Killed whole-genome reduced-bacteria surface-expressed coronavirus fusion peptide vaccines protect against disease in a porcine model
As the coronavirus disease 2019 (COVID-19) pandemic rages on, it is important to explore new evolution-resistant vaccine antigens and new vaccine platforms that can produce readily scalable, inexpensive vaccines with easier storage and transport. We report here a synthetic biology-based vaccine plat...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2021-05, Vol.118 (18), p.1-10 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | 18 |
container_start_page | 1 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 118 |
creator | Maeda, Denicar Lina Nascimento Fabris Tian, Debin Yu, Hanna Dar, Nakul Rajasekaran, Vignesh Meng, Sarah Mahsoub, Hassan M. Sooryanarain, Harini Wang, Bo Heffron, C. Lynn Hassebroek, Anna LeRoith, Tanya Meng, Xiang-Jin Zeichner, Steven L. |
description | As the coronavirus disease 2019 (COVID-19) pandemic rages on, it is important to explore new evolution-resistant vaccine antigens and new vaccine platforms that can produce readily scalable, inexpensive vaccines with easier storage and transport. We report here a synthetic biology-based vaccine platform that employs an expression vector with an inducible gram-negative autotransporter to express vaccine antigens on the surface of genome-reduced bacteria to enhance interaction of vaccine antigen with the immune system. As a proof-of-principle, we utilized genome-reduced Escherichia coli to express SARS-CoV-2 and porcine epidemic diarrhea virus (PEDV) fusion peptide (FP) on the cell surface, and evaluated their use as killed whole-cell vaccines. The FP sequence is highly conserved across coronaviruses; the six FP core amino acid residues, along with the four adjacent residues upstream and the three residues downstream from the core, are identical between SARS-CoV-2 and PEDV. We tested the efficacy of PEDV FP and SARS-CoV-2 FP vaccines in a PEDV challenge pig model. We demonstrated that both vaccines induced potent anamnestic responses upon virus challenge, potentiated interferon-γ responses, reduced viral RNA loads in jejunum tissue, and provided significant protection against clinical disease. However, neither vaccines elicited sterilizing immunity. Since SARS-CoV-2 FP and PEDV FP vaccines provided similar clinical protection, the coronavirus FP could be a target for a broadly protective vaccine using any platform. Importantly, the genome-reduced bacterial surface-expressed vaccine platform, when using a vaccine-appropriate bacterial vector, has potential utility as an inexpensive, readily manufactured, and rapid vaccine platform for other pathogens. |
doi_str_mv | 10.1073/pnas.2025622118 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8106328</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27040353</jstor_id><sourcerecordid>27040353</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-c08cb181bb357347461e6a97e163f0fb63a20c959b79bd6192d46b5b93bd89c83</originalsourceid><addsrcrecordid>eNpd0ctu1DAUBmALgehQWLMCWWLTTVpfYsfeIKGKAqISG1hbvpxMPUrsYCcDPADvTUZThsvKi_OdXz76EXpOySUlHb-akq2XjDAhGaNUPUAbSjRtZKvJQ7QhhHWNall7hp7UuiOEaKHIY3TGuRJKt2yDfn6MwwABf7vLAzRbSHkEXCAsHkLjrJ-hRIvrUnrroYHvU4FaV-9zycnuY1kq7pcac8ITTHMMgPfW-5ig4qnkGfyM7dbGVGccYgVbAceELZ5yOSg85gDDU_Sot0OFZ_fvOfpy8_bz9fvm9tO7D9dvbhsviJ4bT5R3VFHnuOh427WSgrS6Ayp5T3onuWXEa6Fdp12QVLPQSiec5i4o7RU_R6-PudPiRgge0lzsYKYSR1t-mGyj-XeS4p3Z5r1RlEjODgEX9wElf12gzmaM1cMw2AR5qYYJ2gqtmdArffUf3eWlpPW8VTFOpaJSrOrqqHzJtRboT5-hxBwqNoeKzZ-K142Xf99w8r87XcGLI9jVOZfTnHWkJVxw_gv2kK9m</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2523168165</pqid></control><display><type>article</type><title>Killed whole-genome reduced-bacteria surface-expressed coronavirus fusion peptide vaccines protect against disease in a porcine model</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Maeda, Denicar Lina Nascimento Fabris ; Tian, Debin ; Yu, Hanna ; Dar, Nakul ; Rajasekaran, Vignesh ; Meng, Sarah ; Mahsoub, Hassan M. ; Sooryanarain, Harini ; Wang, Bo ; Heffron, C. Lynn ; Hassebroek, Anna ; LeRoith, Tanya ; Meng, Xiang-Jin ; Zeichner, Steven L.