ISG15-dependent activation of the sensor MDA5 is antagonized by the SARS-CoV-2 papain-like protease to evade host innate immunity
Activation of the RIG-I-like receptors, retinoic-acid inducible gene I (RIG-I) and melanoma differentiation-associated protein 5 (MDA5), establishes an antiviral state by upregulating interferon (IFN)-stimulated genes (ISGs). Among these is ISG15, the mechanistic roles of which in innate immunity st...
Gespeichert in:
Veröffentlicht in: | Nature microbiology 2021-04, Vol.6 (4), p.467-478 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 478 |
---|---|
container_issue | 4 |
container_start_page | 467 |
container_title | Nature microbiology |
container_volume | 6 |
creator | Liu, GuanQun Lee, Jung-Hyun Parker, Zachary M. Acharya, Dhiraj Chiang, Jessica J. van Gent, Michiel Riedl, William Davis-Gardner, Meredith E. Wies, Effi Chiang, Cindy Gack, Michaela U. |
description | Activation of the RIG-I-like receptors, retinoic-acid inducible gene I (RIG-I) and melanoma differentiation-associated protein 5 (MDA5), establishes an antiviral state by upregulating interferon (IFN)-stimulated genes (ISGs). Among these is ISG15, the mechanistic roles of which in innate immunity still remain enigmatic. In the present study, we report that ISG15 conjugation is essential for antiviral IFN responses mediated by the viral RNA sensor MDA5. ISGylation of the caspase activation and recruitment domains of MDA5 promotes its oligomerization and thereby triggers activation of innate immunity against a range of viruses, including coronaviruses, flaviviruses and picornaviruses. The ISG15-dependent activation of MDA5 is antagonized through direct de-ISGylation mediated by the papain-like protease of SARS-CoV-2, a recently emerged coronavirus that has caused the COVID-19 pandemic. Our work demonstrates a crucial role for ISG15 in the MDA5-mediated antiviral response, and also identifies a key immune evasion mechanism of SARS-CoV-2, which may be targeted for the development of new antivirals and vaccines to combat COVID-19.
ISG15 conjugation is essential to activate the RIG-I-like receptor MDA5 and trigger antiviral responses. SARS-CoV-2 suppresses MDA5 activation by direct PLpro-mediated de-ISGylation to escape innate immunity. |
doi_str_mv | 10.1038/s41564-021-00884-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8103894</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2502206332</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-f9ec11abeb125161b76b4de4307f9e04e862f2297ff714afcee057b6602e7e913</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhSMEolXbF2CBLLFhY7Ad_yQbpNEApVIrpA6wtZzkZsYlsYPtjDTseHM8nVJKF6xs6Xw-9x6fonhByRtKyupt5FRIjgmjmJCq4pg-KY4ZERUWTMmnD-5HxVmMN4QQKpmUlXxeHJWlYkoRdlz8ulidU4E7mMB14BIybbJbk6x3yPcobQBFcNEHdPV-IZCNyLhk1t7Zn9ChZndLrBbXK7z03zBDk5mMdXiw3wFNwScwEVDyCLamA7TxMSHrnEmA7DjOzqbdafGsN0OEs7vzpPj68cOX5Sd8-fn8Yrm4xK3gJOG-hpZS00BDmaCSNko2vANeEpUlwqGSrGesVn2vKDd9C0CEaqQkDBTUtDwp3h18p7kZoWtz2GAGPQU7mrDT3lj9r-LsRq_9Vlf7_655Nnh9ZxD8jxli0qONLQyDceDnqJkgjBFZliyjrx6hN34OLsfbU1LRktciU-xAtcHHGKC_X4YSvR-qDyXrXLK-LVnvY7x8GOP-yZ9KM1AegJglt4bwd_Z_bH8DBT2yXQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2506713495</pqid></control><display><type>article</type><title>ISG15-dependent activation of the sensor MDA5 is antagonized by the SARS-CoV-2 papain-like protease to evade host innate immunity</title><source>MEDLINE</source><source>SpringerLink</source><creator>Liu, GuanQun ; Lee, Jung-Hyun ; Parker, Zachary M. ; Acharya, Dhiraj ; Chiang, Jessica J. ; van Gent, Michiel ; Riedl, William ; Davis-Gardner, Meredith E. ; Wies, Effi ; Chiang, Cindy ; Gack, Michaela U.</creator><creatorcontrib>Liu, GuanQun ; Lee, Jung-Hyun ; Parker, Zachary M. ; Acharya, Dhiraj ; Chiang, Jessica J. ; van Gent, Michiel ; Riedl, William ; Davis-Gardner, Meredith E. ; Wies, Effi ; Chiang, Cindy ; Gack, Michaela U.