Aerobic and anaerobic iron oxidizers together drive denitrification and carbon cycling at marine iron-rich hydrothermal vents

In principle, iron oxidation can fuel significant primary productivity and nutrient cycling in dark environments such as the deep sea. However, we have an extremely limited understanding of the ecology of iron-based ecosystems, and thus the linkages between iron oxidation, carbon cycling, and nitrat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The ISME Journal 2021-05, Vol.15 (5), p.1271-1286
Hauptverfasser: McAllister, Sean M., Vandzura, Rebecca, Keffer, Jessica L., Polson, Shawn W., Chan, Clara S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1286
container_issue 5
container_start_page 1271
container_title The ISME Journal
container_volume 15
creator McAllister, Sean M.
Vandzura, Rebecca
Keffer, Jessica L.
Polson, Shawn W.
Chan, Clara S.
description In principle, iron oxidation can fuel significant primary productivity and nutrient cycling in dark environments such as the deep sea. However, we have an extremely limited understanding of the ecology of iron-based ecosystems, and thus the linkages between iron oxidation, carbon cycling, and nitrate reduction. Here we investigate iron microbial mats from hydrothermal vents at Lōʻihi Seamount, Hawaiʻi, using genome-resolved metagenomics and metatranscriptomics to reconstruct potential microbial roles and interactions. Our results show that the aerobic iron-oxidizing Zetaproteobacteria are the primary producers, concentrated at the oxic mat surface. Their fixed carbon supports heterotrophs deeper in the mat, notably the second most abundant organism, Candidatus Ferristratum sp. (uncultivated gen. nov.) from the uncharacterized DTB120 phylum. Candidatus Ferristratum sp., described using nine high-quality metagenome-assembled genomes with similar distributions of genes, expressed nitrate reduction genes narGH and the iron oxidation gene cyc2 in situ and in response to Fe(II) in a shipboard incubation, suggesting it is an anaerobic nitrate-reducing iron oxidizer. Candidatus Ferristratum sp. lacks a full denitrification pathway, relying on Zetaproteobacteria to remove intermediates like nitrite. Thus, at Lōʻihi, anaerobic iron oxidizers coexist with and are dependent on aerobic iron oxidizers. In total, our work shows how key community members work together to connect iron oxidation with carbon and nitrogen cycling, thus driving the biogeochemistry of exported fluids.
doi_str_mv 10.1038/s41396-020-00849-y
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8114936</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2470903377</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-117a7a4fe509dacbfbbe255120accd5f276aa11cda47d6532ef5547d4d91aff33</originalsourceid><addsrcrecordid>eNp9kUtvEzEQxy0EoqXwBTggS1x6WfDb2QtSVZWHVIkLnK1ZPxJXG7vYm6hbqd8dpwnhceBgeUbzm__M6I_Qa0reUcIX76ugvFcdYaQjZCH6bn6CTqmWtNNck6fHWLET9KLWG0KkVko_Ryecc7ZQkp2ihwtf8hAthuTag0MWS04430UX732peMpLP618wa7ErcfOpziVGKKFKTZw12uhDC20sx1jWmKY8BpKTP5RqivRrvBqdiXvZNYw4q1PU32JngUYq391-M_Q949X3y4_d9dfP325vLjurNBi6ijVoEEEL0nvwA5hGDyTkjIC1joZmFYAlFoHQjslOfNByhYK11MIgfMz9GGve7sZ1t7ZNrvAaG5LbEvOJkM0f1dSXJll3poFpaLnqgmcHwRK_rHxdTLrWK0fR0g-b6phQpOecK51Q9_-g97kTUntPMMkVbJXUpJGsT1lS661-HBchhKzc9fs3TXNXfPorplb05s_zzi2_LKzAXwP1FZKS19-z_6P7E-85bUZ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2516596550</pqid></control><display><type>article</type><title>Aerobic and anaerobic iron oxidizers together drive denitrification and carbon cycling at marine iron-rich hydrothermal vents</title><source>MEDLINE</source><source>Oxford Journals Open Access Collection</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>McAllister, Sean M. ; Vandzura, Rebecca ; Keffer, Jessica L. ; Polson, Shawn W. ; Chan, Clara S.</creator><creatorcontrib>McAllister, Sean M. ; Vandzura, Rebecca ; Keffer, Jessica L. ; Polson, Shawn W. ; Chan, Clara S.