Killed whole-genome reduced-bacteria surface-expressed coronavirus fusion peptide vaccines protect against disease in a porcine model

As the coronavirus disease 2019 (COVID-19) pandemic rages on, it is important to explore new evolution-resistant vaccine antigens and new vaccine platforms that can produce readily scalable, inexpensive vaccines with easier storage and transport. We report here a synthetic biology-based vaccine plat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2021-05, Vol.118 (18), p.1-10
Hauptverfasser: Maeda, Denicar Lina Nascimento Fabris, Tian, Debin, Yu, Hanna, Dar, Nakul, Rajasekaran, Vignesh, Meng, Sarah, Mahsoub, Hassan M., Sooryanarain, Harini, Wang, Bo, Heffron, C. Lynn, Hassebroek, Anna, LeRoith, Tanya, Meng, Xiang-Jin, Zeichner, Steven L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue 18
container_start_page 1
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 118
creator Maeda, Denicar Lina Nascimento Fabris
Tian, Debin
Yu, Hanna
Dar, Nakul
Rajasekaran, Vignesh
Meng, Sarah
Mahsoub, Hassan M.
Sooryanarain, Harini
Wang, Bo
Heffron, C. Lynn
Hassebroek, Anna
LeRoith, Tanya
Meng, Xiang-Jin
Zeichner, Steven L.
description As the coronavirus disease 2019 (COVID-19) pandemic rages on, it is important to explore new evolution-resistant vaccine antigens and new vaccine platforms that can produce readily scalable, inexpensive vaccines with easier storage and transport. We report here a synthetic biology-based vaccine platform that employs an expression vector with an inducible gram-negative autotransporter to express vaccine antigens on the surface of genome-reduced bacteria to enhance interaction of vaccine antigen with the immune system. As a proof-of-principle, we utilized genome-reduced Escherichia coli to express SARS-CoV-2 and porcine epidemic diarrhea virus (PEDV) fusion peptide (FP) on the cell surface, and evaluated their use as killed whole-cell vaccines. The FP sequence is highly conserved across coronaviruses; the six FP core amino acid residues, along with the four adjacent residues upstream and the three residues downstream from the core, are identical between SARS-CoV-2 and PEDV. We tested the efficacy of PEDV FP and SARS-CoV-2 FP vaccines in a PEDV challenge pig model. We demonstrated that both vaccines induced potent anamnestic responses upon virus challenge, potentiated interferon-γ responses, reduced viral RNA loads in jejunum tissue, and provided significant protection against clinical disease. However, neither vaccines elicited sterilizing immunity. Since SARS-CoV-2 FP and PEDV FP vaccines provided similar clinical protection, the coronavirus FP could be a target for a broadly protective vaccine using any platform. Importantly, the genome-reduced bacterial surface-expressed vaccine platform, when using a vaccine-appropriate bacterial vector, has potential utility as an inexpensive, readily manufactured, and rapid vaccine platform for other pathogens.
