ISG15-dependent activation of the sensor MDA5 is antagonized by the SARS-CoV-2 papain-like protease to evade host innate immunity

Activation of the RIG-I-like receptors, retinoic-acid inducible gene I (RIG-I) and melanoma differentiation-associated protein 5 (MDA5), establishes an antiviral state by upregulating interferon (IFN)-stimulated genes (ISGs). Among these is ISG15, the mechanistic roles of which in innate immunity st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature microbiology 2021-04, Vol.6 (4), p.467-478
Hauptverfasser: Liu, GuanQun, Lee, Jung-Hyun, Parker, Zachary M., Acharya, Dhiraj, Chiang, Jessica J., van Gent, Michiel, Riedl, William, Davis-Gardner, Meredith E., Wies, Effi, Chiang, Cindy, Gack, Michaela U.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 478
container_issue 4
container_start_page 467
container_title Nature microbiology
container_volume 6
creator Liu, GuanQun
Lee, Jung-Hyun
Parker, Zachary M.
Acharya, Dhiraj
Chiang, Jessica J.
van Gent, Michiel
Riedl, William
Davis-Gardner, Meredith E.
Wies, Effi
Chiang, Cindy
Gack, Michaela U.
description Activation of the RIG-I-like receptors, retinoic-acid inducible gene I (RIG-I) and melanoma differentiation-associated protein 5 (MDA5), establishes an antiviral state by upregulating interferon (IFN)-stimulated genes (ISGs). Among these is ISG15, the mechanistic roles of which in innate immunity still remain enigmatic. In the present study, we report that ISG15 conjugation is essential for antiviral IFN responses mediated by the viral RNA sensor MDA5. ISGylation of the caspase activation and recruitment domains of MDA5 promotes its oligomerization and thereby triggers activation of innate immunity against a range of viruses, including coronaviruses, flaviviruses and picornaviruses. The ISG15-dependent activation of MDA5 is antagonized through direct de-ISGylation mediated by the papain-like protease of SARS-CoV-2, a recently emerged coronavirus that has caused the COVID-19 pandemic. Our work demonstrates a crucial role for ISG15 in the MDA5-mediated antiviral response, and also identifies a key immune evasion mechanism of SARS-CoV-2, which may be targeted for the development of new antivirals and vaccines to combat COVID-19. ISG15 conjugation is essential to activate the RIG-I-like receptor MDA5 and trigger antiviral responses. SARS-CoV-2 suppresses MDA5 activation by direct PLpro-mediated de-ISGylation to escape innate immunity.
doi_str_mv 10.1038/s41564-021-00884-1
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8103894</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2502206332</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-f9ec11abeb125161b76b4de4307f9e04e862f2297ff714afcee057b6602e7e913</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhSMEolXbF2CBLLFhY7Ad_yQbpNEApVIrpA6wtZzkZsYlsYPtjDTseHM8nVJKF6xs6Xw-9x6fonhByRtKyupt5FRIjgmjmJCq4pg-KY4ZERUWTMmnD-5HxVmMN4QQKpmUlXxeHJWlYkoRdlz8ulidU4E7mMB14BIybbJbk6x3yPcobQBFcNEHdPV-IZCNyLhk1t7Zn9ChZndLrBbXK7z03zBDk5mMdXiw3wFNwScwEVDyCLamA7TxMSHrnEmA7DjOzqbdafGsN0OEs7vzpPj68cOX5Sd8-fn8Yrm4xK3gJOG-hpZS00BDmaCSNko2vANeEpUlwqGSrGesVn2vKDd9C0CEaqQkDBTUtDwp3h18p7kZoWtz2GAGPQU7mrDT3lj9r-LsRq_9Vlf7_655Nnh9ZxD8jxli0qONLQyDceDnqJkgjBFZliyjrx6hN34OLsfbU1LRktciU-xAtcHHGKC_X4YSvR-qDyXrXLK-LVnvY7x8GOP-yZ9KM1AegJglt4bwd_Z_bH8DBT2yXQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2506713495</pqid></control><display><type>article</type><title>ISG15-dependent activation of the sensor MDA5 is antagonized by the SARS-CoV-2 papain-like protease to evade host innate immunity</title><source>MEDLINE</source><source>SpringerLink</source><creator>Liu, GuanQun ; Lee, Jung-Hyun ; Parker, Zachary M. ; Acharya, Dhiraj ; Chiang, Jessica J. ; van Gent, Michiel ; Riedl, William ; Davis-Gardner, Meredith E. ; Wies, Effi ; Chiang, Cindy ; Gack, Michaela U.