</creatorcontrib><description>In principle, iron oxidation can fuel significant primary productivity and nutrient cycling in dark environments such as the deep sea. However, we have an extremely limited understanding of the ecology of iron-based ecosystems, and thus the linkages between iron oxidation, carbon cycling, and nitrate reduction. Here we investigate iron microbial mats from hydrothermal vents at Lōʻihi Seamount, Hawaiʻi, using genome-resolved metagenomics and metatranscriptomics to reconstruct potential microbial roles and interactions. Our results show that the aerobic iron-oxidizing Zetaproteobacteria are the primary producers, concentrated at the oxic mat surface. Their fixed carbon supports heterotrophs deeper in the mat, notably the second most abundant organism, Candidatus Ferristratum sp. (uncultivated gen. nov.) from the uncharacterized DTB120 phylum. Candidatus Ferristratum sp., described using nine high-quality metagenome-assembled genomes with similar distributions of genes, expressed nitrate reduction genes narGH and the iron oxidation gene cyc2 in situ and in response to Fe(II) in a shipboard incubation, suggesting it is an anaerobic nitrate-reducing iron oxidizer. Candidatus Ferristratum sp. lacks a full denitrification pathway, relying on Zetaproteobacteria to remove intermediates like nitrite. Thus, at Lōʻihi, anaerobic iron oxidizers coexist with and are dependent on aerobic iron oxidizers. In total, our work shows how key community members work together to connect iron oxidation with carbon and nitrogen cycling, thus driving the biogeochemistry of exported fluids.</description><identifier>ISSN: 1751-7362</identifier><identifier>EISSN: 1751-7370</identifier><identifier>DOI: 10.1038/s41396-020-00849-y</identifier><identifier>PMID: 33328652</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>38/39 ; 38/91 ; 45/23 ; 631/158/855 ; 631/326/171 ; 631/326/2565/2142 ; 631/326/2565/855 ; 704/47 ; Anaerobiosis ; Biogeochemistry ; Biomedical and Life Sciences ; Candidatus Ferristratum ; Carbon ; Carbon cycle ; Deep sea ; Denitrification ; Ecology ; Ecosystem ; Evolutionary Biology ; Genes ; Genomes ; Hawaii ; Heterotrophs ; Hydrothermal Vents ; Intermediates ; Iron ; Iron-oxidizing bacteria ; Life Sciences ; Metagenomics ; Microbial Ecology ; Microbial Genetics and Genomics ; Microbial mats ; Microbiology ; Microorganisms ; New species ; Nitrate reduction ; Nitrates ; Nitrogen cycle ; Nutrient cycles ; Oxidation ; Oxidation-Reduction ; Oxidizing agents ; Reduction ; Seamounts ; Vents ; Zetaproteobacteria</subject><ispartof>The ISME Journal, 2021-05, Vol.15 (5), p.1271-1286</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-117a7a4fe509dacbfbbe255120accd5f276aa11cda47d6532ef5547d4d91aff33</citedby><cites>FETCH-LOGICAL-c474t-117a7a4fe509dacbfbbe255120accd5f276aa11cda47d6532ef5547d4d91aff33</cites><orcidid>0000-0002-3398-6932 ; 0000-0001-6654-3495 ; 0000-0002-0302-3588 ; 0000-0003-1810-4994</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8114936/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8114936/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33328652$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>McAllister, Sean M.</creatorcontrib><creatorcontrib>Vandzura, Rebecca</creatorcontrib><creatorcontrib>Keffer, Jessica L.</creatorcontrib><creatorcontrib>Polson, Shawn W.</creatorcontrib><creatorcontrib>Chan, Clara S.</creatorcontrib><title>Aerobic and anaerobic iron oxidizers together drive denitrification and carbon cycling at marine iron-rich hydrothermal vents</title><title>The ISME Journal</title><addtitle>ISME J</addtitle><addtitle>ISME J</addtitle><description>In principle, iron oxidation can fuel significant primary productivity and nutrient cycling in dark environments such as the deep sea. However, we have an extremely limited understanding of the ecology of iron-based ecosystems, and thus the linkages between iron oxidation, carbon cycling, and nitrate reduction. Here we investigate iron microbial mats from hydrothermal vents at Lōʻihi Seamount, Hawaiʻi, using genome-resolved metagenomics and metatranscriptomics to reconstruct potential microbial roles and interactions. Our results show that the aerobic iron-oxidizing Zetaproteobacteria are the primary producers, concentrated at the oxic mat surface. Their fixed carbon supports heterotrophs deeper in the mat, notably the second most abundant organism, Candidatus Ferristratum sp. (uncultivated gen. nov.) from the uncharacterized DTB120 phylum. Candidatus Ferristratum sp., described using nine high-quality metagenome-assembled genomes with similar distributions of genes, expressed nitrate reduction genes narGH and the iron oxidation gene cyc2 in situ and in response to Fe(II) in a shipboard incubation, suggesting it is an anaerobic nitrate-reducing iron oxidizer. Candidatus Ferristratum sp. lacks a full denitrification pathway, relying on Zetaproteobacteria to remove intermediates like nitrite. Thus, at Lōʻihi, anaerobic iron oxidizers coexist with and are dependent on aerobic iron oxidizers. In total, our work shows how key community members work together to connect iron oxidation with carbon and nitrogen cycling, thus driving the biogeochemistry of exported fluids.