Discovering multiple types of DNA methylation from bacteria and microbiome using nanopore sequencing
Bacterial DNA methylation occurs at diverse sequence contexts and plays important functional roles in cellular defense and gene regulation. Existing methods for detecting DNA modification from nanopore sequencing data do not effectively support de novo study of unknown bacterial methylomes. In this...
Gespeichert in:
Veröffentlicht in: | Nature methods 2021-05, Vol.18 (5), p.491-498 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 498 |
---|---|
container_issue | 5 |
container_start_page | 491 |
container_title | Nature methods |
container_volume | 18 |
creator | Tourancheau, Alan Mead, Edward A. Zhang, Xue-Song Fang, Gang |
description | Bacterial DNA methylation occurs at diverse sequence contexts and plays important functional roles in cellular defense and gene regulation. Existing methods for detecting DNA modification from nanopore sequencing data do not effectively support de novo study of unknown bacterial methylomes. In this work, we observed that a nanopore sequencing signal displays complex heterogeneity across methylation events of the same type. To enable nanopore sequencing for broadly applicable methylation discovery, we generated a training dataset from an assortment of bacterial species and developed a method, named nanodisco (
https://github.com/fanglab/nanodisco
), that couples the identification and fine mapping of the three forms of methylation into a multi-label classification framework. We applied it to individual bacteria and the mouse gut microbiome for reliable methylation discovery. In addition, we demonstrated the use of DNA methylation for binning metagenomic contigs, associating mobile genetic elements with their host genomes and identifying misassembled metagenomic contigs.
This work describes nanodisco, a tool for de novo identifying DNA methylation in bacterial species and microbiomes using nanopore sequencing and for performing metagenomic binning using microbial DNA methylation patterns. |
doi_str_mv | 10.1038/s41592-021-01109-3 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8107137</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A661112597</galeid><sourcerecordid>A661112597</sourcerecordid><originalsourceid>FETCH-LOGICAL-c607t-78a264f702e116a06c8bf250102a5272c8388bd02a459e35d8ccfde4fde030963</originalsourceid><addsrcrecordid>eNp9UttqHSEUldLSpEl-oA9F6EtfJt3qXPSlcEh6g9C-tM_iOHtODDM61ZnA-fs4Pbk0IRQRdbvW2hcWIW8ZnDIQ8mMqWaV4AZwVwBioQrwgh6wqZdEwqF7e3UGxA_ImpSsAIUpevSYHQkgOSspD0p27ZMM1Rue3dFyG2U0D0nk3YaKhp-c_NnTE-XI3mNkFT_sYRtoaO2eCocZ3dHQ2htaFEemSVhFvfJhCRJrwz4Le5tgxedWbIeHJ7XlEfn_5_OvsW3Hx8-v3s81FYWto5qKRhtdl3wBHxmoDtZVtzytgwE3FG26lkLLt8qusFIqqk9b2HZZ5gwBViyPyaa87Le2InUU_RzPoKbrRxJ0OxunHP95d6m241pJBw0STBT7cCsSQi0-zHvN4cBiMx7AknYtRvAGpeIa-fwK9Ckv0ub2M4lzVpWzEA2prBtTO9yHntauo3tQ1Y4xXak17-gwqrw7zeIPH3uX4IwLfE_LsU4rY3_fIQK_e0Htv6OwN_dcbeq3l3b_TuafcmSEDxB6QptUOGB9a-o_sDdxNxGA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2522964873</pqid></control><display><type>article</type><title>Discovering multiple types of DNA methylation from bacteria and microbiome using nanopore sequencing</title><source>MEDLINE</source><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Tourancheau, Alan ; Mead, Edward A. ; Zhang, Xue-Song ; Fang, Gang</creator><creatorcontrib>Tourancheau, Alan ; Mead, Edward A. ; Zhang, Xue-Song ; Fang, Gang</creatorcontrib><description>Bacterial DNA methylation occurs at diverse sequence contexts and plays important functional roles in cellular defense and gene regulation. Existing methods for detecting DNA modification from nanopore sequencing data do not effectively support de novo study of unknown bacterial methylomes. In this work, we observed that a nanopore sequencing signal displays complex heterogeneity across methylation events of the same type. To enable nanopore sequencing for broadly applicable methylation discovery, we generated a training dataset from an assortment of bacterial species and developed a method, named nanodisco (
https://github.com/fanglab/nanodisco
), that couples the identification and fine mapping of the three forms of methylation into a multi-label classification framework. We applied it to individual bacteria and the mouse gut microbiome for reliable methylation discovery. In addition, we demonstrated the use of DNA methylation for binning metagenomic contigs, associating mobile genetic elements with their host genomes and identifying misassembled metagenomic contigs.
