Aerobic and anaerobic iron oxidizers together drive denitrification and carbon cycling at marine iron-rich hydrothermal vents
In principle, iron oxidation can fuel significant primary productivity and nutrient cycling in dark environments such as the deep sea. However, we have an extremely limited understanding of the ecology of iron-based ecosystems, and thus the linkages between iron oxidation, carbon cycling, and nitrat...
Gespeichert in:
Veröffentlicht in: | The ISME Journal 2021-05, Vol.15 (5), p.1271-1286 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1286 |
---|---|
container_issue | 5 |
container_start_page | 1271 |
container_title | The ISME Journal |
container_volume | 15 |
creator | McAllister, Sean M. Vandzura, Rebecca Keffer, Jessica L. Polson, Shawn W. Chan, Clara S. |
description | In principle, iron oxidation can fuel significant primary productivity and nutrient cycling in dark environments such as the deep sea. However, we have an extremely limited understanding of the ecology of iron-based ecosystems, and thus the linkages between iron oxidation, carbon cycling, and nitrate reduction. Here we investigate iron microbial mats from hydrothermal vents at Lōʻihi Seamount, Hawaiʻi, using genome-resolved metagenomics and metatranscriptomics to reconstruct potential microbial roles and interactions. Our results show that the aerobic iron-oxidizing Zetaproteobacteria are the primary producers, concentrated at the oxic mat surface. Their fixed carbon supports heterotrophs deeper in the mat, notably the second most abundant organism,
Candidatus Ferristratum
sp. (uncultivated gen. nov.) from the uncharacterized DTB120 phylum.
Candidatus Ferristratum
sp., described using nine high-quality metagenome-assembled genomes with similar distributions of genes, expressed nitrate reduction genes
narGH
and the iron oxidation gene
cyc2
in situ and in response to Fe(II) in a shipboard incubation, suggesting it is an anaerobic nitrate-reducing iron oxidizer.
Candidatus Ferristratum
sp. lacks a full denitrification pathway, relying on Zetaproteobacteria to remove intermediates like nitrite. Thus, at Lōʻihi, anaerobic iron oxidizers coexist with and are dependent on aerobic iron oxidizers. In total, our work shows how key community members work together to connect iron oxidation with carbon and nitrogen cycling, thus driving the biogeochemistry of exported fluids. |
doi_str_mv | 10.1038/s41396-020-00849-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8114936</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2470903377</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-117a7a4fe509dacbfbbe255120accd5f276aa11cda47d6532ef5547d4d91aff33</originalsourceid><addsrcrecordid>eNp9kUtvEzEQxy0EoqXwBTggS1x6WfDb2QtSVZWHVIkLnK1ZPxJXG7vYm6hbqd8dpwnhceBgeUbzm__M6I_Qa0reUcIX76ugvFcdYaQjZCH6bn6CTqmWtNNck6fHWLET9KLWG0KkVko_Ryecc7ZQkp2ihwtf8hAthuTag0MWS04430UX732peMpLP618wa7ErcfOpziVGKKFKTZw12uhDC20sx1jWmKY8BpKTP5RqivRrvBqdiXvZNYw4q1PU32JngUYq391-M_Q949X3y4_d9dfP325vLjurNBi6ijVoEEEL0nvwA5hGDyTkjIC1joZmFYAlFoHQjslOfNByhYK11MIgfMz9GGve7sZ1t7ZNrvAaG5LbEvOJkM0f1dSXJll3poFpaLnqgmcHwRK_rHxdTLrWK0fR0g-b6phQpOecK51Q9_-g97kTUntPMMkVbJXUpJGsT1lS661-HBchhKzc9fs3TXNXfPorplb05s_zzi2_LKzAXwP1FZKS19-z_6P7E-85bUZ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2516596550</pqid></control><display><type>article</type><title>Aerobic and anaerobic iron oxidizers together drive denitrification and carbon cycling at marine iron-rich hydrothermal vents</title><source>MEDLINE</source><source>Oxford Journals Open Access Collection</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>McAllister, Sean M. ; Vandzura, Rebecca ; Keffer, Jessica L. ; Polson, Shawn W. ; Chan, Clara S.</creator><creatorcontrib>McAllister, Sean M. ; Vandzura, Rebecca ; Keffer, Jessica L. ; Polson, Shawn W. ; Chan, Clara S.</creatorcontrib><description>In principle, iron oxidation can fuel significant primary productivity and nutrient cycling in dark environments such as the deep sea. However, we have an extremely limited understanding of the ecology of iron-based ecosystems, and thus the linkages between iron oxidation, carbon cycling, and nitrate reduction. Here we investigate iron microbial mats from hydrothermal vents at Lōʻihi Seamount, Hawaiʻi, using genome-resolved metagenomics and metatranscriptomics to reconstruct potential microbial roles and interactions. Our results show that the aerobic iron-oxidizing Zetaproteobacteria are the primary producers, concentrated at the oxic mat surface. Their fixed carbon supports heterotrophs deeper in the mat, notably the second most abundant organism,
Candidatus Ferristratum
sp. (uncultivated gen. nov.) from the uncharacterized DTB120 phylum.
