorcontrib>Sofer, Tamar</creatorcontrib><title>Machine and Deep Learning in Molecular and Genetic Aspects of Sleep Research</title><title>Neurotherapeutics</title><addtitle>Neurotherapeutics</addtitle><addtitle>Neurotherapeutics</addtitle><description>Epidemiological sleep research strives to identify the interactions and causal mechanisms by which sleep affects human health, and to design intervention strategies for improving sleep throughout the lifespan. These goals can be advanced by further focusing on the environmental and genetic etiology of sleep disorders, and by development of risk stratification algorithms, to identify people who are at risk or are affected by, sleep disorders. These studies rely on comprehensive sleep-related data which often contains complex multi-dimensional physiological and molecular measurements across multiple timepoints. Thus, sleep research is well-suited for the application of computational approaches that can handle high-dimensional data. Here, we survey recent advances in machine and deep learning together with the availability of large human cohort studies with sleep data that can jointly drive the next breakthroughs in the sleep-research field. We describe sleep-related data types and datasets, and present some of the tasks in the field that can be targets for algorithmic approaches, as well as the challenges and opportunities in pursuing them.</description><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Computer applications</subject><subject>Deep Learning</subject><subject>Epidemiology</subject><subject>Etiology</subject><subject>Humans</subject><subject>Learning algorithms</subject><subject>Life span</subject><subject>Machine Learning</subject><subject>Neurobiology</subject><subject>Neurology</subject><subject>Neurosciences</subject><subject>Neurosurgery</subject><subject>Review</subject><subject>Sleep</subject><subject>Sleep - genetics</subject><subject>Sleep disorders</subject><subject>Sleep Wake Disorders - genetics</subject><issn>1933-7213</issn><issn>1878-7479</issn><issn>1878-7479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UUtLJDEQDqKsj90_4EEaPLcmqaSTXATxMbswIuh6Dul09UxLmx6THsF_b5wZH3vZQ1EF36OK-gg5ZPSEUapOEwNgrKQ8F6NMlGaL7DGtdKmEMtt5NgCl4gx2yX5Kj5RKAKN_kF0AzY2gZo9Mb5yfdwELF5riEnFRTNHF0IVZ0YXiZujRL3sXV_AEA46dL87TAv2YiqEt7vt3yR2mLPLzn2SndX3CX5t-QB6ur_5e_C6nt5M_F-fT0gslxtIbqhrX1JpCq7ARXEqjoKLSOMrB1G2NVNRCI-dOV7VRlZScc-Q1APVcwwE5W_sulvUTNh7DGF1vF7F7cvHVDq6z_yKhm9vZ8GI1YxWoKhscbwzi8LzENNrHYRlDvtlyyaU2UlUis_ia5eOQUsT2cwOj9j0Bu07A5gTsKgFrsujo-22fko-XZwKsCSlDYYbxa_d_bN8AOkOQKA</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Elgart, Michael</creator><creator>Redline, Susan</creator><creator>Sofer, Tamar</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8608-4505</orcidid></search><sort><creationdate>2021</creationdate><title>Machine and Deep Learning in Molecular and Genetic Aspects of Sleep Research</title><author>Elgart, Michael ; Redline, Susan ; Sofer, Tamar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-c907dadb803f7ed42559736059a0239bfbe04b48e22a86b97655222e2b330c283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Computer applications</topic><topic>Deep Learning</topic><topic>Epidemiology</topic><topic>Etiology</topic><topic>Humans</topic><topic>Learning algorithms</topic><topic>Life span</topic><topic>Machine Learning</topic><topic>Neurobiology</topic><topic>Neurology</topic><topic>Neurosciences</topic><topic>Neurosurgery</topic><topic>Review</topic><topic>Sleep</topic><topic>Sleep - genetics</topic><topic>Sleep disorders</topic><topic>Sleep Wake Disorders - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elgart, Michael</creatorcontrib><creatorcontrib>Redline, Susan</creatorcontrib><creatorcontrib>Sofer, Tamar</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neurotherapeutics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elgart, Michael</au><au>Redline, Susan</au><au>Sofer, Tamar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine and Deep Learning in Molecular and Genetic Aspects of Sleep Research</atitle><jtitle>Neurotherapeutics</jtitle><stitle>Neurotherapeutics</stitle><addtitle>Neurotherapeutics</addtitle><date>2021</date><risdate>2021</risdate><volume>18</volume><issue>1</issue><spage>228</spage><epage>243</epage><pages>228-243</pages><issn>1933-7213</issn><issn>1878-7479</issn><eissn>1878-7479</eissn><abstract>Epidemiological sleep research strives to identify the interactions and causal mechanisms by which sleep affects human health, and to design intervention strategies for improving sleep throughout the lifespan. These goals can be advanced by further focusing on the environmental and genetic etiology of sleep disorders, and by development of risk stratification algorithms, to identify people who are at risk or are affected by, sleep disorders. These studies rely on comprehensive sleep-related data which often contains complex multi-dimensional physiological and molecular measurements across multiple timepoints. Thus, sleep research is well-suited for the application of computational approaches that can handle high-dimensional data. Here, we survey recent advances in machine and deep learning together with the availability of large human cohort studies with sleep data that can jointly drive the next breakthroughs in the sleep-research field. We describe sleep-related data types and datasets, and present some of the tasks in the field that can be targets for algorithmic approaches, as well as the challenges and opportunities in pursuing them.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>33829409</pmid><doi>10.1007/s13311-021-01014-9</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-8608-4505</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1933-7213
ispartof Neurotherapeutics, 2021, Vol.18 (1), p.228-243
issn 1933-7213
1878-7479
1878-7479
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8116376
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings
subjects Biomedical and Life Sciences
Biomedicine
Computer applications
Deep Learning
Epidemiology
Etiology
Humans
Learning algorithms
Life span
Machine Learning
Neurobiology
Neurology
Neurosciences
Neurosurgery
Review
Sleep
Sleep - genetics
Sleep disorders
Sleep Wake Disorders - genetics
title Machine and Deep Learning in Molecular and Genetic Aspects of Sleep Research
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T16%3A01%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20and%20Deep%20Learning%20in%20Molecular%20and%20Genetic%20Aspects%20of%20Sleep%20Research&rft.jtitle=Neurotherapeutics&rft.au=Elgart,%20Michael&rft.date=2021&rft.volume=18&rft.issue=1&rft.spage=228&rft.epage=243&rft.pages=228-243&rft.issn=1933-7213&rft.eissn=1878-7479&rft_id=info:doi/10.1007/s13311-021-01014-9&rft_dat=%3Cproquest_pubme%3E2525895764%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2525895764&rft_id=info:pmid/33829409&rfr_iscdi=true