</creator><creatorcontrib>Liu, GuanQun ; Lee, Jung-Hyun ; Parker, Zachary M. ; Acharya, Dhiraj ; Chiang, Jessica J. ; van Gent, Michiel ; Riedl, William ; Davis-Gardner, Meredith E. ; Wies, Effi ; Chiang, Cindy ; Gack, Michaela U.</creatorcontrib><description>Activation of the RIG-I-like receptors, retinoic-acid inducible gene I (RIG-I) and melanoma differentiation-associated protein 5 (MDA5), establishes an antiviral state by upregulating interferon (IFN)-stimulated genes (ISGs). Among these is ISG15, the mechanistic roles of which in innate immunity still remain enigmatic. In the present study, we report that ISG15 conjugation is essential for antiviral IFN responses mediated by the viral RNA sensor MDA5. ISGylation of the caspase activation and recruitment domains of MDA5 promotes its oligomerization and thereby triggers activation of innate immunity against a range of viruses, including coronaviruses, flaviviruses and picornaviruses. The ISG15-dependent activation of MDA5 is antagonized through direct de-ISGylation mediated by the papain-like protease of SARS-CoV-2, a recently emerged coronavirus that has caused the COVID-19 pandemic. Our work demonstrates a crucial role for ISG15 in the MDA5-mediated antiviral response, and also identifies a key immune evasion mechanism of SARS-CoV-2, which may be targeted for the development of new antivirals and vaccines to combat COVID-19. ISG15 conjugation is essential to activate the RIG-I-like receptor MDA5 and trigger antiviral responses. SARS-CoV-2 suppresses MDA5 activation by direct PLpro-mediated de-ISGylation to escape innate immunity.</description><identifier>ISSN: 2058-5276</identifier><identifier>EISSN: 2058-5276</identifier><identifier>DOI: 10.1038/s41564-021-00884-1</identifier><identifier>PMID: 33727702</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13 ; 13/109 ; 13/21 ; 13/31 ; 38 ; 38/89 ; 38/90 ; 631/250 ; 631/250/262 ; 631/250/262/2106 ; 631/250/262/2106/2518 ; 82/29 ; 82/58 ; 96 ; 96/95 ; Aedes ; Animals ; Antiviral agents ; Antiviral state ; Biomedical and Life Sciences ; Caspase ; Chlorocebus aethiops ; Coronaviridae ; Coronavirus Papain-Like Proteases - metabolism ; Coronaviruses ; COVID-19 ; Cricetinae ; Cytokines - metabolism ; HEK293 Cells ; Humans ; Immunity, Innate ; Infectious Diseases ; Innate immunity ; Interferon ; Interferon-Induced Helicase, IFIH1 - antagonists &amp; inhibitors ; Interferon-Induced Helicase, IFIH1 - metabolism ; Leukocytes, Mononuclear ; Life Sciences ; Medical Microbiology ; Melanoma ; Mice ; Microbiology ; Oligomerization ; Pandemics ; Papain ; Parasitology ; Proteinase ; SARS-CoV-2 - enzymology ; SARS-CoV-2 - immunology ; Severe acute respiratory syndrome coronavirus 2 ; Ubiquitins - metabolism ; Vero Cells ; Virology</subject><ispartof>Nature microbiology, 2021-04, Vol.6 (4), p.467-478</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-f9ec11abeb125161b76b4de4307f9e04e862f2297ff714afcee057b6602e7e913</citedby><cites>FETCH-LOGICAL-c540t-f9ec11abeb125161b76b4de4307f9e04e862f2297ff714afcee057b6602e7e913</cites><orcidid>0000-0003-2520-7625 ; 0000-0003-3798-5360 ; 0000-0002-2163-2598 ; 0000-0003-1913-0027</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41564-021-00884-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41564-021-00884-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,777,781,882,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33727702$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, GuanQun</creatorcontrib><creatorcontrib>Lee, Jung-Hyun</creatorcontrib><creatorcontrib>Parker, Zachary M.</creatorcontrib><creatorcontrib>Acharya, Dhiraj</creatorcontrib><creatorcontrib>Chiang, Jessica J.</creatorcontrib><creatorcontrib>van Gent, Michiel</creatorcontrib><creatorcontrib>Riedl, William</creatorcontrib><creatorcontrib>Davis-Gardner, Meredith E.</creatorcontrib><creatorcontrib>Wies, Effi</creatorcontrib><creatorcontrib>Chiang, Cindy</creatorcontrib><creatorcontrib>Gack, Michaela U.