doi_str_mv 10.1073/pnas.2025622118
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8106328</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27040353</jstor_id><sourcerecordid>27040353</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-c08cb181bb357347461e6a97e163f0fb63a20c959b79bd6192d46b5b93bd89c83</originalsourceid><addsrcrecordid>eNpd0ctu1DAUBmALgehQWLMCWWLTTVpfYsfeIKGKAqISG1hbvpxMPUrsYCcDPADvTUZThsvKi_OdXz76EXpOySUlHb-akq2XjDAhGaNUPUAbSjRtZKvJQ7QhhHWNall7hp7UuiOEaKHIY3TGuRJKt2yDfn6MwwABf7vLAzRbSHkEXCAsHkLjrJ-hRIvrUnrroYHvU4FaV-9zycnuY1kq7pcac8ITTHMMgPfW-5ig4qnkGfyM7dbGVGccYgVbAceELZ5yOSg85gDDU_Sot0OFZ_fvOfpy8_bz9fvm9tO7D9dvbhsviJ4bT5R3VFHnuOh427WSgrS6Ayp5T3onuWXEa6Fdp12QVLPQSiec5i4o7RU_R6-PudPiRgge0lzsYKYSR1t-mGyj-XeS4p3Z5r1RlEjODgEX9wElf12gzmaM1cMw2AR5qYYJ2gqtmdArffUf3eWlpPW8VTFOpaJSrOrqqHzJtRboT5-hxBwqNoeKzZ-K142Xf99w8r87XcGLI9jVOZfTnHWkJVxw_gv2kK9m</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2523168165</pqid></control><display><type>article</type><title>Killed whole-genome reduced-bacteria surface-expressed coronavirus fusion peptide vaccines protect against disease in a porcine model</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Maeda, Denicar Lina Nascimento Fabris ; Tian, Debin ; Yu, Hanna ; Dar, Nakul ; Rajasekaran, Vignesh ; Meng, Sarah ; Mahsoub, Hassan M. ; Sooryanarain, Harini ; Wang, Bo ; Heffron, C. Lynn ; Hassebroek, Anna ; LeRoith, Tanya ; Meng, Xiang-Jin ; Zeichner, Steven L.</creator><creatorcontrib>Maeda, Denicar Lina Nascimento Fabris ; Tian, Debin ; Yu, Hanna ; Dar, Nakul ; Rajasekaran, Vignesh ; Meng, Sarah ; Mahsoub, Hassan M. ; Sooryanarain, Harini ; Wang, Bo ; Heffron, C. Lynn ; Hassebroek, Anna ; LeRoith, Tanya ; Meng, Xiang-Jin ; Zeichner, Steven L.</creatorcontrib><description>As the coronavirus disease 2019 (COVID-19) pandemic rages on, it is important to explore new evolution-resistant vaccine antigens and new vaccine platforms that can produce readily scalable, inexpensive vaccines with easier storage and transport. We report here a synthetic biology-based vaccine platform that employs an expression vector with an inducible gram-negative autotransporter to express vaccine antigens on the surface of genome-reduced bacteria to enhance interaction of vaccine antigen with the immune system. As a proof-of-principle, we utilized genome-reduced Escherichia coli to express SARS-CoV-2 and porcine epidemic diarrhea virus (PEDV) fusion peptide (FP) on the cell surface, and evaluated their use as killed whole-cell vaccines. The FP sequence is highly conserved across coronaviruses; the six FP core amino acid residues, along with the four adjacent residues upstream and the three residues downstream from the core, are identical between SARS-CoV-2 and PEDV. We tested the efficacy of PEDV FP and SARS-CoV-2 FP vaccines in a PEDV challenge pig model. We demonstrated that both vaccines induced potent anamnestic responses upon virus challenge, potentiated interferon-γ responses, reduced viral RNA loads in jejunum tissue, and provided significant protection against clinical disease. However, neither vaccines elicited sterilizing immunity. Since SARS-CoV-2 FP and PEDV FP vaccines provided similar clinical protection, the coronavirus FP could be a target for a broadly protective vaccine using any platform. Importantly, the genome-reduced bacterial surface-expressed vaccine platform, when using a vaccine-appropriate bacterial vector, has potential utility as an inexpensive, readily manufactured, and rapid vaccine platform for other pathogens.