This work describes nanodisco, a tool for de novo identifying DNA methylation in bacterial species and microbiomes using nanopore sequencing and for performing metagenomic binning using microbial DNA methylation patterns.</description><identifier>ISSN: 1548-7091</identifier><identifier>EISSN: 1548-7105</identifier><identifier>DOI: 10.1038/s41592-021-01109-3</identifier><identifier>PMID: 33820988</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/208/212/177 ; 631/326 ; 631/326/2565/2142 ; Animals ; Bacteria ; Bacteria - genetics ; Bioinformatics ; Biological Microscopy ; Biological Techniques ; Biomedical and Life Sciences ; Biomedical Engineering/Biotechnology ; Chemical properties ; Deoxyribonucleic acid ; DNA ; DNA methylation ; DNA Methylation - physiology ; DNA sequencing ; DNA, Bacterial - genetics ; Gastrointestinal Microbiome ; Gene mapping ; Gene regulation ; Genetic aspects ; Genetic research ; Genome, Bacterial ; Genomes ; Heterogeneity ; Intestinal microflora ; Life Sciences ; Metagenome ; Metagenomics ; Metagenomics - methods ; Methods ; Methylation ; Mice ; Microbiomes ; Microbiota (Symbiotic organisms) ; Microorganisms ; Nanopore Sequencing ; Nanotechnology ; Nucleotide sequence ; Nucleotide sequencing ; Proteomics ; Structure</subject><ispartof>Nature methods, 2021-05, Vol.18 (5), p.491-498</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2021</rights><rights>COPYRIGHT 2021 Nature Publishing Group</rights><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c607t-78a264f702e116a06c8bf250102a5272c8388bd02a459e35d8ccfde4fde030963</citedby><cites>FETCH-LOGICAL-c607t-78a264f702e116a06c8bf250102a5272c8388bd02a459e35d8ccfde4fde030963</cites><orcidid>0000-0001-7989-346X ; 0000-0002-2462-9124</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41592-021-01109-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41592-021-01109-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27915,27916,41479,42548,51310</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33820988$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tourancheau, Alan</creatorcontrib><creatorcontrib>Mead, Edward A.</creatorcontrib><creatorcontrib>Zhang, Xue-Song</creatorcontrib><creatorcontrib>Fang, Gang</creatorcontrib><title>Discovering multiple types of DNA methylation from bacteria and microbiome using nanopore sequencing</title><title>Nature methods</title><addtitle>Nat Methods</addtitle><addtitle>Nat Methods</addtitle><description>Bacterial DNA methylation occurs at diverse sequence contexts and plays important functional roles in cellular defense and gene regulation. Existing methods for detecting DNA modification from nanopore sequencing data do not effectively support de novo study of unknown bacterial methylomes. In this work, we observed that a nanopore sequencing signal displays complex heterogeneity across methylation events of the same type. To enable nanopore sequencing for broadly applicable methylation discovery, we generated a training dataset from an assortment of bacterial species and developed a method, named nanodisco (
https://github.com/fanglab/nanodisco
), that couples the identification and fine mapping of the three forms of methylation into a multi-label classification framework. We applied it to individual bacteria and the mouse gut microbiome for reliable methylation discovery. In addition, we demonstrated the use of DNA methylation for binning metagenomic contigs, associating mobile genetic elements with their host genomes and identifying misassembled metagenomic contigs.
