Circular swimming motility and disordered hyperuniform state in an algae system
Active matter comprises individually driven units that convert locally stored energy into mechanical motion. Interactions between driven units lead to a variety of nonequilibrium collective phenomena in active matter. One of such phenomena is anomalously large density fluctuations, which have been o...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2021-05, Vol.118 (18), p.1-8 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8 |
---|---|
container_issue | 18 |
container_start_page | 1 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 118 |
creator | Huang, Mingji Hu, Wensi Yang, Siyuan Liu, Quan-Xing Zhang, H. P. |
description | Active matter comprises individually driven units that convert locally stored energy into mechanical motion. Interactions between driven units lead to a variety of nonequilibrium collective phenomena in active matter. One of such phenomena is anomalously large density fluctuations, which have been observed in both experiments and theories. Here we show that, on the contrary, density fluctuations in active matter can also be greatly suppressed. Our experiments are carried out with marine algae (Effrenium voratum), which swim in circles at the air–liquid interfaces with two different eukaryotic flagella. Cell swimming generates fluid flow that leads to effective repulsions between cells in the far field. The long-range nature of such repulsive interactions suppresses density fluctuations and generates disordered hyperuniform states under a wide range of density conditions. Emergence of hyperuniformity and associated scaling exponent are quantitatively reproduced in a numerical model whose main ingredients are effective hydrodynamic interactions and uncorrelated random cell motion. Our results demonstrate the existence of disordered hyperuniform states in active matter and suggest the possibility of using hydrodynamic flow for self-assembly in active matter. |
doi_str_mv | 10.1073/pnas.2100493118 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8106356</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27040327</jstor_id><sourcerecordid>27040327</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-5da08e4fa2400d23dc116e18df6634f5eec0534fcff022892fa2114d349ab49b3</originalsourceid><addsrcrecordid>eNpd0U2LFDEQBuAgijuunj0pAS976d3KV3fnIsjgqrCwFz2HTKd6NkN3MiZpZf69GWYdPw4hgXpSVPES8prBNYNO3OyDzdecAUgtGOufkBUDzZpWanhKVgC8a3rJ5QV5kfMOALTq4Tm5EKJyBWpF7tc-DctkE80__Tz7sKVzLH7y5UBtcNT5HJPDhI4-HPaYluDHmGaaiy1IfaiI2mlrkeZDLji_JM9GO2V89Xhfkm-3H7-uPzd395--rD_cNYMCXRrlLPQoR8slgOPCDYy1yHo3tq2Qo0IcQNXHMI7Aea95lYxJJ6S2G6k34pK8P_XdL5sZ3YChJDuZffKzTQcTrTf_VoJ_MNv4w_QMWqHa2uDqsUGK3xfMxcw-DzhNNmBcsuGKQ18P45W--4_u4pJCXe-oBGs7zUVVNyc1pJhzwvE8DANzDMscwzJ_wqo_3v69w9n_TqeCNyewyyWmc513IEHwTvwCfsmbIA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2523167923</pqid></control><display><type>article</type><title>Circular swimming motility and disordered hyperuniform state in an algae system</title><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Huang, Mingji ; Hu, Wensi ; Yang, Siyuan ; Liu, Quan-Xing ; Zhang, H. P.</creator><creatorcontrib>Huang, Mingji ; Hu, Wensi ; Yang, Siyuan ; Liu, Quan-Xing ; Zhang, H. P.</creatorcontrib><description>Active matter comprises individually driven units that convert locally stored energy into mechanical motion. Interactions between driven units lead to a variety of nonequilibrium collective phenomena in active matter. One of such phenomena is anomalously large density fluctuations, which have been observed in both experiments and theories. Here we show that, on the contrary, density fluctuations in active matter can also be greatly suppressed. Our experiments are carried out with marine algae (Effrenium voratum), which swim in circles at the air–liquid interfaces with two different eukaryotic flagella. Cell swimming generates fluid flow that leads to effective repulsions between cells in the far field. The long-range nature of such repulsive interactions suppresses density fluctuations and generates disordered hyperuniform states under a wide range of density conditions. Emergence of hyperuniformity and associated scaling exponent are quantitatively reproduced in a numerical model whose main ingredients are effective hydrodynamic interactions and uncorrelated random cell motion. Our results demonstrate the existence of disordered hyperuniform states in active matter and suggest the possibility of using hydrodynamic flow for self-assembly in active matter.