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2025622118</identifier><identifier>PMID: 33858942</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Amino acid sequence ; Amino acids ; Animal models ; Animals ; Antibodies, Viral - blood ; Antigens ; Bacteria ; Biological Sciences ; Cell surface ; Conserved sequence ; Coronaviridae ; Coronaviruses ; COVID-19 ; COVID-19 - prevention &amp; control ; COVID-19 Vaccines - immunology ; Diarrhea ; Disease Models, Animal ; E coli ; Escherichia coli - genetics ; Genome, Bacterial ; Genomes ; Immune system ; Interferon ; Interferon-gamma - blood ; Jejunum ; Pandemics ; Peptides ; Porcine epidemic diarrhea virus - immunology ; Public health ; Residues ; RNA, Viral - analysis ; SARS-CoV-2 - immunology ; Severe acute respiratory syndrome coronavirus 2 ; Swine ; Transmissible gastroenteritis ; Vaccines ; Vaccines, Inactivated - immunology ; Vaccines, Synthetic - immunology ; Viral diseases ; Viral Fusion Proteins - immunology ; Viral Vaccines - immunology ; Viruses ; γ-Interferon</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2021-05, Vol.118 (18), p.1-10</ispartof><rights>Copyright © 2021 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences May 4, 2021</rights><rights>Copyright © 2021 the Author(s). Published by PNAS. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-c08cb181bb357347461e6a97e163f0fb63a20c959b79bd6192d46b5b93bd89c83</citedby><cites>FETCH-LOGICAL-c509t-c08cb181bb357347461e6a97e163f0fb63a20c959b79bd6192d46b5b93bd89c83</cites><orcidid>0000-0002-1350-7172 ; 0000-0002-8922-9260 ; 0000-0002-1196-6949 ; 0000-0002-8560-9071 ; 0000-0001-5802-824X ; 0000-0002-2739-1334 ; 0000-0002-7248-5620 ; 0000-0002-7717-9710 ; 0000-0001-9269-1854 ; 0000-0002-5897-5519</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27040353$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27040353$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33858942$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Maeda, Denicar Lina Nascimento Fabris</creatorcontrib><creatorcontrib>Tian, Debin</creatorcontrib><creatorcontrib>Yu, Hanna</creatorcontrib><creatorcontrib>Dar, Nakul</creatorcontrib><creatorcontrib>Rajasekaran, Vignesh</creatorcontrib><creatorcontrib>Meng, Sarah</creatorcontrib><creatorcontrib>Mahsoub, Hassan M.</creatorcontrib><creatorcontrib>Sooryanarain, Harini</creatorcontrib><creatorcontrib>Wang, Bo</creatorcontrib><creatorcontrib>Heffron, C. Lynn</creatorcontrib><creatorcontrib>Hassebroek, Anna</creatorcontrib><creatorcontrib>LeRoith, Tanya</creatorcontrib><creatorcontrib>Meng, Xiang-Jin</creatorcontrib><creatorcontrib>Zeichner, Steven L.</creatorcontrib><title>Killed whole-genome reduced-bacteria surface-expressed coronavirus fusion peptide vaccines protect against disease in a porcine model</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>As the coronavirus disease 2019 (COVID-19) pandemic rages on, it is important to explore new evolution-resistant vaccine antigens and new vaccine platforms that can produce readily scalable, inexpensive vaccines with easier storage and transport. We report here a synthetic biology-based vaccine platform that employs an expression vector with an inducible gram-negative autotransporter to express vaccine antigens on the surface of genome-reduced bacteria to enhance interaction of vaccine antigen with the immune system. As a proof-of-principle, we utilized genome-reduced Escherichia coli to express SARS-CoV-2 and porcine epidemic diarrhea virus (PEDV) fusion peptide (FP) on the cell surface, and evaluated their use as killed whole-cell vaccines. The FP sequence is highly conserved across coronaviruses; the six FP core amino acid residues, along with the four adjacent residues upstream and the three residues downstream from the core, are identical between SARS-CoV-2 and PEDV. We tested the efficacy of PEDV FP and SARS-CoV-2 FP vaccines in a PEDV challenge pig model. We demonstrated that both vaccines induced potent anamnestic responses upon virus challenge, potentiated interferon-γ responses, reduced viral RNA loads in jejunum tissue, and provided significant protection against clinical disease. However, neither vaccines elicited sterilizing immunity. Since SARS-CoV-2 FP and PEDV FP vaccines provided similar clinical protection, the coronavirus FP could be a target for a broadly protective vaccine using any platform. Importantly, the genome-reduced bacterial surface-expressed vaccine platform, when using a vaccine-appropriate bacterial vector, has potential utility as an inexpensive, readily manufactured, and rapid vaccine platform for other pathogens.