</creator><creatorcontrib>Maeda, Denicar Lina Nascimento Fabris ; Tian, Debin ; Yu, Hanna ; Dar, Nakul ; Rajasekaran, Vignesh ; Meng, Sarah ; Mahsoub, Hassan M. ; Sooryanarain, Harini ; Wang, Bo ; Heffron, C. Lynn ; Hassebroek, Anna ; LeRoith, Tanya ; Meng, Xiang-Jin ; Zeichner, Steven L.</creatorcontrib><description>As the coronavirus disease 2019 (COVID-19) pandemic rages on, it is important to explore new evolution-resistant vaccine antigens and new vaccine platforms that can produce readily scalable, inexpensive vaccines with easier storage and transport. We report here a synthetic biology-based vaccine platform that employs an expression vector with an inducible gram-negative autotransporter to express vaccine antigens on the surface of genome-reduced bacteria to enhance interaction of vaccine antigen with the immune system. As a proof-of-principle, we utilized genome-reduced Escherichia coli to express SARS-CoV-2 and porcine epidemic diarrhea virus (PEDV) fusion peptide (FP) on the cell surface, and evaluated their use as killed whole-cell vaccines. The FP sequence is highly conserved across coronaviruses; the six FP core amino acid residues, along with the four adjacent residues upstream and the three residues downstream from the core, are identical between SARS-CoV-2 and PEDV. We tested the efficacy of PEDV FP and SARS-CoV-2 FP vaccines in a PEDV challenge pig model. We demonstrated that both vaccines induced potent anamnestic responses upon virus challenge, potentiated interferon-γ responses, reduced viral RNA loads in jejunum tissue, and provided significant protection against clinical disease. However, neither vaccines elicited sterilizing immunity. Since SARS-CoV-2 FP and PEDV FP vaccines provided similar clinical protection, the coronavirus FP could be a target for a broadly protective vaccine using any platform. Importantly, the genome-reduced bacterial surface-expressed vaccine platform, when using a vaccine-appropriate bacterial vector, has potential utility as an inexpensive, readily manufactured, and rapid vaccine platform for other pathogens.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2025622118</identifier><identifier>PMID: 33858942</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Amino acid sequence ; Amino acids ; Animal models ; Animals ; Antibodies, Viral - blood ; Antigens ; Bacteria ; Biological Sciences ; Cell surface ; Conserved sequence ; Coronaviridae ; Coronaviruses ; COVID-19 ; COVID-19 - prevention & control ; COVID-19 Vaccines - immunology ; Diarrhea ; Disease Models, Animal ; E coli ; Escherichia coli - genetics ; Genome, Bacterial ; Genomes ; Immune system ; Interferon ; Interferon-gamma - blood ; Jejunum ; Pandemics ; Peptides ; Porcine epidemic diarrhea virus - immunology ; Public health ; Residues ; RNA, Viral - analysis ; SARS-CoV-2 - immunology ; Severe acute respiratory syndrome coronavirus 2 ; Swine ; Transmissible gastroenteritis ; Vaccines ; Vaccines, Inactivated - immunology ; Vaccines, Synthetic - immunology ; Viral diseases ; Viral Fusion Proteins - immunology ; Viral Vaccines - immunology ; Viruses ; γ-Interferon</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2021-05, Vol.118 (18), p.1-10</ispartof><rights>Copyright © 2021 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences May 4, 2021</rights><rights>Copyright © 2021 the Author(s). Published by PNAS. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-c08cb181bb357347461e6a97e163f0fb63a20c959b79bd6192d46b5b93bd89c83</citedby><cites>FETCH-LOGICAL-c509t-c08cb181bb357347461e6a97e163f0fb63a20c959b79bd6192d46b5b93bd89c83</cites><orcidid>0000-0002-1350-7172 ; 0000-0002-8922-9260 ; 0000-0002-1196-6949 ; 0000-0002-8560-9071 ; 0000-0001-5802-824X ; 0000-0002-2739-1334 ; 0000-0002-7248-5620 ; 0000-0002-7717-9710 ; 0000-0001-9269-1854 ; 0000-0002-5897-5519</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27040353$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27040353$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33858942$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Maeda, Denicar Lina Nascimento Fabris</creatorcontrib><creatorcontrib>Tian, Debin</creatorcontrib><creatorcontrib>Yu, Hanna</creatorcontrib><creatorcontrib>Dar, Nakul</creatorcontrib><creatorcontrib>Rajasekaran, Vignesh</creatorcontrib><creatorcontrib>Meng, Sarah</creatorcontrib><creatorcontrib>Mahsoub, Hassan M.</creatorcontrib><creatorcontrib>Sooryanarain, Harini</creatorcontrib><creatorcontrib>Wang, Bo</creatorcontrib><creatorcontrib>Heffron, C. Lynn</creatorcontrib><creatorcontrib>Hassebroek, Anna</creatorcontrib><creatorcontrib>LeRoith, Tanya</creatorcontrib><creatorcontrib>Meng, Xiang-Jin</creatorcontrib><creatorcontrib>Zeichner, Steven L.</creatorcontrib><title>Killed whole-genome reduced-bacteria surface-expressed coronavirus fusion peptide vaccines protect against disease in a porcine model</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>As the coronavirus disease 2019 (COVID-19) pandemic rages on, it is important to explore new evolution-resistant vaccine antigens and new vaccine platforms that can produce readily scalable, inexpensive vaccines with easier storage and transport. We report here a synthetic biology-based vaccine platform that employs an expression vector with an inducible gram-negative autotransporter to express vaccine antigens on the surface of genome-reduced bacteria to enhance interaction of vaccine antigen with the immune system. As a proof-of-principle, we utilized genome-reduced Escherichia coli to express SARS-CoV-2 and porcine epidemic diarrhea virus (PEDV) fusion peptide (FP) on the cell surface, and evaluated their use as killed whole-cell vaccines. The FP sequence is highly conserved across coronaviruses; the six FP core amino acid residues, along with the four adjacent residues upstream and the three residues downstream from the core, are identical between SARS-CoV-2 and PEDV. We tested the efficacy of PEDV FP and SARS-CoV-2 FP vaccines in a PEDV challenge pig model. We demonstrated that both vaccines induced potent anamnestic responses upon virus challenge, potentiated interferon-γ responses, reduced viral RNA loads in jejunum tissue, and provided significant protection against clinical disease. However, neither vaccines elicited sterilizing immunity. Since SARS-CoV-2 FP and PEDV FP vaccines provided similar clinical protection, the coronavirus FP could be a target for a broadly protective vaccine using any platform. Importantly, the genome-reduced bacterial surface-expressed vaccine platform, when using a vaccine-appropriate bacterial vector, has potential utility as an inexpensive, readily manufactured, and rapid vaccine platform for other pathogens.