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2100493118</identifier><identifier>PMID: 33931505</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Algae ; Computational fluid dynamics ; Density ; Flagella ; Fluctuations ; Fluid flow ; Interfaces ; Internal energy ; Mathematical models ; Numerical models ; Physical Sciences ; Scandals ; Self-assembly ; Swimming</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2021-05, Vol.118 (18), p.1-8</ispartof><rights>Copyright National Academy of Sciences May 4, 2021</rights><rights>2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-5da08e4fa2400d23dc116e18df6634f5eec0534fcff022892fa2114d349ab49b3</citedby><cites>FETCH-LOGICAL-c509t-5da08e4fa2400d23dc116e18df6634f5eec0534fcff022892fa2114d349ab49b3</cites><orcidid>0000-0002-7401-8049 ; 0000-0002-8602-0154 ; 0000-0002-8551-5200 ; 0000-0002-3075-2268 ; 0000-0001-7806-407X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27040327$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27040327$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33931505$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Mingji</creatorcontrib><creatorcontrib>Hu, Wensi</creatorcontrib><creatorcontrib>Yang, Siyuan</creatorcontrib><creatorcontrib>Liu, Quan-Xing</creatorcontrib><creatorcontrib>Zhang, H. P.</creatorcontrib><title>Circular swimming motility and disordered hyperuniform state in an algae system</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Active matter comprises individually driven units that convert locally stored energy into mechanical motion. Interactions between driven units lead to a variety of nonequilibrium collective phenomena in active matter. One of such phenomena is anomalously large density fluctuations, which have been observed in both experiments and theories. Here we show that, on the contrary, density fluctuations in active matter can also be greatly suppressed. Our experiments are carried out with marine algae (Effrenium voratum), which swim in circles at the air–liquid interfaces with two different eukaryotic flagella. Cell swimming generates fluid flow that leads to effective repulsions between cells in the far field. The long-range nature of such repulsive interactions suppresses density fluctuations and generates disordered hyperuniform states under a wide range of density conditions. Emergence of hyperuniformity and associated scaling exponent are quantitatively reproduced in a numerical model whose main ingredients are effective hydrodynamic interactions and uncorrelated random cell motion. Our results demonstrate the existence of disordered hyperuniform states in active matter and suggest the possibility of using hydrodynamic flow for self-assembly in active matter.</description><subject>Algae</subject><subject>Computational fluid dynamics</subject><subject>Density</subject><subject>Flagella</subject><subject>Fluctuations</subject><subject>Fluid flow</subject><subject>Interfaces</subject><subject>Internal energy</subject><subject>Mathematical models</subject><subject>Numerical models</subject><subject>Physical Sciences</subject><subject>Scandals</subject><subject>Self-assembly</subject><subject>Swimming</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpd0U2LFDEQBuAgijuunj0pAS976d3KV3fnIsjgqrCwFz2HTKd6NkN3MiZpZf69GWYdPw4hgXpSVPES8prBNYNO3OyDzdecAUgtGOufkBUDzZpWanhKVgC8a3rJ5QV5kfMOALTq4Tm5EKJyBWpF7tc-DctkE80__Tz7sKVzLH7y5UBtcNT5HJPDhI4-HPaYluDHmGaaiy1IfaiI2mlrkeZDLji_JM9GO2V89Xhfkm-3H7-uPzd395--rD_cNYMCXRrlLPQoR8slgOPCDYy1yHo3tq2Qo0IcQNXHMI7Aea95lYxJJ6S2G6k34pK8P_XdL5sZ3YChJDuZffKzTQcTrTf_VoJ_MNv4w_QMWqHa2uDqsUGK3xfMxcw-DzhNNmBcsuGKQ18P45W--4_u4pJCXe-oBGs7zUVVNyc1pJhzwvE8DANzDMscwzJ_wqo_3v69w9n_TqeCNyewyyWmc513IEHwTvwCfsmbIA</recordid><startdate>20210504</startdate><enddate>20210504</enddate><creator>Huang, Mingji</creator><creator>Hu, Wensi</creator><creator>Yang, Siyuan</creator><creator>Liu, Quan-Xing</creator><creator>Zhang, H. P.