</description><subject>Amino acid sequence</subject><subject>Amino acids</subject><subject>Animal models</subject><subject>Animals</subject><subject>Antibodies, Viral - blood</subject><subject>Antigens</subject><subject>Bacteria</subject><subject>Biological Sciences</subject><subject>Cell surface</subject><subject>Conserved sequence</subject><subject>Coronaviridae</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>COVID-19 - prevention &amp; control</subject><subject>COVID-19 Vaccines - immunology</subject><subject>Diarrhea</subject><subject>Disease Models, Animal</subject><subject>E coli</subject><subject>Escherichia coli - genetics</subject><subject>Genome, Bacterial</subject><subject>Genomes</subject><subject>Immune system</subject><subject>Interferon</subject><subject>Interferon-gamma - blood</subject><subject>Jejunum</subject><subject>Pandemics</subject><subject>Peptides</subject><subject>Porcine epidemic diarrhea virus - immunology</subject><subject>Public health</subject><subject>Residues</subject><subject>RNA, Viral - analysis</subject><subject>SARS-CoV-2 - immunology</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Swine</subject><subject>Transmissible gastroenteritis</subject><subject>Vaccines</subject><subject>Vaccines, Inactivated - immunology</subject><subject>Vaccines, Synthetic - immunology</subject><subject>Viral diseases</subject><subject>Viral Fusion Proteins - immunology</subject><subject>Viral Vaccines - immunology</subject><subject>Viruses</subject><subject>γ-Interferon</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpd0ctu1DAUBmALgehQWLMCWWLTTVpfYsfeIKGKAqISG1hbvpxMPUrsYCcDPADvTUZThsvKi_OdXz76EXpOySUlHb-akq2XjDAhGaNUPUAbSjRtZKvJQ7QhhHWNall7hp7UuiOEaKHIY3TGuRJKt2yDfn6MwwABf7vLAzRbSHkEXCAsHkLjrJ-hRIvrUnrroYHvU4FaV-9zycnuY1kq7pcac8ITTHMMgPfW-5ig4qnkGfyM7dbGVGccYgVbAceELZ5yOSg85gDDU_Sot0OFZ_fvOfpy8_bz9fvm9tO7D9dvbhsviJ4bT5R3VFHnuOh427WSgrS6Ayp5T3onuWXEa6Fdp12QVLPQSiec5i4o7RU_R6-PudPiRgge0lzsYKYSR1t-mGyj-XeS4p3Z5r1RlEjODgEX9wElf12gzmaM1cMw2AR5qYYJ2gqtmdArffUf3eWlpPW8VTFOpaJSrOrqqHzJtRboT5-hxBwqNoeKzZ-K142Xf99w8r87XcGLI9jVOZfTnHWkJVxw_gv2kK9m</recordid><startdate>20210504</startdate><enddate>20210504</enddate><creator>Maeda, Denicar Lina Nascimento Fabris</creator><creator>Tian, Debin</creator><creator>Yu, Hanna</creator><creator>Dar, Nakul</creator><creator>Rajasekaran, Vignesh</creator><creator>Meng, Sarah</creator><creator>Mahsoub, Hassan M.</creator><creator>Sooryanarain, Harini</creator><creator>Wang, Bo</creator><creator>Heffron, C. Lynn</creator><creator>Hassebroek, Anna</creator><creator>LeRoith, Tanya</creator><creator>Meng, Xiang-Jin</creator><creator>Zeichner, Steven L.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1350-7172</orcidid><orcidid>https://orcid.org/0000-0002-8922-9260</orcidid><orcidid>https://orcid.org/0000-0002-1196-6949</orcidid><orcidid>https://orcid.org/0000-0002-8560-9071</orcidid><orcidid>https://orcid.org/0000-0001-5802-824X</orcidid><orcidid>https://orcid.org/0000-0002-2739-1334</orcidid><orcidid>https://orcid.org/0000-0002-7248-5620</orcidid><orcidid>https://orcid.org/0000-0002-7717-9710</orcidid><orcidid>https://orcid.org/0000-0001-9269-1854</orcidid><orcidid>https://orcid.org/0000-0002-5897-5519</orcidid></search><sort><creationdate>20210504</creationdate><title>Killed