Candidatus Ferristratum
sp., described using nine high-quality metagenome-assembled genomes with similar distributions of genes, expressed nitrate reduction genes
narGH
and the iron oxidation gene
cyc2
in situ and in response to Fe(II) in a shipboard incubation, suggesting it is an anaerobic nitrate-reducing iron oxidizer.
Candidatus Ferristratum
sp. lacks a full denitrification pathway, relying on Zetaproteobacteria to remove intermediates like nitrite. Thus, at Lōʻihi, anaerobic iron oxidizers coexist with and are dependent on aerobic iron oxidizers. In total, our work shows how key community members work together to connect iron oxidation with carbon and nitrogen cycling, thus driving the biogeochemistry of exported fluids.</description><identifier>ISSN: 1751-7362</identifier><identifier>EISSN: 1751-7370</identifier><identifier>DOI: 10.1038/s41396-020-00849-y</identifier><identifier>PMID: 33328652</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>38/39 ; 38/91 ; 45/23 ; 631/158/855 ; 631/326/171 ; 631/326/2565/2142 ; 631/326/2565/855 ; 704/47 ; Anaerobiosis ; Biogeochemistry ; Biomedical and Life Sciences ; Candidatus Ferristratum ; Carbon ; Carbon cycle ; Deep sea ; Denitrification ; Ecology ; Ecosystem ; Evolutionary Biology ; Genes ; Genomes ; Hawaii ; Heterotrophs ; Hydrothermal Vents ; Intermediates ; Iron ; Iron-oxidizing bacteria ; Life Sciences ; Metagenomics ; Microbial Ecology ; Microbial Genetics and Genomics ; Microbial mats ; Microbiology ; Microorganisms ; New species ; Nitrate reduction ; Nitrates ; Nitrogen cycle ; Nutrient cycles ; Oxidation ; Oxidation-Reduction ; Oxidizing agents ; Reduction ; Seamounts ; Vents ; Zetaproteobacteria</subject><ispartof>The ISME Journal, 2021-05, Vol.15 (5), p.1271-1286</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-117a7a4fe509dacbfbbe255120accd5f276aa11cda47d6532ef5547d4d91aff33</citedby><cites>FETCH-LOGICAL-c474t-117a7a4fe509dacbfbbe255120accd5f276aa11cda47d6532ef5547d4d91aff33</cites><orcidid>0000-0002-3398-6932 ; 0000-0001-6654-3495 ; 0000-0002-0302-3588 ; 0000-0003-1810-4994</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8114936/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8114936/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33328652$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>McAllister, Sean M.</creatorcontrib><creatorcontrib>Vandzura, Rebecca</creatorcontrib><creatorcontrib>Keffer, Jessica L.</creatorcontrib><creatorcontrib>Polson, Shawn W.</creatorcontrib><creatorcontrib>Chan, Clara S.</creatorcontrib><title>Aerobic and anaerobic iron oxidizers together drive denitrification and carbon cycling at marine iron-rich hydrothermal vents</title><title>The ISME Journal</title><addtitle>ISME J</addtitle><addtitle>ISME J</addtitle><description>In principle, iron oxidation can fuel significant primary productivity and nutrient cycling in dark environments such as the deep sea. However, we have an extremely limited understanding of the ecology of iron-based ecosystems, and thus the linkages between iron oxidation, carbon cycling, and nitrate reduction. Here we investigate iron microbial mats from hydrothermal vents at Lōʻihi Seamount, Hawaiʻi, using genome-resolved metagenomics and metatranscriptomics to reconstruct potential microbial roles and interactions. Our results show that the aerobic iron-oxidizing Zetaproteobacteria are the primary producers, concentrated at the oxic mat surface. Their fixed carbon supports heterotrophs deeper in the mat, notably the second most abundant organism,
Candidatus Ferristratum
sp. (uncultivated gen. nov.) from the uncharacterized DTB120 phylum.
Candidatus Ferristratum
sp., described using nine high-quality metagenome-assembled genomes with similar distributions of genes, expressed nitrate reduction genes
narGH
and the iron oxidation gene
cyc2
in situ and in response to Fe(II) in a shipboard incubation, suggesting it is an anaerobic nitrate-reducing iron oxidizer.