</description><subject>38/39</subject><subject>38/91</subject><subject>45/23</subject><subject>631/158/855</subject><subject>631/326/171</subject><subject>631/326/2565/2142</subject><subject>631/326/2565/855</subject><subject>704/47</subject><subject>Anaerobiosis</subject><subject>Biogeochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Candidatus Ferristratum</subject><subject>Carbon</subject><subject>Carbon cycle</subject><subject>Deep sea</subject><subject>Denitrification</subject><subject>Ecology</subject><subject>Ecosystem</subject><subject>Evolutionary Biology</subject><subject>Genes</subject><subject>Genomes</subject><subject>Hawaii</subject><subject>Heterotrophs</subject><subject>Hydrothermal Vents</subject><subject>Intermediates</subject><subject>Iron</subject><subject>Iron-oxidizing bacteria</subject><subject>Life Sciences</subject><subject>Metagenomics</subject><subject>Microbial Ecology</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbial mats</subject><subject>Microbiology</subject><subject>Microorganisms</subject><subject>New species</subject><subject>Nitrate reduction</subject><subject>Nitrates</subject><subject>Nitrogen cycle</subject><subject>Nutrient cycles</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Oxidizing agents</subject><subject>Reduction</subject><subject>Seamounts</subject><subject>Vents</subject><subject>Zetaproteobacteria</subject><issn>1751-7362</issn><issn>1751-7370</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUtvEzEQxy0EoqXwBTggS1x6WfDb2QtSVZWHVIkLnK1ZPxJXG7vYm6hbqd8dpwnhceBgeUbzm__M6I_Qa0reUcIX76ugvFcdYaQjZCH6bn6CTqmWtNNck6fHWLET9KLWG0KkVko_Ryecc7ZQkp2ihwtf8hAthuTag0MWS04430UX732peMpLP618wa7ErcfOpziVGKKFKTZw12uhDC20sx1jWmKY8BpKTP5RqivRrvBqdiXvZNYw4q1PU32JngUYq391-M_Q949X3y4_d9dfP325vLjurNBi6ijVoEEEL0nvwA5hGDyTkjIC1joZmFYAlFoHQjslOfNByhYK11MIgfMz9GGve7sZ1t7ZNrvAaG5LbEvOJkM0f1dSXJll3poFpaLnqgmcHwRK_rHxdTLrWK0fR0g-b6phQpOecK51Q9_-g97kTUntPMMkVbJXUpJGsT1lS661-HBchhKzc9fs3TXNXfPorplb05s_zzi2_LKzAXwP1FZKS19-z_6P7E-85bUZ</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>McAllister, Sean M.</creator><creator>Vandzura, Rebecca</creator><creator>Keffer, Jessica L.</creator><creator>Polson, Shawn W.</creator><creator>Chan, Clara S.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3398-6932</orcidid><orcidid>https://orcid.org/0000-0001-6654-3495</orcidid><orcidid>https://orcid.org/0000-0002-0302-3588</orcidid><orcidid>https://orcid.org/0000-0003-1810-4994</orcidid></search><sort><creationdate>20210501</creationdate><title>Aerobic and anaerobic iron oxidizers together drive denitrification and carbon cycling at marine iron-rich hydrothermal vents</title><author>McAllister, Sean M. ; Vandzura, Rebecca ; Keffer, Jessica L. ; Polson, Shawn W. ; Chan, Clara S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-117a7a4fe509dacbfbbe255120accd5f276aa11cda47d6532ef5547d4d91aff33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>38/39</topic><topic>38/91</topic><topic>45/23</topic><topic>631/158/855</topic><topic>631/326/171</topic><topic>631/326/2565/2142</topic><topic>631/326/2565/855</topic><topic>704/47</topic><topic>Anaerobiosis</topic><topic>Biogeochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Candidatus Ferristratum</topic><topic>Carbon</topic><topic>Carbon cycle</topic><topic>Deep sea</topic><topic>Denitrification</topic><topic>Ecology</topic><topic>Ecosystem</topic><topic>Evolutionary Biology</topic><topic>Genes</topic><topic>Genomes</topic><topic>Hawaii</topic><topic>Heterotrophs</topic><topic>Hydrothermal Vents</topic><topic>Intermediates</topic><topic>Iron</topic><topic>Iron-oxidizing bacteria</topic><topic>Life Sciences</topic><topic>Metagenomics</topic><topic>Microbial Ecology</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbial mats</topic><topic>Microbiology</topic><topic>Microorganisms</topic><topic>New species</topic><topic>Nitrate reduction</topic><topic>Nitrates</topic><topic>Nitrogen cycle</topic><topic>Nutrient cycles</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Oxidizing agents</topic><topic>Reduction</topic><topic>Seamounts</topic><topic>Vents</topic><topic>Zetaproteobacteria</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McAllister, Sean M.</creatorcontrib><creatorcontrib>Vandzura, Rebecca</creatorcontrib><creatorcontrib>Keffer, Jessica L.