whole-genome reduced-bacteria surface-expressed coronavirus fusion peptide vaccines protect against disease in a porcine model</title><author>Maeda, Denicar Lina Nascimento Fabris ; Tian, Debin ; Yu, Hanna ; Dar, Nakul ; Rajasekaran, Vignesh ; Meng, Sarah ; Mahsoub, Hassan M. ; Sooryanarain, Harini ; Wang, Bo ; Heffron, C. Lynn ; Hassebroek, Anna ; LeRoith, Tanya ; Meng, Xiang-Jin ; Zeichner, Steven L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-c08cb181bb357347461e6a97e163f0fb63a20c959b79bd6192d46b5b93bd89c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Amino acid sequence</topic><topic>Amino acids</topic><topic>Animal models</topic><topic>Animals</topic><topic>Antibodies, Viral - blood</topic><topic>Antigens</topic><topic>Bacteria</topic><topic>Biological Sciences</topic><topic>Cell surface</topic><topic>Conserved sequence</topic><topic>Coronaviridae</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>COVID-19 - prevention &amp; control</topic><topic>COVID-19 Vaccines - immunology</topic><topic>Diarrhea</topic><topic>Disease Models, Animal</topic><topic>E coli</topic><topic>Escherichia coli - genetics</topic><topic>Genome, Bacterial</topic><topic>Genomes</topic><topic>Immune system</topic><topic>Interferon</topic><topic>Interferon-gamma - blood</topic><topic>Jejunum</topic><topic>Pandemics</topic><topic>Peptides</topic><topic>Porcine epidemic diarrhea virus - immunology</topic><topic>Public health</topic><topic>Residues</topic><topic>RNA, Viral - analysis</topic><topic>SARS-CoV-2 - immunology</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Swine</topic><topic>Transmissible gastroenteritis</topic><topic>Vaccines</topic><topic>Vaccines, Inactivated - immunology</topic><topic>Vaccines, Synthetic - immunology</topic><topic>Viral diseases</topic><topic>Viral Fusion Proteins - immunology</topic><topic>Viral Vaccines - immunology</topic><topic>Viruses</topic><topic>γ-Interferon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maeda, Denicar Lina Nascimento Fabris</creatorcontrib><creatorcontrib>Tian, Debin</creatorcontrib><creatorcontrib>Yu, Hanna</creatorcontrib><creatorcontrib>Dar, Nakul</creatorcontrib><creatorcontrib>Rajasekaran, Vignesh</creatorcontrib><creatorcontrib>Meng, Sarah</creatorcontrib><creatorcontrib>Mahsoub, Hassan M.</creatorcontrib><creatorcontrib>Sooryanarain, Harini</creatorcontrib><creatorcontrib>Wang, Bo</creatorcontrib><creatorcontrib>Heffron, C. Lynn</creatorcontrib><creatorcontrib>Hassebroek, Anna</creatorcontrib><creatorcontrib>LeRoith, Tanya</creatorcontrib><creatorcontrib>Meng, Xiang-Jin</creatorcontrib><creatorcontrib>Zeichner, Steven L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maeda, Denicar Lina Nascimento Fabris</au><au>Tian, Debin</au><au>Yu, Hanna</au><au>Dar, Nakul</au><au>Rajasekaran, Vignesh</au><au>Meng, Sarah</au><au>Mahsoub, Hassan M.</au><au>Sooryanarain, Harini</au><au>Wang, Bo</au><au>Heffron, C. Lynn</au><au>Hassebroek, Anna</au><au>LeRoith, Tanya</au><au>Meng, Xiang-Jin</au><au>Zeichner, Steven L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Killed whole-genome reduced-bacteria surface-expressed coronavirus fusion peptide vaccines protect against disease in a porcine model</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2021-05-04</date><risdate>2021</risdate><volume>118</volume><issue>18</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>As the coronavirus disease 2019 (COVID-19) pandemic rages on, it is important to explore new evolution-resistant vaccine antigens and new vaccine platforms that can produce readily scalable, inexpensive vaccines with easier storage and transport. We report here a synthetic biology-based vaccine platform that employs an expression vector with an inducible gram-negative autotransporter to express vaccine