Machine and Deep Learning in Molecular and Genetic Aspects of Sleep Research
Epidemiological sleep research strives to identify the interactions and causal mechanisms by which sleep affects human health, and to design intervention strategies for improving sleep throughout the lifespan. These goals can be advanced by further focusing on the environmental and genetic etiology...
Gespeichert in:
Veröffentlicht in: | Neurotherapeutics 2021, Vol.18 (1), p.228-243 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 243 |
---|---|
container_issue | 1 |
container_start_page | 228 |
container_title | Neurotherapeutics |
container_volume | 18 |
creator | Elgart, Michael Redline, Susan Sofer, Tamar |
description | Epidemiological sleep research strives to identify the interactions and causal mechanisms by which sleep affects human health, and to design intervention strategies for improving sleep throughout the lifespan. These goals can be advanced by further focusing on the environmental and genetic etiology of sleep disorders, and by development of risk stratification algorithms, to identify people who are at risk or are affected by, sleep disorders. These studies rely on comprehensive sleep-related data which often contains complex multi-dimensional physiological and molecular measurements across multiple timepoints. Thus, sleep research is well-suited for the application of computational approaches that can handle high-dimensional data. Here, we survey recent advances in machine and deep learning together with the availability of large human cohort studies with sleep data that can jointly drive the next breakthroughs in the sleep-research field. We describe sleep-related data types and datasets, and present some of the tasks in the field that can be targets for algorithmic approaches, as well as the challenges and opportunities in pursuing them. |
doi_str_mv | 10.1007/s13311-021-01014-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8116376</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2525895764</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-c907dadb803f7ed42559736059a0239bfbe04b48e22a86b97655222e2b330c283</originalsourceid><addsrcrecordid>eNp9UUtLJDEQDqKsj90_4EEaPLcmqaSTXATxMbswIuh6Dul09UxLmx6THsF_b5wZH3vZQ1EF36OK-gg5ZPSEUapOEwNgrKQ8F6NMlGaL7DGtdKmEMtt5NgCl4gx2yX5Kj5RKAKN_kF0AzY2gZo9Mb5yfdwELF5riEnFRTNHF0IVZ0YXiZujRL3sXV_AEA46dL87TAv2YiqEt7vt3yR2mLPLzn2SndX3CX5t-QB6ur_5e_C6nt5M_F-fT0gslxtIbqhrX1JpCq7ARXEqjoKLSOMrB1G2NVNRCI-dOV7VRlZScc-Q1APVcwwE5W_sulvUTNh7DGF1vF7F7cvHVDq6z_yKhm9vZ8GI1YxWoKhscbwzi8LzENNrHYRlDvtlyyaU2UlUis_ia5eOQUsT2cwOj9j0Bu07A5gTsKgFrsujo-22fko-XZwKsCSlDYYbxa_d_bN8AOkOQKA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2525895764</pqid></control><display><type>article</type><title>Machine and Deep Learning in Molecular and Genetic Aspects of Sleep Research</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Elgart, Michael ; Redline, Susan ; Sofer, Tamar</creator><creatorcontrib>Elgart, Michael ; Redline, Susan ; Sofer, Tamar</creatorcontrib><description>Epidemiological sleep research strives to identify the interactions and causal mechanisms by which sleep affects human health, and to design intervention strategies for improving sleep throughout the lifespan. These goals can be advanced by further focusing on the environmental and genetic etiology of sleep disorders, and by development of risk stratification algorithms, to identify people who are at risk or are affected by, sleep disorders. These studies rely on comprehensive sleep-related data which often contains complex multi-dimensional physiological and molecular measurements across multiple timepoints. Thus, sleep research is well-suited for the application of computational approaches that can handle high-dimensional data. Here, we survey recent advances in machine and deep learning together with the availability of large human cohort studies with sleep data that can jointly drive the next breakthroughs in the sleep-research field. We describe sleep-related data types and datasets, and present some of the tasks in the field that can be targets for algorithmic approaches, as well as the challenges and opportunities in pursuing them.