</creatorcontrib><title>ISG15-dependent activation of the sensor MDA5 is antagonized by the SARS-CoV-2 papain-like protease to evade host innate immunity</title><title>Nature microbiology</title><addtitle>Nat Microbiol</addtitle><addtitle>Nat Microbiol</addtitle><description>Activation of the RIG-I-like receptors, retinoic-acid inducible gene I (RIG-I) and melanoma differentiation-associated protein 5 (MDA5), establishes an antiviral state by upregulating interferon (IFN)-stimulated genes (ISGs). Among these is ISG15, the mechanistic roles of which in innate immunity still remain enigmatic. In the present study, we report that ISG15 conjugation is essential for antiviral IFN responses mediated by the viral RNA sensor MDA5. ISGylation of the caspase activation and recruitment domains of MDA5 promotes its oligomerization and thereby triggers activation of innate immunity against a range of viruses, including coronaviruses, flaviviruses and picornaviruses. The ISG15-dependent activation of MDA5 is antagonized through direct de-ISGylation mediated by the papain-like protease of SARS-CoV-2, a recently emerged coronavirus that has caused the COVID-19 pandemic. Our work demonstrates a crucial role for ISG15 in the MDA5-mediated antiviral response, and also identifies a key immune evasion mechanism of SARS-CoV-2, which may be targeted for the development of new antivirals and vaccines to combat COVID-19. ISG15 conjugation is essential to activate the RIG-I-like receptor MDA5 and trigger antiviral responses. SARS-CoV-2 suppresses MDA5 activation by direct PLpro-mediated de-ISGylation to escape innate immunity.</description><subject>13</subject><subject>13/109</subject><subject>13/21</subject><subject>13/31</subject><subject>38</subject><subject>38/89</subject><subject>38/90</subject><subject>631/250</subject><subject>631/250/262</subject><subject>631/250/262/2106</subject><subject>631/250/262/2106/2518</subject><subject>82/29</subject><subject>82/58</subject><subject>96</subject><subject>96/95</subject><subject>Aedes</subject><subject>Animals</subject><subject>Antiviral agents</subject><subject>Antiviral state</subject><subject>Biomedical and Life Sciences</subject><subject>Caspase</subject><subject>Chlorocebus aethiops</subject><subject>Coronaviridae</subject><subject>Coronavirus Papain-Like Proteases - metabolism</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Cricetinae</subject><subject>Cytokines - metabolism</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>Immunity, Innate</subject><subject>Infectious Diseases</subject><subject>Innate immunity</subject><subject>Interferon</subject><subject>Interferon-Induced Helicase, IFIH1 - antagonists &amp; inhibitors</subject><subject>Interferon-Induced Helicase, IFIH1 - metabolism</subject><subject>Leukocytes, Mononuclear</subject><subject>Life Sciences</subject><subject>Medical Microbiology</subject><subject>Melanoma</subject><subject>Mice</subject><subject>Microbiology</subject><subject>Oligomerization</subject><subject>Pandemics</subject><subject>Papain</subject><subject>Parasitology</subject><subject>Proteinase</subject><subject>SARS-CoV-2 - enzymology</subject><subject>SARS-CoV-2 - immunology</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Ubiquitins - metabolism</subject><subject>Vero Cells</subject><subject>Virology</subject><issn>2058-5276</issn><issn>2058-5276</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kc1u1DAUhSMEolXbF2CBLLFhY7Ad_yQbpNEApVIrpA6wtZzkZsYlsYPtjDTseHM8nVJKF6xs6Xw-9x6fonhByRtKyupt5FRIjgmjmJCq4pg-KY4ZERUWTMmnD-5HxVmMN4QQKpmUlXxeHJWlYkoRdlz8ulidU4E7mMB14BIybbJbk6x3yPcobQBFcNEHdPV-IZCNyLhk1t7Zn9ChZndLrBbXK7z03zBDk5mMdXiw3wFNwScwEVDyCLamA7TxMSHrnEmA7DjOzqbdafGsN0OEs7vzpPj68cOX5Sd8-fn8Yrm4xK3gJOG-hpZS00BDmaCSNko2vANeEpUlwqGSrGesVn2vKDd9C0CEaqQkDBTUtDwp3h18p7kZoWtz2GAGPQU7mrDT3lj9r-LsRq_9Vlf7_655Nnh9ZxD8jxli0qONLQyDceDnqJkgjBFZliyjrx6hN34OLsfbU1LRktciU-xAtcHHGKC_X4YSvR-qDyXrXLK-LVnvY7x8GOP-yZ9KM1AegJglt4bwd_Z_bH8DBT2yXQ</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Liu, GuanQun</creator><creator>Lee, Jung-Hyun</creator><creator>Parker, Zachary M.