</creatorcontrib><description>Activation of the RIG-I-like receptors, retinoic-acid inducible gene I (RIG-I) and melanoma differentiation-associated protein 5 (MDA5), establishes an antiviral state by upregulating interferon (IFN)-stimulated genes (ISGs). Among these is ISG15, the mechanistic roles of which in innate immunity still remain enigmatic. In the present study, we report that ISG15 conjugation is essential for antiviral IFN responses mediated by the viral RNA sensor MDA5. ISGylation of the caspase activation and recruitment domains of MDA5 promotes its oligomerization and thereby triggers activation of innate immunity against a range of viruses, including coronaviruses, flaviviruses and picornaviruses. The ISG15-dependent activation of MDA5 is antagonized through direct de-ISGylation mediated by the papain-like protease of SARS-CoV-2, a recently emerged coronavirus that has caused the COVID-19 pandemic. Our work demonstrates a crucial role for ISG15 in the MDA5-mediated antiviral response, and also identifies a key immune evasion mechanism of SARS-CoV-2, which may be targeted for the development of new antivirals and vaccines to combat COVID-19.
ISG15 conjugation is essential to activate the RIG-I-like receptor MDA5 and trigger antiviral responses. SARS-CoV-2 suppresses MDA5 activation by direct PLpro-mediated de-ISGylation to escape innate immunity.</description><identifier>ISSN: 2058-5276</identifier><identifier>EISSN: 2058-5276</identifier><identifier>DOI: 10.1038/s41564-021-00884-1</identifier><identifier>PMID: 33727702</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13 ; 13/109 ; 13/21 ; 13/31 ; 38 ; 38/89 ; 38/90 ; 631/250 ; 631/250/262 ; 631/250/262/2106 ; 631/250/262/2106/2518 ; 82/29 ; 82/58 ; 96 ; 96/95 ; Aedes ; Animals ; Antiviral agents ; Antiviral state ; Biomedical and Life Sciences ; Caspase ; Chlorocebus aethiops ; Coronaviridae ; Coronavirus Papain-Like Proteases - metabolism ; Coronaviruses ; COVID-19 ; Cricetinae ; Cytokines - metabolism ; HEK293 Cells ; Humans ; Immunity, Innate ; Infectious Diseases ; Innate immunity ; Interferon ; Interferon-Induced Helicase, IFIH1 - antagonists & inhibitors ; Interferon-Induced Helicase, IFIH1 - metabolism ; Leukocytes, Mononuclear ; Life Sciences ; Medical Microbiology ; Melanoma ; Mice ; Microbiology ; Oligomerization ; Pandemics ; Papain ; Parasitology ; Proteinase ; SARS-CoV-2 - enzymology ; SARS-CoV-2 - immunology ; Severe acute respiratory syndrome coronavirus 2 ; Ubiquitins - metabolism ; Vero Cells ; Virology</subject><ispartof>Nature microbiology, 2021-04, Vol.6 (4), p.467-478</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-f9ec11abeb125161b76b4de4307f9e04e862f2297ff714afcee057b6602e7e913</citedby><cites>FETCH-LOGICAL-c540t-f9ec11abeb125161b76b4de4307f9e04e862f2297ff714afcee057b6602e7e913</cites><orcidid>0000-0003-2520-7625 ; 0000-0003-3798-5360 ; 0000-0002-2163-2598 ; 0000-0003-1913-0027</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41564-021-00884-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41564-021-00884-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,777,781,882,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33727702$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, GuanQun</creatorcontrib><creatorcontrib>Lee, Jung-Hyun</creatorcontrib><creatorcontrib>Parker, Zachary M.</creatorcontrib><creatorcontrib>Acharya, Dhiraj</creatorcontrib><creatorcontrib>Chiang, Jessica J.</creatorcontrib><creatorcontrib>van Gent, Michiel</creatorcontrib><creatorcontrib>Riedl, William</creatorcontrib><creatorcontrib>Davis-Gardner, Meredith E.</creatorcontrib><creatorcontrib>Wies, Effi</creatorcontrib><creatorcontrib>Chiang, Cindy</creatorcontrib><creatorcontrib>Gack, Michaela U.