</description><subject>Amino acid sequence</subject><subject>Amino acids</subject><subject>Animal models</subject><subject>Animals</subject><subject>Antibodies, Viral - blood</subject><subject>Antigens</subject><subject>Bacteria</subject><subject>Biological Sciences</subject><subject>Cell surface</subject><subject>Conserved sequence</subject><subject>Coronaviridae</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>COVID-19 - prevention & control</subject><subject>COVID-19 Vaccines - immunology</subject><subject>Diarrhea</subject><subject>Disease Models, Animal</subject><subject>E coli</subject><subject>Escherichia coli - genetics</subject><subject>Genome, Bacterial</subject><subject>Genomes</subject><subject>Immune system</subject><subject>Interferon</subject><subject>Interferon-gamma - blood</subject><subject>Jejunum</subject><subject>Pandemics</subject><subject>Peptides</subject><subject>Porcine epidemic diarrhea virus - immunology</subject><subject>Public health</subject><subject>Residues</subject><subject>RNA, Viral - analysis</subject><subject>SARS-CoV-2 - immunology</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Swine</subject><subject>Transmissible gastroenteritis</subject><subject>Vaccines</subject><subject>Vaccines, Inactivated - immunology</subject><subject>Vaccines, Synthetic - immunology</subject><subject>Viral diseases</subject><subject>Viral Fusion Proteins - immunology</subject><subject>Viral Vaccines - immunology</subject><subject>Viruses</subject><subject>γ-Interferon</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpd0ctu1DAUBmALgehQWLMCWWLTTVpfYsfeIKGKAqISG1hbvpxMPUrsYCcDPADvTUZThsvKi_OdXz76EXpOySUlHb-akq2XjDAhGaNUPUAbSjRtZKvJQ7QhhHWNall7hp7UuiOEaKHIY3TGuRJKt2yDfn6MwwABf7vLAzRbSHkEXCAsHkLjrJ-hRIvrUnrroYHvU4FaV-9zycnuY1kq7pcac8ITTHMMgPfW-5ig4qnkGfyM7dbGVGccYgVbAceELZ5yOSg85gDDU_Sot0OFZ_fvOfpy8_bz9fvm9tO7D9dvbhsviJ4bT5R3VFHnuOh427WSgrS6Ayp5T3onuWXEa6Fdp12QVLPQSiec5i4o7RU_R6-PudPiRgge0lzsYKYSR1t-mGyj-XeS4p3Z5r1RlEjODgEX9wElf12gzmaM1cMw2AR5qYYJ2gqtmdArffUf3eWlpPW8VTFOpaJSrOrqqHzJtRboT5-hxBwqNoeKzZ-K142Xf99w8r87XcGLI9jVOZfTnHWkJVxw_gv2kK9m</recordid><startdate>20210504</startdate><enddate>20210504</enddate><creator>Maeda, Denicar Lina Nascimento Fabris</creator><creator>Tian, Debin</creator><creator>Yu, Hanna</creator><creator>Dar, Nakul</creator><creator>Rajasekaran, Vignesh</creator><creator>Meng, Sarah</creator><creator>Mahsoub, Hassan M.</creator><creator>Sooryanarain, Harini</creator><creator>Wang, Bo</creator><creator>Heffron, C. Lynn</creator><creator>Hassebroek, Anna</creator><creator>LeRoith, Tanya</creator><creator>Meng, Xiang-Jin</creator><creator>Zeichner, Steven L.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1350-7172</orcidid><orcidid>https://orcid.org/0000-0002-8922-9260</orcidid><orcidid>https://orcid.org/0000-0002-1196-6949</orcidid><orcidid>https://orcid.org/0000-0002-8560-9071</orcidid><orcidid>https://orcid.org/0000-0001-5802-824X</orcidid><orcidid>https://orcid.org/0000-0002-2739-1334</orcidid><orcidid>https://orcid.org/0000-0002-7248-5620</orcidid><orcidid>https://orcid.org/0000-0002-7717-9710</orcidid><orcidid>https://orcid.org/0000-0001-9269-1854</orcidid><orcidid>https://orcid.org/0000-0002-5897-5519</orcidid></search><sort><creationdate>20210504</creationdate><title>Killed whole-genome reduced-bacteria surface-expressed coronavirus fusion peptide vaccines protect against disease in a porcine model</title><author>Maeda, Denicar Lina Nascimento Fabris ; Tian, Debin ; Yu, Hanna ; Dar, Nakul ; Rajasekaran, Vignesh ; Meng, Sarah ; Mahsoub, Hassan M. ; Sooryanarain, Harini ; Wang, Bo ; Heffron, C. Lynn ; Hassebroek, Anna ; LeRoith, Tanya ; Meng, Xiang-Jin ; Zeichner, Steven L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-c08cb181bb357347461e6a97e163f0fb63a20c959b79bd6192d46b5b93bd89c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Amino acid sequence</topic><topic>Amino acids</topic><topic>Animal models</topic><topic>Animals</topic><topic>Antibodies, Viral - blood</topic><topic>Antigens</topic><topic>Bacteria</topic><topic>Biological Sciences</topic><topic>Cell surface</topic><topic>Conserved sequence</topic><topic>Coronaviridae</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>COVID-19 - prevention & control</topic><topic>COVID-19 Vaccines - immunology</topic><topic>Diarrhea</topic><topic>Disease Models, Animal</topic><topic>E coli</topic><topic>Escherichia coli - genetics</topic><topic>Genome, Bacterial</topic><topic>Genomes</topic><topic>Immune system</topic><topic>Interferon</topic><topic>Interferon-gamma - blood</topic><topic>Jejunum</topic><topic>Pandemics</topic><topic>Peptides</topic><topic>Porcine epidemic diarrhea virus - immunology</topic><topic>Public health</topic><topic>Residues</topic><topic>RNA, Viral - analysis</topic><topic>SARS-CoV-2 - immunology</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Swine</topic><topic>Transmissible gastroenteritis</topic><topic>Vaccines</topic><topic>Vaccines, Inactivated - immunology</topic><topic>Vaccines, Synthetic - immunology</topic><topic>Viral diseases</topic><topic>Viral Fusion Proteins - immunology</topic><topic>Viral Vaccines - immunology</topic><topic>Viruses</topic><topic>γ-Interferon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maeda, Denicar Lina Nascimento Fabris</creatorcontrib><creatorcontrib>Tian, Debin</creatorcontrib><creatorcontrib>Yu, Hanna</creatorcontrib><creatorcontrib>Dar, Nakul</creatorcontrib><creatorcontrib>Rajasekaran, Vignesh</creatorcontrib><creatorcontrib>Meng, Sarah</creatorcontrib><creatorcontrib>Mahsoub, Hassan M.</creatorcontrib><creatorcontrib>Sooryanarain, Harini</creatorcontrib><creatorcontrib>Wang, Bo</creatorcontrib><creatorcontrib>Heffron, C. Lynn</creatorcontrib><creatorcontrib>Hassebroek, Anna</creatorcontrib><creatorcontrib>LeRoith, Tanya</creatorcontrib><creatorcontrib>Meng, Xiang-Jin</creatorcontrib><creatorcontrib>Zeichner, Steven L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maeda, Denicar Lina Nascimento Fabris</au><au>Tian, Debin</au><au>Yu, Hanna</au><au>Dar, Nakul</au><au>Rajasekaran, Vignesh</au><au>Meng, Sarah</au><au>Mahsoub, Hassan M.</au><au>Sooryanarain, Harini</au><au>Wang, Bo</au><au>Heffron, C. Lynn</au><au>Hassebroek, Anna</au><au>LeRoith, Tanya</au><au>Meng, Xiang-Jin</au><au>Zeichner, Steven L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Killed whole-genome reduced-bacteria surface-expressed coronavirus fusion peptide vaccines protect against disease in a porcine model</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2021-05-04</date><risdate>2021</risdate><volume>118</volume><issue>18</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>As the coronavirus disease 2019 (COVID-19) pandemic rages on, it is important to explore new evolution-resistant vaccine antigens and new vaccine platforms that can produce readily scalable, inexpensive vaccines with easier storage and transport. We report here a synthetic biology-based vaccine platform that employs an expression vector with an inducible gram-negative autotransporter to express vaccine antigens on the surface of genome-reduced bacteria to enhance interaction of vaccine antigen with the immune system. As a proof-of-principle, we utilized genome-reduced Escherichia coli to