</creator><creator>Acharya, Dhiraj</creator><creator>Chiang, Jessica J.</creator><creator>van Gent, Michiel</creator><creator>Riedl, William</creator><creator>Davis-Gardner, Meredith E.</creator><creator>Wies, Effi</creator><creator>Chiang, Cindy</creator><creator>Gack, Michaela U.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FH</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2520-7625</orcidid><orcidid>https://orcid.org/0000-0003-3798-5360</orcidid><orcidid>https://orcid.org/0000-0002-2163-2598</orcidid><orcidid>https://orcid.org/0000-0003-1913-0027</orcidid></search><sort><creationdate>20210401</creationdate><title>ISG15-dependent activation of the sensor MDA5 is antagonized by the SARS-CoV-2 papain-like protease to evade host innate immunity</title><author>Liu, GuanQun ; Lee, Jung-Hyun ; Parker, Zachary M. ; Acharya, Dhiraj ; Chiang, Jessica J. ; van Gent, Michiel ; Riedl, William ; Davis-Gardner, Meredith E. ; Wies, Effi ; Chiang, Cindy ; Gack, Michaela U.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-f9ec11abeb125161b76b4de4307f9e04e862f2297ff714afcee057b6602e7e913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>13</topic><topic>13/109</topic><topic>13/21</topic><topic>13/31</topic><topic>38</topic><topic>38/89</topic><topic>38/90</topic><topic>631/250</topic><topic>631/250/262</topic><topic>631/250/262/2106</topic><topic>631/250/262/2106/2518</topic><topic>82/29</topic><topic>82/58</topic><topic>96</topic><topic>96/95</topic><topic>Aedes</topic><topic>Animals</topic><topic>Antiviral agents</topic><topic>Antiviral state</topic><topic>Biomedical and Life Sciences</topic><topic>Caspase</topic><topic>Chlorocebus aethiops</topic><topic>Coronaviridae</topic><topic>Coronavirus Papain-Like Proteases - metabolism</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Cricetinae</topic><topic>Cytokines - metabolism</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>Immunity, Innate</topic><topic>Infectious Diseases</topic><topic>Innate immunity</topic><topic>Interferon</topic><topic>Interferon-Induced Helicase, IFIH1 - antagonists &amp; inhibitors</topic><topic>Interferon-Induced Helicase, IFIH1 - metabolism</topic><topic>Leukocytes, Mononuclear</topic><topic>Life Sciences</topic><topic>Medical Microbiology</topic><topic>Melanoma</topic><topic>Mice</topic><topic>Microbiology</topic><topic>Oligomerization</topic><topic>Pandemics</topic><topic>Papain</topic><topic>Parasitology</topic><topic>Proteinase</topic><topic>SARS-CoV-2 - enzymology</topic><topic>SARS-CoV-2 - immunology</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Ubiquitins - metabolism</topic><topic>Vero Cells</topic><topic>Virology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, GuanQun</creatorcontrib><creatorcontrib>Lee, Jung-Hyun</creatorcontrib><creatorcontrib>Parker, Zachary M.</creatorcontrib><creatorcontrib>Acharya, Dhiraj</creatorcontrib><creatorcontrib>Chiang, Jessica J.</creatorcontrib><creatorcontrib>van Gent, Michiel</creatorcontrib><creatorcontrib>Riedl, William</creatorcontrib><creatorcontrib>Davis-Gardner, Meredith E.</creatorcontrib><creatorcontrib>Wies, Effi</creatorcontrib><creatorcontrib>Chiang, Cindy</creatorcontrib><creatorcontrib>Gack, Michaela U.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Biological Science Collection</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, GuanQun</au><au>Lee, Jung-Hyun</au><au>Parker, Zachary M.</au><au>Acharya, Dhiraj</au><au>Chiang, Jessica J.</au><au>van Gent, Michiel</au><au>Riedl, William</au><au>Davis-Gardner, Meredith E.</au><au>Wies, Effi</au><au>Chiang, Cindy</au><au>Gack, Michaela U.