</creatorcontrib><creatorcontrib>Polson, Shawn W.</creatorcontrib><creatorcontrib>Chan, Clara S.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The ISME Journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McAllister, Sean M.</au><au>Vandzura, Rebecca</au><au>Keffer, Jessica L.</au><au>Polson, Shawn W.</au><au>Chan, Clara S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aerobic and anaerobic iron oxidizers together drive denitrification and carbon cycling at marine iron-rich hydrothermal vents</atitle><jtitle>The ISME Journal</jtitle><stitle>ISME J</stitle><addtitle>ISME J</addtitle><date>2021-05-01</date><risdate>2021</risdate><volume>15</volume><issue>5</issue><spage>1271</spage><epage>1286</epage><pages>1271-1286</pages><issn>1751-7362</issn><eissn>1751-7370</eissn><abstract>In principle, iron oxidation can fuel significant primary productivity and nutrient cycling in dark environments such as the deep sea. However, we have an extremely limited understanding of the ecology of iron-based ecosystems, and thus the linkages between iron oxidation, carbon cycling, and nitrate reduction. Here we investigate iron microbial mats from hydrothermal vents at Lōʻihi Seamount, Hawaiʻi, using genome-resolved metagenomics and metatranscriptomics to reconstruct potential microbial roles and interactions. Our results show that the aerobic iron-oxidizing Zetaproteobacteria are the primary producers, concentrated at the oxic mat surface. Their fixed carbon supports heterotrophs deeper in the mat, notably the second most abundant organism, Candidatus Ferristratum sp. (uncultivated gen. nov.) from the uncharacterized DTB120 phylum. Candidatus Ferristratum sp., described using nine high-quality metagenome-assembled genomes with similar distributions of genes, expressed nitrate reduction genes narGH and the iron oxidation gene cyc2 in situ and in response to Fe(II) in a shipboard incubation, suggesting it is an anaerobic nitrate-reducing iron oxidizer. Candidatus Ferristratum sp. lacks a full denitrification pathway, relying on Zetaproteobacteria to remove intermediates like nitrite. Thus, at Lōʻihi, anaerobic iron oxidizers coexist with and are dependent on aerobic iron oxidizers. In total, our work shows how key community members work together to connect iron oxidation with carbon and nitrogen cycling, thus driving the biogeochemistry of exported fluids.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33328652</pmid><doi>10.1038/s41396-020-00849-y</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-3398-6932</orcidid><orcidid>https://orcid.org/0000-0001-6654-3495</orcidid><orcidid>https://orcid.org/0000-0002-0302-3588</orcidid><orcidid>https://orcid.org/0000-0003-1810-4994</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1751-7362
ispartof The ISME Journal, 2021-05, Vol.15 (5), p.1271-1286
issn 1751-7362
1751-7370
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8114936
source MEDLINE; Oxford Journals Open Access Collection; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects 38/39
38/91
45/23
631/158/855
631/326/171
631/326/2565/2142
631/326/2565/855
704/47
Anaerobiosis
Biogeochemistry
Biomedical and Life Sciences
Candidatus Ferristratum
Carbon
Carbon cycle
Deep sea
Denitrification
Ecology
Ecosystem
Evolutionary Biology
Genes
Genomes
Hawaii
Heterotrophs
Hydrothermal Vents
Intermediates
Iron
Iron-oxidizing bacteria
Life Sciences
Metagenomics
Microbial Ecology
Microbial Genetics and Genomics
Microbial mats
Microbiology
Microorganisms
New species
Nitrate reduction
Nitrates
Nitrogen cycle
Nutrient cycles
Oxidation
Oxidation-Reduction
Oxidizing agents
Reduction
Seamounts
Vents
Zetaproteobacteria
title Aerobic and anaerobic iron oxidizers together drive denitrification and carbon cycling at marine iron-rich hydrothermal vents
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T10%3A16%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aerobic%20and%20anaerobic%20iron%20oxidizers%20together%20drive%20denitrification%20and%20carbon%20cycling%20at%20marine%20iron-rich%20hydrothermal%20vents&rft.jtitle=The%20ISME%20Journal&rft.au=McAllister,%20Sean%20M.&rft.date=2021-05-01&rft.volume=15&rft.issue=5&rft.spage=1271&rft.epage=1286&rft.pages=1271-1286&rft.issn=1751-7362&rft.eissn=1751-7370&rft_id=info:doi/10.1038/s41396-020-00849-y&rft_dat=%3Cproquest_pubme%3E2470903377%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2516596550&rft_id=info:pmid/33328652&rfr_iscdi=true