</description><identifier>ISSN: 1933-7213</identifier><identifier>ISSN: 1878-7479</identifier><identifier>EISSN: 1878-7479</identifier><identifier>DOI: 10.1007/s13311-021-01014-9</identifier><identifier>PMID: 33829409</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Biomedical and Life Sciences ; Biomedicine ; Computer applications ; Deep Learning ; Epidemiology ; Etiology ; Humans ; Learning algorithms ; Life span ; Machine Learning ; Neurobiology ; Neurology ; Neurosciences ; Neurosurgery ; Review ; Sleep ; Sleep - genetics ; Sleep disorders ; Sleep Wake Disorders - genetics</subject><ispartof>Neurotherapeutics, 2021, Vol.18 (1), p.228-243</ispartof><rights>The American Society for Experimental NeuroTherapeutics, Inc. 2021</rights><rights>The American Society for Experimental NeuroTherapeutics, Inc. 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-c907dadb803f7ed42559736059a0239bfbe04b48e22a86b97655222e2b330c283</citedby><cites>FETCH-LOGICAL-c474t-c907dadb803f7ed42559736059a0239bfbe04b48e22a86b97655222e2b330c283</cites><orcidid>0000-0001-8608-4505</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8116376/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8116376/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27922,27923,41486,42555,51317,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33829409$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Elgart, Michael</creatorcontrib><creatorcontrib>Redline, Susan</creatorcontrib><creatorcontrib>Sofer, Tamar</creatorcontrib><title>Machine and Deep Learning in Molecular and Genetic Aspects of Sleep Research</title><title>Neurotherapeutics</title><addtitle>Neurotherapeutics</addtitle><addtitle>Neurotherapeutics</addtitle><description>Epidemiological sleep research strives to identify the interactions and causal mechanisms by which sleep affects human health, and to design intervention strategies for improving sleep throughout the lifespan. These goals can be advanced by further focusing on the environmental and genetic etiology of sleep disorders, and by development of risk stratification algorithms, to identify people who are at risk or are affected by, sleep disorders. These studies rely on comprehensive sleep-related data which often contains complex multi-dimensional physiological and molecular measurements across multiple timepoints. Thus, sleep research is well-suited for the application of computational approaches that can handle high-dimensional data. Here, we survey recent advances in machine and deep learning together with the availability of large human cohort studies with sleep data that can jointly drive the next breakthroughs in the sleep-research field. We describe sleep-related data types and datasets, and present some of the tasks in the field that can be targets for algorithmic approaches, as well as the challenges and opportunities in pursuing them.</description><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Computer applications</subject><subject>Deep Learning</subject><subject>Epidemiology</subject><subject>Etiology</subject><subject>Humans</subject><subject>Learning algorithms</subject><subject>Life span</subject><subject>Machine Learning</subject><subject>Neurobiology</subject><subject>Neurology</subject><subject>Neurosciences</subject><subject>Neurosurgery</subject><subject>Review</subject><subject>Sleep</subject><subject>Sleep - genetics</subject><subject>Sleep disorders</subject><subject>Sleep Wake Disorders - genetics</subject><issn>1933-7213</issn><issn>1878-7479</issn><issn>1878-7479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UUtLJDEQDqKsj90_4EEaPLcmqaSTXATxMbswIuh6Dul09UxLmx6THsF_b5wZH3vZQ1EF36OK-gg5ZPSEUapOEwNgrKQ8F6NMlGaL7DGtdKmEMtt5NgCl4gx2yX5Kj5RKAKN_kF0AzY2gZo9Mb5yfdwELF5riEnFRTNHF0IVZ0YXiZujRL3sXV_AEA46dL87TAv2YiqEt7vt3yR2mLPLzn2SndX3CX5t-QB6ur_5e_C6nt5M_F-fT0gslxtIbqhrX1JpCq7ARXEqjoKLSOMrB1G2NVNRCI-dOV7VRlZScc-Q1APVcwwE5W_sulvUTNh7DGF1vF7F7cvHVDq6z_yKhm9vZ8GI1YxWoKhscbwzi8LzENNrHYRlDvtlyyaU2UlUis_ia5eOQUsT2cwOj9j0Bu07A5gTsKgFrsujo-22fko-XZwKsCSlDYYbxa_d_bN8AOkOQKA</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Elgart, Michael</creator><creator>Redline, Susan</creator><creator>Sofer, Tamar</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8608-4505</orcidid></search><sort><creationdate>2021</creationdate><title>Machine