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ISG15-dependent activation of the sensor MDA5 is antagonized by the SARS-CoV-2 papain-like protease to evade host innate immunity</atitle><jtitle>Nature microbiology</jtitle><stitle>Nat Microbiol</stitle><addtitle>Nat Microbiol</addtitle><date>2021-04-01</date><risdate>2021</risdate><volume>6</volume><issue>4</issue><spage>467</spage><epage>478</epage><pages>467-478</pages><issn>2058-5276</issn><eissn>2058-5276</eissn><abstract>Activation of the RIG-I-like receptors, retinoic-acid inducible gene I (RIG-I) and melanoma differentiation-associated protein 5 (MDA5), establishes an antiviral state by upregulating interferon (IFN)-stimulated genes (ISGs). Among these is ISG15, the mechanistic roles of which in innate immunity still remain enigmatic. In the present study, we report that ISG15 conjugation is essential for antiviral IFN responses mediated by the viral RNA sensor MDA5. ISGylation of the caspase activation and recruitment domains of MDA5 promotes its oligomerization and thereby triggers activation of innate immunity against a range of viruses, including coronaviruses, flaviviruses and picornaviruses. The ISG15-dependent activation of MDA5 is antagonized through direct de-ISGylation mediated by the papain-like protease of SARS-CoV-2, a recently emerged coronavirus that has caused the COVID-19 pandemic. Our work demonstrates a crucial role for ISG15 in the MDA5-mediated antiviral response, and also identifies a key immune evasion mechanism of SARS-CoV-2, which may be targeted for the development of new antivirals and vaccines to combat COVID-19. ISG15 conjugation is essential to activate the RIG-I-like receptor MDA5 and trigger antiviral responses. SARS-CoV-2 suppresses MDA5 activation by direct PLpro-mediated de-ISGylation to escape innate immunity.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33727702</pmid><doi>10.1038/s41564-021-00884-1</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2520-7625</orcidid><orcidid>https://orcid.org/0000-0003-3798-5360</orcidid><orcidid>https://orcid.org/0000-0002-2163-2598</orcidid><orcidid>https://orcid.org/0000-0003-1913-0027</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2058-5276
ispartof Nature microbiology, 2021-04, Vol.6 (4), p.467-478
issn 2058-5276
2058-5276
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8103894
source MEDLINE; SpringerLink
subjects 13
13/109
13/21
13/31
38
38/89
38/90
631/250
631/250/262
631/250/262/2106
631/250/262/2106/2518
82/29
82/58
96
96/95
Aedes
Animals
Antiviral agents
Antiviral state
Biomedical and Life Sciences
Caspase
Chlorocebus aethiops
Coronaviridae
Coronavirus Papain-Like Proteases - metabolism
Coronaviruses
COVID-19
Cricetinae
Cytokines - metabolism
HEK293 Cells
Humans
Immunity, Innate
Infectious Diseases
Innate immunity
Interferon
Interferon-Induced Helicase, IFIH1 - antagonists & inhibitors
Interferon-Induced Helicase, IFIH1 - metabolism
Leukocytes, Mononuclear
Life Sciences
Medical Microbiology
Melanoma
Mice
Microbiology
Oligomerization
Pandemics
Papain
Parasitology
Proteinase
SARS-CoV-2 - enzymology
SARS-CoV-2 - immunology
Severe acute respiratory syndrome coronavirus 2
Ubiquitins - metabolism
Vero Cells
Virology
title ISG15-dependent activation of the sensor MDA5 is antagonized by the SARS-CoV-2 papain-like protease to evade host innate immunity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T14%3A22%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ISG15-dependent%20activation%20of%20the%20sensor%20MDA5%20is%20antagonized%20by%20the%20SARS-CoV-2%20papain-like%20protease%20to%20evade%20host%20innate%20immunity&rft.jtitle=Nature%20microbiology&rft.au=Liu,%20GuanQun&rft.date=2021-04-01&rft.volume=6&rft.issue=4&rft.spage=467&rft.epage=478&rft.pages=467-478&rft.issn=2058-5276&rft.eissn=2058-5276&rft_id=info:doi/10.1038/s41564-021-00884-1&rft_dat=%3Cproquest_pubme%3E2502206332%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2506713495&rft_id=info:pmid/33727702&rfr_iscdi=true