Candidatus Ferristratum
sp. lacks a full denitrification pathway, relying on Zetaproteobacteria to remove intermediates like nitrite. Thus, at Lōʻihi, anaerobic iron oxidizers coexist with and are dependent on aerobic iron oxidizers. In total, our work shows how key community members work together to connect iron oxidation with carbon and nitrogen cycling, thus driving the biogeochemistry of exported fluids.</description><subject>38/39</subject><subject>38/91</subject><subject>45/23</subject><subject>631/158/855</subject><subject>631/326/171</subject><subject>631/326/2565/2142</subject><subject>631/326/2565/855</subject><subject>704/47</subject><subject>Anaerobiosis</subject><subject>Biogeochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Candidatus Ferristratum</subject><subject>Carbon</subject><subject>Carbon cycle</subject><subject>Deep sea</subject><subject>Denitrification</subject><subject>Ecology</subject><subject>Ecosystem</subject><subject>Evolutionary Biology</subject><subject>Genes</subject><subject>Genomes</subject><subject>Hawaii</subject><subject>Heterotrophs</subject><subject>Hydrothermal Vents</subject><subject>Intermediates</subject><subject>Iron</subject><subject>Iron-oxidizing bacteria</subject><subject>Life Sciences</subject><subject>Metagenomics</subject><subject>Microbial Ecology</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbial mats</subject><subject>Microbiology</subject><subject>Microorganisms</subject><subject>New species</subject><subject>Nitrate reduction</subject><subject>Nitrates</subject><subject>Nitrogen cycle</subject><subject>Nutrient cycles</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Oxidizing agents</subject><subject>Reduction</subject><subject>Seamounts</subject><subject>Vents</subject><subject>Zetaproteobacteria</subject><issn>1751-7362</issn><issn>1751-7370</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUtvEzEQxy0EoqXwBTggS1x6WfDb2QtSVZWHVIkLnK1ZPxJXG7vYm6hbqd8dpwnhceBgeUbzm__M6I_Qa0reUcIX76ugvFcdYaQjZCH6bn6CTqmWtNNck6fHWLET9KLWG0KkVko_Ryecc7ZQkp2ihwtf8hAthuTag0MWS04430UX732peMpLP618wa7ErcfOpziVGKKFKTZw12uhDC20sx1jWmKY8BpKTP5RqivRrvBqdiXvZNYw4q1PU32JngUYq391-M_Q949X3y4_d9dfP325vLjurNBi6ijVoEEEL0nvwA5hGDyTkjIC1joZmFYAlFoHQjslOfNByhYK11MIgfMz9GGve7sZ1t7ZNrvAaG5LbEvOJkM0f1dSXJll3poFpaLnqgmcHwRK_rHxdTLrWK0fR0g-b6phQpOecK51Q9_-g97kTUntPMMkVbJXUpJGsT1lS661-HBchhKzc9fs3TXNXfPorplb05s_zzi2_LKzAXwP1FZKS19-z_6P7E-85bUZ</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>McAllister, Sean M.</creator><creator>Vandzura, Rebecca</creator><creator>Keffer, Jessica L.</creator><creator>Polson, Shawn W.</creator><creator>Chan, Clara S.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3398-6932</orcidid><orcidid>https://orcid.org/0000-0001-6654-3495</orcidid><orcidid>https://orcid.org/0000-0002-0302-3588</orcidid><orcidid>https://orcid.org/0000-0003-1810-4994</orcidid></search><sort><creationdate>20210501</creationdate><title>Aerobic and anaerobic iron oxidizers together drive denitrification and carbon cycling at marine iron-rich hydrothermal vents</title><author>McAllister, Sean M. ; Vandzura, Rebecca ; Keffer, Jessica L. ; Polson, Shawn W. ; Chan, Clara S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-117a7a4fe509dacbfbbe255120accd5f276aa11cda47d6532ef5547d4d91aff33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>38/39</topic><topic>38/91</topic><topic>45/23</topic><topic>631/158/855</topic><topic>631/326/171</topic><topic>631/326/2565/2142</topic><topic>631/326/2565/855</topic><topic>704/47</topic><topic>Anaerobiosis</topic><topic>Biogeochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Candidatus Ferristratum</topic><topic>Carbon</topic><topic>Carbon cycle</topic><topic>Deep sea</topic><topic>Denitrification</topic><topic>Ecology</topic><topic>Ecosystem</topic><topic>Evolutionary Biology</topic><topic>Genes</topic><topic>Genomes</topic><topic>Hawaii</topic><topic>Heterotrophs</topic><topic>Hydrothermal Vents</topic><topic>Intermediates</topic><topic>Iron</topic><topic>Iron-oxidizing bacteria</topic><topic>Life Sciences</topic><topic>Metagenomics</topic><topic>Microbial Ecology</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbial mats</topic><topic>Microbiology</topic><topic>Microorganisms</topic><topic>New species</topic><topic>Nitrate reduction</topic><topic>Nitrates</topic><topic>Nitrogen cycle</topic><topic>Nutrient cycles</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Oxidizing agents</topic><topic>Reduction</topic><topic>Seamounts</topic><topic>Vents</topic><topic>Zetaproteobacteria</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McAllister, Sean M.