and Deep Learning in Molecular and Genetic Aspects of Sleep Research</title><author>Elgart, Michael ; Redline, Susan ; Sofer, Tamar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-c907dadb803f7ed42559736059a0239bfbe04b48e22a86b97655222e2b330c283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Computer applications</topic><topic>Deep Learning</topic><topic>Epidemiology</topic><topic>Etiology</topic><topic>Humans</topic><topic>Learning algorithms</topic><topic>Life span</topic><topic>Machine Learning</topic><topic>Neurobiology</topic><topic>Neurology</topic><topic>Neurosciences</topic><topic>Neurosurgery</topic><topic>Review</topic><topic>Sleep</topic><topic>Sleep - genetics</topic><topic>Sleep disorders</topic><topic>Sleep Wake Disorders - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elgart, Michael</creatorcontrib><creatorcontrib>Redline, Susan</creatorcontrib><creatorcontrib>Sofer, Tamar</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neurotherapeutics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elgart, Michael</au><au>Redline, Susan</au><au>Sofer, Tamar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine and Deep Learning in Molecular and Genetic Aspects of Sleep Research</atitle><jtitle>Neurotherapeutics</jtitle><stitle>Neurotherapeutics</stitle><addtitle>Neurotherapeutics</addtitle><date>2021</date><risdate>2021</risdate><volume>18</volume><issue>1</issue><spage>228</spage><epage>243</epage><pages>228-243</pages><issn>1933-7213</issn><issn>1878-7479</issn><eissn>1878-7479</eissn><abstract>Epidemiological sleep research strives to identify the interactions and causal mechanisms by which sleep affects human health, and to design intervention strategies for improving sleep throughout the lifespan. These goals can be advanced by further focusing on the environmental and genetic etiology of sleep disorders, and by development of risk stratification algorithms, to identify people who are at risk or are affected by, sleep disorders. These studies rely on comprehensive sleep-related data which often contains complex multi-dimensional physiological and molecular measurements across multiple timepoints. Thus, sleep research is well-suited for the application of computational approaches that can handle high-dimensional data. Here, we survey recent advances in machine and deep learning together with the availability of large human cohort studies with sleep data that can jointly drive the next breakthroughs in the sleep-research field. We describe sleep-related data types and datasets, and present some of the tasks in the field that can be targets for algorithmic approaches, as well as the challenges and opportunities in pursuing them.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>33829409</pmid><doi>10.1007/s13311-021-01014-9</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-8608-4505</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1933-7213 |
ispartof | Neurotherapeutics, 2021, Vol.18 (1), p.228-243 |
issn | 1933-7213 1878-7479 1878-7479 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8116376 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings |
subjects | Biomedical and Life Sciences Biomedicine Computer applications Deep Learning Epidemiology Etiology Humans Learning algorithms Life span Machine Learning Neurobiology Neurology Neurosciences Neurosurgery Review Sleep Sleep - genetics Sleep disorders Sleep Wake Disorders - genetics |
title | Machine and Deep Learning in Molecular and Genetic Aspects of Sleep Research |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T16%3A01%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20and%20Deep%20Learning%20in%20Molecular%20and%20Genetic%20Aspects%20of%20Sleep%20Research&rft.jtitle=Neurotherapeutics&rft.au=Elgart,%20Michael&rft.date=2021&rft.volume=18&rft.issue=1&rft.spage=228&rft.epage=243&rft.pages=228-243&rft.issn=1933-7213&rft.eissn=1878-7479&rft_id=info:doi/10.1007/s13311-021-01014-9&rft_dat=%3Cproquest_pubme%3E2525895764%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2525895764&rft_id=info:pmid/33829409&rfr_iscdi=true |