</creatorcontrib><title>ISG15-dependent activation of the sensor MDA5 is antagonized by the SARS-CoV-2 papain-like protease to evade host innate immunity</title><title>Nature microbiology</title><addtitle>Nat Microbiol</addtitle><addtitle>Nat Microbiol</addtitle><description>Activation of the RIG-I-like receptors, retinoic-acid inducible gene I (RIG-I) and melanoma differentiation-associated protein 5 (MDA5), establishes an antiviral state by upregulating interferon (IFN)-stimulated genes (ISGs). Among these is ISG15, the mechanistic roles of which in innate immunity still remain enigmatic. In the present study, we report that ISG15 conjugation is essential for antiviral IFN responses mediated by the viral RNA sensor MDA5. ISGylation of the caspase activation and recruitment domains of MDA5 promotes its oligomerization and thereby triggers activation of innate immunity against a range of viruses, including coronaviruses, flaviviruses and picornaviruses. The ISG15-dependent activation of MDA5 is antagonized through direct de-ISGylation mediated by the papain-like protease of SARS-CoV-2, a recently emerged coronavirus that has caused the COVID-19 pandemic. Our work demonstrates a crucial role for ISG15 in the MDA5-mediated antiviral response, and also identifies a key immune evasion mechanism of SARS-CoV-2, which may be targeted for the development of new antivirals and vaccines to combat COVID-19.
ISG15 conjugation is essential to activate the RIG-I-like receptor MDA5 and trigger antiviral responses. SARS-CoV-2 suppresses MDA5 activation by direct PLpro-mediated de-ISGylation to escape innate immunity.</description><subject>13</subject><subject>13/109</subject><subject>13/21</subject><subject>13/31</subject><subject>38</subject><subject>38/89</subject><subject>38/90</subject><subject>631/250</subject><subject>631/250/262</subject><subject>631/250/262/2106</subject><subject>631/250/262/2106/2518</subject><subject>82/29</subject><subject>82/58</subject><subject>96</subject><subject>96/95</subject><subject>Aedes</subject><subject>Animals</subject><subject>Antiviral agents</subject><subject>Antiviral state</subject><subject>Biomedical and Life Sciences</subject><subject>Caspase</subject><subject>Chlorocebus aethiops</subject><subject>Coronaviridae</subject><subject>Coronavirus Papain-Like Proteases - metabolism</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Cricetinae</subject><subject>Cytokines - metabolism</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>Immunity, Innate</subject><subject>Infectious Diseases</subject><subject>Innate immunity</subject><subject>Interferon</subject><subject>Interferon-Induced Helicase, IFIH1 - antagonists & inhibitors</subject><subject>Interferon-Induced Helicase, IFIH1 - metabolism</subject><subject>Leukocytes, Mononuclear</subject><subject>Life Sciences</subject><subject>Medical Microbiology</subject><subject>Melanoma</subject><subject>Mice</subject><subject>Microbiology</subject><subject>Oligomerization</subject><subject>Pandemics</subject><subject>Papain</subject><subject>Parasitology</subject><subject>Proteinase</subject><subject>SARS-CoV-2 - enzymology</subject><subject>SARS-CoV-2 - immunology</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Ubiquitins - metabolism</subject><subject>Vero Cells</subject><subject>Virology</subject><issn>2058-5276</issn><issn>2058-5276</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kc1u1DAUhSMEolXbF2CBLLFhY7Ad_yQbpNEApVIrpA6wtZzkZsYlsYPtjDTseHM8nVJKF6xs6Xw-9x6fonhByRtKyupt5FRIjgmjmJCq4pg-KY4ZERUWTMmnD-5HxVmMN4QQKpmUlXxeHJWlYkoRdlz8ulidU4E7mMB14BIybbJbk6x3yPcobQBFcNEHdPV-IZCNyLhk1t7Zn9ChZndLrBbXK7z03zBDk5mMdXiw3wFNwScwEVDyCLamA7TxMSHrnEmA7DjOzqbdafGsN0OEs7vzpPj68cOX5Sd8-fn8Yrm4xK3gJOG-hpZS00BDmaCSNko2vANeEpUlwqGSrGesVn2vKDd9C0CEaqQkDBTUtDwp3h18p7kZoWtz2GAGPQU7mrDT3lj9r-LsRq_9Vlf7_655Nnh9ZxD8jxli0qONLQyDceDnqJkgjBFZliyjrx6hN34OLsfbU1LRktciU-xAtcHHGKC_X4YSvR-qDyXrXLK-LVnvY7x8GOP-yZ9KM1AegJglt4bwd_Z_bH8DBT2yXQ</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Liu, GuanQun</creator><creator>Lee, Jung-Hyun</creator><creator>Parker, Zachary M.