This work describes nanodisco, a tool for de novo identifying DNA methylation in bacterial species and microbiomes using nanopore sequencing and for performing metagenomic binning using microbial DNA methylation patterns.</description><subject>631/208/212/177</subject><subject>631/326</subject><subject>631/326/2565/2142</subject><subject>Animals</subject><subject>Bacteria</subject><subject>Bacteria - genetics</subject><subject>Bioinformatics</subject><subject>Biological Microscopy</subject><subject>Biological Techniques</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Chemical properties</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA methylation</subject><subject>DNA Methylation - physiology</subject><subject>DNA sequencing</subject><subject>DNA, Bacterial - genetics</subject><subject>Gastrointestinal Microbiome</subject><subject>Gene mapping</subject><subject>Gene regulation</subject><subject>Genetic aspects</subject><subject>Genetic research</subject><subject>Genome, Bacterial</subject><subject>Genomes</subject><subject>Heterogeneity</subject><subject>Intestinal microflora</subject><subject>Life Sciences</subject><subject>Metagenome</subject><subject>Metagenomics</subject><subject>Metagenomics - methods</subject><subject>Methods</subject><subject>Methylation</subject><subject>Mice</subject><subject>Microbiomes</subject><subject>Microbiota (Symbiotic organisms)</subject><subject>Microorganisms</subject><subject>Nanopore Sequencing</subject><subject>Nanotechnology</subject><subject>Nucleotide sequence</subject><subject>Nucleotide sequencing</subject><subject>Proteomics</subject><subject>Structure</subject><issn>1548-7091</issn><issn>1548-7105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UttqHSEUldLSpEl-oA9F6EtfJt3qXPSlcEh6g9C-tM_iOHtODDM61ZnA-fs4Pbk0IRQRdbvW2hcWIW8ZnDIQ8mMqWaV4AZwVwBioQrwgh6wqZdEwqF7e3UGxA_ImpSsAIUpevSYHQkgOSspD0p27ZMM1Rue3dFyG2U0D0nk3YaKhp-c_NnTE-XI3mNkFT_sYRtoaO2eCocZ3dHQ2htaFEemSVhFvfJhCRJrwz4Le5tgxedWbIeHJ7XlEfn_5_OvsW3Hx8-v3s81FYWto5qKRhtdl3wBHxmoDtZVtzytgwE3FG26lkLLt8qusFIqqk9b2HZZ5gwBViyPyaa87Le2InUU_RzPoKbrRxJ0OxunHP95d6m241pJBw0STBT7cCsSQi0-zHvN4cBiMx7AknYtRvAGpeIa-fwK9Ckv0ub2M4lzVpWzEA2prBtTO9yHntauo3tQ1Y4xXak17-gwqrw7zeIPH3uX4IwLfE_LsU4rY3_fIQK_e0Htv6OwN_dcbeq3l3b_TuafcmSEDxB6QptUOGB9a-o_sDdxNxGA</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Tourancheau, Alan</creator><creator>Mead, Edward A.</creator><creator>Zhang, Xue-Song</creator><creator>Fang, Gang</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7SS</scope><scope>7TK</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7989-346X</orcidid><orcidid>https://orcid.org/0000-0002-2462-9124</orcidid></search><sort><creationdate>20210501</creationdate><title>Discovering multiple types of DNA methylation from bacteria and microbiome using nanopore sequencing</title><author>Tourancheau, Alan ; Mead, Edward A. ; Zhang, Xue-Song ; Fang, Gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c607t-78a264f702e116a06c8bf250102a5272c8388bd02a459e35d8ccfde4fde030963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>631/208/212/177</topic><topic>631/326</topic><topic>631/326/2565/2142</topic><topic>Animals</topic><topic>Bacteria</topic><topic>Bacteria - genetics</topic><topic>Bioinformatics</topic><topic>Biological Microscopy</topic><topic>Biological Techniques</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Chemical properties</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA methylation</topic><topic>DNA Methylation - physiology</topic><topic>DNA sequencing</topic><topic>DNA, Bacterial - genetics</topic><topic>Gastrointestinal Microbiome</topic><topic>Gene mapping</topic><topic>Gene regulation</topic><topic>Genetic aspects</topic><topic>Genetic research</topic><topic>Genome, Bacterial</topic><topic>Genomes</topic><topic>Heterogeneity</topic><topic>Intestinal microflora</topic><topic>Life Sciences</topic><topic>Metagenome</topic><topic>Metagenomics</topic><topic>Metagenomics - methods</topic><topic>Methods</topic><topic>Methylation</topic><topic>Mice</topic><topic>Microbiomes</topic><topic>Microbiota (Symbiotic organisms)</topic><topic>Microorganisms</topic><topic>Nanopore Sequencing</topic><topic>Nanotechnology</topic><topic>Nucleotide sequence</topic><topic>Nucleotide sequencing</topic><topic>Proteomics</topic><topic>Structure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tourancheau, Alan</creatorcontrib><creatorcontrib>Mead, Edward A.