</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7401-8049</orcidid><orcidid>https://orcid.org/0000-0002-8602-0154</orcidid><orcidid>https://orcid.org/0000-0002-8551-5200</orcidid><orcidid>https://orcid.org/0000-0002-3075-2268</orcidid><orcidid>https://orcid.org/0000-0001-7806-407X</orcidid></search><sort><creationdate>20210504</creationdate><title>Circular swimming motility and disordered hyperuniform state in an algae system</title><author>Huang, Mingji ; Hu, Wensi ; Yang, Siyuan ; Liu, Quan-Xing ; Zhang, H. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-5da08e4fa2400d23dc116e18df6634f5eec0534fcff022892fa2114d349ab49b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algae</topic><topic>Computational fluid dynamics</topic><topic>Density</topic><topic>Flagella</topic><topic>Fluctuations</topic><topic>Fluid flow</topic><topic>Interfaces</topic><topic>Internal energy</topic><topic>Mathematical models</topic><topic>Numerical models</topic><topic>Physical Sciences</topic><topic>Scandals</topic><topic>Self-assembly</topic><topic>Swimming</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Mingji</creatorcontrib><creatorcontrib>Hu, Wensi</creatorcontrib><creatorcontrib>Yang, Siyuan</creatorcontrib><creatorcontrib>Liu, Quan-Xing</creatorcontrib><creatorcontrib>Zhang, H. P.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Mingji</au><au>Hu, Wensi</au><au>Yang, Siyuan</au><au>Liu, Quan-Xing</au><au>Zhang, H. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Circular swimming motility and disordered hyperuniform state in an algae system</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2021-05-04</date><risdate>2021</risdate><volume>118</volume><issue>18</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Active matter comprises individually driven units that convert locally stored energy into mechanical motion. Interactions between driven units lead to a variety of nonequilibrium collective phenomena in active matter. One of such phenomena is anomalously large density fluctuations, which have been observed in both experiments and theories. Here we show that, on the contrary, density fluctuations in active matter can also be greatly suppressed. Our experiments are carried out with marine algae (Effrenium voratum), which swim in circles at the air–liquid interfaces with two different eukaryotic flagella. Cell swimming generates fluid flow that leads to effective repulsions between cells in the far field. The long-range nature of such repulsive interactions suppresses density fluctuations and generates disordered hyperuniform states under a wide range of density conditions. Emergence of hyperuniformity and associated scaling exponent are quantitatively reproduced in a numerical model whose main ingredients are effective hydrodynamic interactions and uncorrelated random cell motion. Our results demonstrate the existence of disordered hyperuniform states in active matter and suggest the possibility of using hydrodynamic flow for self-assembly in active matter.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>33931505</pmid><doi>10.1073/pnas.2100493118</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-7401-8049</orcidid><orcidid>https://orcid.org/0000-0002-8602-0154</orcidid><orcidid>https://orcid.org/0000-0002-8551-5200</orcidid><orcidid>https://orcid.org/0000-0002-3075-2268</orcidid><orcidid>https://orcid.org/0000-0001-7806-407X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2021-05, Vol.118 (18), p.1-8 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8106356 |
source | Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Algae Computational fluid dynamics Density Flagella Fluctuations Fluid flow Interfaces Internal energy Mathematical models Numerical models Physical Sciences Scandals Self-assembly Swimming |
title | Circular swimming motility and disordered hyperuniform state in an algae system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T19%3A03%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Circular%20swimming%20motility%20and%20disordered%20hyperuniform%20state%20in%20an%20algae%20system&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Huang,%20Mingji&rft.date=2021-05-04&rft.volume=118&rft.issue=18&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2100493118&rft_dat=%3Cjstor_pubme%3E27040327%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2523167923&rft_id=info:pmid/33931505&rft_jstor_id=27040327&rfr_iscdi=true |