</creator><creator>Acharya, Dhiraj</creator><creator>Chiang, Jessica J.</creator><creator>van Gent, Michiel</creator><creator>Riedl, William</creator><creator>Davis-Gardner, Meredith E.</creator><creator>Wies, Effi</creator><creator>Chiang, Cindy</creator><creator>Gack, Michaela U.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FH</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2520-7625</orcidid><orcidid>https://orcid.org/0000-0003-3798-5360</orcidid><orcidid>https://orcid.org/0000-0002-2163-2598</orcidid><orcidid>https://orcid.org/0000-0003-1913-0027</orcidid></search><sort><creationdate>20210401</creationdate><title>ISG15-dependent activation of the sensor MDA5 is antagonized by the SARS-CoV-2 papain-like protease to evade host innate immunity</title><author>Liu, GuanQun ; Lee, Jung-Hyun ; Parker, Zachary M. ; Acharya, Dhiraj ; Chiang, Jessica J. ; van Gent, Michiel ; Riedl, William ; Davis-Gardner, Meredith E. ; Wies, Effi ; Chiang, Cindy ; Gack, Michaela U.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-f9ec11abeb125161b76b4de4307f9e04e862f2297ff714afcee057b6602e7e913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>13</topic><topic>13/109</topic><topic>13/21</topic><topic>13/31</topic><topic>38</topic><topic>38/89</topic><topic>38/90</topic><topic>631/250</topic><topic>631/250/262</topic><topic>631/250/262/2106</topic><topic>631/250/262/2106/2518</topic><topic>82/29</topic><topic>82/58</topic><topic>96</topic><topic>96/95</topic><topic>Aedes</topic><topic>Animals</topic><topic>Antiviral agents</topic><topic>Antiviral state</topic><topic>Biomedical and Life Sciences</topic><topic>Caspase</topic><topic>Chlorocebus aethiops</topic><topic>Coronaviridae</topic><topic>Coronavirus Papain-Like Proteases - metabolism</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Cricetinae</topic><topic>Cytokines - metabolism</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>Immunity, Innate</topic><topic>Infectious Diseases</topic><topic>Innate immunity</topic><topic>Interferon</topic><topic>Interferon-Induced Helicase, IFIH1 - antagonists & inhibitors</topic><topic>Interferon-Induced Helicase, IFIH1 - metabolism</topic><topic>Leukocytes, Mononuclear</topic><topic>Life Sciences</topic><topic>Medical Microbiology</topic><topic>Melanoma</topic><topic>Mice</topic><topic>Microbiology</topic><topic>Oligomerization</topic><topic>Pandemics</topic><topic>Papain</topic><topic>Parasitology</topic><topic>Proteinase</topic><topic>SARS-CoV-2 - enzymology</topic><topic>SARS-CoV-2 - immunology</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Ubiquitins - metabolism</topic><topic>Vero Cells</topic><topic>Virology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, GuanQun</creatorcontrib><creatorcontrib>Lee, Jung-Hyun</creatorcontrib><creatorcontrib>Parker, Zachary M.</creatorcontrib><creatorcontrib>Acharya, Dhiraj</creatorcontrib><creatorcontrib>Chiang, Jessica J.</creatorcontrib><creatorcontrib>van Gent, Michiel</creatorcontrib><creatorcontrib>Riedl, William</creatorcontrib><creatorcontrib>Davis-Gardner, Meredith E.</creatorcontrib><creatorcontrib>Wies, Effi</creatorcontrib><creatorcontrib>Chiang, Cindy</creatorcontrib><creatorcontrib>Gack, Michaela U.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Biological Science Collection</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, GuanQun</au><au>Lee, Jung-Hyun</au><au>Parker, Zachary M.</au><au>Acharya, Dhiraj</au><au>Chiang, Jessica J.</au><au>van Gent, Michiel</au><au>Riedl, William</au><au>Davis-Gardner, Meredith E.</au><au>Wies, Effi</au><au>Chiang, Cindy</au><au>Gack, Michaela U.