</creatorcontrib><creatorcontrib>Vandzura, Rebecca</creatorcontrib><creatorcontrib>Keffer, Jessica L.</creatorcontrib><creatorcontrib>Polson, Shawn W.</creatorcontrib><creatorcontrib>Chan, Clara S.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The ISME Journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McAllister, Sean M.</au><au>Vandzura, Rebecca</au><au>Keffer, Jessica L.</au><au>Polson, Shawn W.</au><au>Chan, Clara S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aerobic and anaerobic iron oxidizers together drive denitrification and carbon cycling at marine iron-rich hydrothermal vents</atitle><jtitle>The ISME Journal</jtitle><stitle>ISME J</stitle><addtitle>ISME J</addtitle><date>2021-05-01</date><risdate>2021</risdate><volume>15</volume><issue>5</issue><spage>1271</spage><epage>1286</epage><pages>1271-1286</pages><issn>1751-7362</issn><eissn>1751-7370</eissn><abstract>In principle, iron oxidation can fuel significant primary productivity and nutrient cycling in dark environments such as the deep sea. However, we have an extremely limited understanding of the ecology of iron-based ecosystems, and thus the linkages between iron oxidation, carbon cycling, and nitrate reduction. Here we investigate iron microbial mats from hydrothermal vents at Lōʻihi Seamount, Hawaiʻi, using genome-resolved metagenomics and metatranscriptomics to reconstruct potential microbial roles and interactions. Our results show that the aerobic iron-oxidizing Zetaproteobacteria are the primary producers, concentrated at the oxic mat surface. Their fixed carbon supports heterotrophs deeper in the mat, notably the second most abundant organism,
Candidatus Ferristratum
sp. (uncultivated gen. nov.) from the uncharacterized DTB120 phylum.
Candidatus Ferristratum
sp., described using nine high-quality metagenome-assembled genomes with similar distributions of genes, expressed nitrate reduction genes
narGH
and the iron oxidation gene
cyc2
in situ and in response to Fe(II) in a shipboard incubation, suggesting it is an anaerobic nitrate-reducing iron oxidizer.
Candidatus Ferristratum
sp. lacks a full denitrification pathway, relying on Zetaproteobacteria to remove intermediates like nitrite. Thus, at Lōʻihi, anaerobic iron oxidizers coexist with and are dependent on aerobic iron oxidizers. In total, our work shows how key community members work together to connect iron oxidation with carbon and nitrogen cycling, thus driving the biogeochemistry of exported fluids.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33328652</pmid><doi>10.1038/s41396-020-00849-y</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-3398-6932</orcidid><orcidid>https://orcid.org/0000-0001-6654-3495</orcidid><orcidid>https://orcid.org/0000-0002-0302-3588</orcidid><orcidid>https://orcid.org/0000-0003-1810-4994</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1751-7362 |
ispartof | The ISME Journal, 2021-05, Vol.15 (5), p.1271-1286 |
issn | 1751-7362 1751-7370 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8114936 |
source | MEDLINE; Oxford Journals Open Access Collection; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | 38/39 38/91 45/23 631/158/855 631/326/171 631/326/2565/2142 631/326/2565/855 704/47 Anaerobiosis Biogeochemistry Biomedical and Life Sciences Candidatus Ferristratum Carbon Carbon cycle Deep sea Denitrification Ecology Ecosystem Evolutionary Biology Genes Genomes Hawaii Heterotrophs Hydrothermal Vents Intermediates Iron Iron-oxidizing bacteria Life Sciences Metagenomics Microbial Ecology Microbial Genetics and Genomics Microbial mats Microbiology Microorganisms New species Nitrate reduction Nitrates Nitrogen cycle Nutrient cycles Oxidation Oxidation-Reduction Oxidizing agents Reduction Seamounts Vents Zetaproteobacteria |
title | Aerobic and anaerobic iron oxidizers together drive denitrification and carbon cycling at marine iron-rich hydrothermal vents |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T10%3A16%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aerobic%20and%20anaerobic%20iron%20oxidizers%20together%20drive%20denitrification%20and%20carbon%20cycling%20at%20marine%20iron-rich%20hydrothermal%20vents&rft.jtitle=The%20ISME%20Journal&rft.au=McAllister,%20Sean%20M.&rft.date=2021-05-01&rft.volume=15&rft.issue=5&rft.spage=1271&rft.epage=1286&rft.pages=1271-1286&rft.issn=1751-7362&rft.eissn=1751-7370&rft_id=info:doi/10.1038/s41396-020-00849-y&rft_dat=%3Cproquest_pubme%3E2470903377%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2516596550&rft_id=info:pmid/33328652&rfr_iscdi=true |