antigens on the surface of genome-reduced bacteria to enhance interaction of vaccine antigen with the immune system. As a proof-of-principle, we utilized genome-reduced Escherichia coli to express SARS-CoV-2 and porcine epidemic diarrhea virus (PEDV) fusion peptide (FP) on the cell surface, and evaluated their use as killed whole-cell vaccines. The FP sequence is highly conserved across coronaviruses; the six FP core amino acid residues, along with the four adjacent residues upstream and the three residues downstream from the core, are identical between SARS-CoV-2 and PEDV. We tested the efficacy of PEDV FP and SARS-CoV-2 FP vaccines in a PEDV challenge pig model. We demonstrated that both vaccines induced potent anamnestic responses upon virus challenge, potentiated interferon-γ responses, reduced viral RNA loads in jejunum tissue, and provided significant protection against clinical disease. However, neither vaccines elicited sterilizing immunity. Since SARS-CoV-2 FP and PEDV FP vaccines provided similar clinical protection, the coronavirus FP could be a target for a broadly protective vaccine using any platform. Importantly, the genome-reduced bacterial surface-expressed vaccine platform, when using a vaccine-appropriate bacterial vector, has potential utility as an inexpensive, readily manufactured, and rapid vaccine platform for other pathogens.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>33858942</pmid><doi>10.1073/pnas.2025622118</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1350-7172</orcidid><orcidid>https://orcid.org/0000-0002-8922-9260</orcidid><orcidid>https://orcid.org/0000-0002-1196-6949</orcidid><orcidid>https://orcid.org/0000-0002-8560-9071</orcidid><orcidid>https://orcid.org/0000-0001-5802-824X</orcidid><orcidid>https://orcid.org/0000-0002-2739-1334</orcidid><orcidid>https://orcid.org/0000-0002-7248-5620</orcidid><orcidid>https://orcid.org/0000-0002-7717-9710</orcidid><orcidid>https://orcid.org/0000-0001-9269-1854</orcidid><orcidid>https://orcid.org/0000-0002-5897-5519</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2021-05, Vol.118 (18), p.1-10
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8106328
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Amino acid sequence
Amino acids
Animal models
Animals
Antibodies, Viral - blood
Antigens
Bacteria
Biological Sciences
Cell surface
Conserved sequence
Coronaviridae
Coronaviruses
COVID-19
COVID-19 - prevention & control
COVID-19 Vaccines - immunology
Diarrhea
Disease Models, Animal
E coli
Escherichia coli - genetics
Genome, Bacterial
Genomes
Immune system
Interferon
Interferon-gamma - blood
Jejunum
Pandemics
Peptides
Porcine epidemic diarrhea virus - immunology
Public health
Residues
RNA, Viral - analysis
SARS-CoV-2 - immunology
Severe acute respiratory syndrome coronavirus 2
Swine
Transmissible gastroenteritis
Vaccines
Vaccines, Inactivated - immunology
Vaccines, Synthetic - immunology
Viral diseases
Viral Fusion Proteins - immunology
Viral Vaccines - immunology
Viruses
γ-Interferon
title Killed whole-genome reduced-bacteria surface-expressed coronavirus fusion peptide vaccines protect against disease in a porcine model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T18%3A07%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Killed%20whole-genome%20reduced-bacteria%20surface-expressed%20coronavirus%20fusion%20peptide%20vaccines%20protect%20against%20disease%20in%20a%20porcine%20model&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Maeda,%20Denicar%20Lina%20Nascimento%20Fabris&rft.date=2021-05-04&rft.volume=118&rft.issue=18&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2025622118&rft_dat=%3Cjstor_pubme%3E27040353%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2523168165&rft_id=info:pmid/33858942&rft_jstor_id=27040353&rfr_iscdi=true