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ISG15-dependent activation of the sensor MDA5 is antagonized by the SARS-CoV-2 papain-like protease to evade host innate immunity</atitle><jtitle>Nature microbiology</jtitle><stitle>Nat Microbiol</stitle><addtitle>Nat Microbiol</addtitle><date>2021-04-01</date><risdate>2021</risdate><volume>6</volume><issue>4</issue><spage>467</spage><epage>478</epage><pages>467-478</pages><issn>2058-5276</issn><eissn>2058-5276</eissn><abstract>Activation of the RIG-I-like receptors, retinoic-acid inducible gene I (RIG-I) and melanoma differentiation-associated protein 5 (MDA5), establishes an antiviral state by upregulating interferon (IFN)-stimulated genes (ISGs). Among these is ISG15, the mechanistic roles of which in innate immunity still remain enigmatic. In the present study, we report that ISG15 conjugation is essential for antiviral IFN responses mediated by the viral RNA sensor MDA5. ISGylation of the caspase activation and recruitment domains of MDA5 promotes its oligomerization and thereby triggers activation of innate immunity against a range of viruses, including coronaviruses, flaviviruses and picornaviruses. The ISG15-dependent activation of MDA5 is antagonized through direct de-ISGylation mediated by the papain-like protease of SARS-CoV-2, a recently emerged coronavirus that has caused the COVID-19 pandemic. Our work demonstrates a crucial role for ISG15 in the MDA5-mediated antiviral response, and also identifies a key immune evasion mechanism of SARS-CoV-2, which may be targeted for the development of new antivirals and vaccines to combat COVID-19.
ISG15 conjugation is essential to activate the RIG-I-like receptor MDA5 and trigger antiviral responses. SARS-CoV-2 suppresses MDA5 activation by direct PLpro-mediated de-ISGylation to escape innate immunity.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33727702</pmid><doi>10.1038/s41564-021-00884-1</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2520-7625</orcidid><orcidid>https://orcid.org/0000-0003-3798-5360</orcidid><orcidid>https://orcid.org/0000-0002-2163-2598</orcidid><orcidid>https://orcid.org/0000-0003-1913-0027</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2058-5276 |
ispartof | Nature microbiology, 2021-04, Vol.6 (4), p.467-478 |
issn | 2058-5276 2058-5276 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8103894 |
source | MEDLINE; SpringerLink |
subjects | 13 13/109 13/21 13/31 38 38/89 38/90 631/250 631/250/262 631/250/262/2106 631/250/262/2106/2518 82/29 82/58 96 96/95 Aedes Animals Antiviral agents Antiviral state Biomedical and Life Sciences Caspase Chlorocebus aethiops Coronaviridae Coronavirus Papain-Like Proteases - metabolism Coronaviruses COVID-19 Cricetinae Cytokines - metabolism HEK293 Cells Humans Immunity, Innate Infectious Diseases Innate immunity Interferon Interferon-Induced Helicase, IFIH1 - antagonists & inhibitors Interferon-Induced Helicase, IFIH1 - metabolism Leukocytes, Mononuclear Life Sciences Medical Microbiology Melanoma Mice Microbiology Oligomerization Pandemics Papain Parasitology Proteinase SARS-CoV-2 - enzymology SARS-CoV-2 - immunology Severe acute respiratory syndrome coronavirus 2 Ubiquitins - metabolism Vero Cells Virology |
title | ISG15-dependent activation of the sensor MDA5 is antagonized by the SARS-CoV-2 papain-like protease to evade host innate immunity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T14%3A22%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ISG15-dependent%20activation%20of%20the%20sensor%20MDA5%20is%20antagonized%20by%20the%20SARS-CoV-2%20papain-like%20protease%20to%20evade%20host%20innate%20immunity&rft.jtitle=Nature%20microbiology&rft.au=Liu,%20GuanQun&rft.date=2021-04-01&rft.volume=6&rft.issue=4&rft.spage=467&rft.epage=478&rft.pages=467-478&rft.issn=2058-5276&rft.eissn=2058-5276&rft_id=info:doi/10.1038/s41564-021-00884-1&rft_dat=%3Cproquest_pubme%3E2502206332%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2506713495&rft_id=info:pmid/33727702&rfr_iscdi=true |