express SARS-CoV-2 and porcine epidemic diarrhea virus (PEDV) fusion peptide (FP) on the cell surface, and evaluated their use as killed whole-cell vaccines. The FP sequence is highly conserved across coronaviruses; the six FP core amino acid residues, along with the four adjacent residues upstream and the three residues downstream from the core, are identical between SARS-CoV-2 and PEDV. We tested the efficacy of PEDV FP and SARS-CoV-2 FP vaccines in a PEDV challenge pig model. We demonstrated that both vaccines induced potent anamnestic responses upon virus challenge, potentiated interferon-γ responses, reduced viral RNA loads in jejunum tissue, and provided significant protection against clinical disease. However, neither vaccines elicited sterilizing immunity. Since SARS-CoV-2 FP and PEDV FP vaccines provided similar clinical protection, the coronavirus FP could be a target for a broadly protective vaccine using any platform. Importantly, the genome-reduced bacterial surface-expressed vaccine platform, when using a vaccine-appropriate bacterial vector, has potential utility as an inexpensive, readily manufactured, and rapid vaccine platform for other pathogens.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>33858942</pmid><doi>10.1073/pnas.2025622118</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1350-7172</orcidid><orcidid>https://orcid.org/0000-0002-8922-9260</orcidid><orcidid>https://orcid.org/0000-0002-1196-6949</orcidid><orcidid>https://orcid.org/0000-0002-8560-9071</orcidid><orcidid>https://orcid.org/0000-0001-5802-824X</orcidid><orcidid>https://orcid.org/0000-0002-2739-1334</orcidid><orcidid>https://orcid.org/0000-0002-7248-5620</orcidid><orcidid>https://orcid.org/0000-0002-7717-9710</orcidid><orcidid>https://orcid.org/0000-0001-9269-1854</orcidid><orcidid>https://orcid.org/0000-0002-5897-5519</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2021-05, Vol.118 (18), p.1-10 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8106328 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Amino acid sequence Amino acids Animal models Animals Antibodies, Viral - blood Antigens Bacteria Biological Sciences Cell surface Conserved sequence Coronaviridae Coronaviruses COVID-19 COVID-19 - prevention & control COVID-19 Vaccines - immunology Diarrhea Disease Models, Animal E coli Escherichia coli - genetics Genome, Bacterial Genomes Immune system Interferon Interferon-gamma - blood Jejunum Pandemics Peptides Porcine epidemic diarrhea virus - immunology Public health Residues RNA, Viral - analysis SARS-CoV-2 - immunology Severe acute respiratory syndrome coronavirus 2 Swine Transmissible gastroenteritis Vaccines Vaccines, Inactivated - immunology Vaccines, Synthetic - immunology Viral diseases Viral Fusion Proteins - immunology Viral Vaccines - immunology Viruses γ-Interferon |
title | Killed whole-genome reduced-bacteria surface-expressed coronavirus fusion peptide vaccines protect against disease in a porcine model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T18%3A07%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Killed%20whole-genome%20reduced-bacteria%20surface-expressed%20coronavirus%20fusion%20peptide%20vaccines%20protect%20against%20disease%20in%20a%20porcine%20model&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Maeda,%20Denicar%20Lina%20Nascimento%20Fabris&rft.date=2021-05-04&rft.volume=118&rft.issue=18&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2025622118&rft_dat=%3Cjstor_pubme%3E27040353%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2523168165&rft_id=info:pmid/33858942&rft_jstor_id=27040353&rfr_iscdi=true |