</creatorcontrib><creatorcontrib>Zhang, Xue-Song</creatorcontrib><creatorcontrib>Fang, Gang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tourancheau, Alan</au><au>Mead, Edward A.</au><au>Zhang, Xue-Song</au><au>Fang, Gang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discovering multiple types of DNA methylation from bacteria and microbiome using nanopore sequencing</atitle><jtitle>Nature methods</jtitle><stitle>Nat Methods</stitle><addtitle>Nat Methods</addtitle><date>2021-05-01</date><risdate>2021</risdate><volume>18</volume><issue>5</issue><spage>491</spage><epage>498</epage><pages>491-498</pages><issn>1548-7091</issn><eissn>1548-7105</eissn><abstract>Bacterial DNA methylation occurs at diverse sequence contexts and plays important functional roles in cellular defense and gene regulation. Existing methods for detecting DNA modification from nanopore sequencing data do not effectively support de novo study of unknown bacterial methylomes. In this work, we observed that a nanopore sequencing signal displays complex heterogeneity across methylation events of the same type. To enable nanopore sequencing for broadly applicable methylation discovery, we generated a training dataset from an assortment of bacterial species and developed a method, named nanodisco (
https://github.com/fanglab/nanodisco
), that couples the identification and fine mapping of the three forms of methylation into a multi-label classification framework. We applied it to individual bacteria and the mouse gut microbiome for reliable methylation discovery. In addition, we demonstrated the use of DNA methylation for binning metagenomic contigs, associating mobile genetic elements with their host genomes and identifying misassembled metagenomic contigs.
This work describes nanodisco, a tool for de novo identifying DNA methylation in bacterial species and microbiomes using nanopore sequencing and for performing metagenomic binning using microbial DNA methylation patterns.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>33820988</pmid><doi>10.1038/s41592-021-01109-3</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7989-346X</orcidid><orcidid>https://orcid.org/0000-0002-2462-9124</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1548-7091 |
ispartof | Nature methods, 2021-05, Vol.18 (5), p.491-498 |
issn | 1548-7091 1548-7105 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8107137 |
source | MEDLINE; Nature; SpringerLink Journals - AutoHoldings |
subjects | 631/208/212/177 631/326 631/326/2565/2142 Animals Bacteria Bacteria - genetics Bioinformatics Biological Microscopy Biological Techniques Biomedical and Life Sciences Biomedical Engineering/Biotechnology Chemical properties Deoxyribonucleic acid DNA DNA methylation DNA Methylation - physiology DNA sequencing DNA, Bacterial - genetics Gastrointestinal Microbiome Gene mapping Gene regulation Genetic aspects Genetic research Genome, Bacterial Genomes Heterogeneity Intestinal microflora Life Sciences Metagenome Metagenomics Metagenomics - methods Methods Methylation Mice Microbiomes Microbiota (Symbiotic organisms) Microorganisms Nanopore Sequencing Nanotechnology Nucleotide sequence Nucleotide sequencing Proteomics Structure |
title | Discovering multiple types of DNA methylation from bacteria and microbiome using nanopore sequencing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T23%3A31%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discovering%20multiple%20types%20of%20DNA%20methylation%20from%20bacteria%20and%20microbiome%20using%20nanopore%20sequencing&rft.jtitle=Nature%20methods&rft.au=Tourancheau,%20Alan&rft.date=2021-05-01&rft.volume=18&rft.issue=5&rft.spage=491&rft.epage=498&rft.pages=491-498&rft.issn=1548-7091&rft.eissn=1548-7105&rft_id=info:doi/10.1038/s41592-021-01109-3&rft_dat=%3Cgale_pubme%3EA661112597%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2522964873&rft_id=info:pmid/33820988&rft_galeid=A661112597&rfr_iscdi=true |