The RNA Polymerase α Subunit Recognizes the DNA Shape of the Upstream Promoter Element

We demonstrate here that the α subunit C-terminal domain of Escherichia coli RNA polymerase (αCTD) recognizes the upstream promoter (UP) DNA element via its characteristic minor groove shape and electrostatic potential. In two compositionally distinct crystallized assemblies, a pair of αCTD subunits...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Easton) 2020-12, Vol.59 (48), p.4523-4532
Hauptverfasser: Lara-Gonzalez, Samuel, Dantas Machado, Ana Carolina, Rao, Satyanarayan, Napoli, Andrew A, Birktoft, Jens, Di Felice, Rosa, Rohs, Remo, Lawson, Catherine L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4532
container_issue 48
container_start_page 4523
container_title Biochemistry (Easton)
container_volume 59
creator Lara-Gonzalez, Samuel
Dantas Machado, Ana Carolina
Rao, Satyanarayan
Napoli, Andrew A
Birktoft, Jens
Di Felice, Rosa
Rohs, Remo
Lawson, Catherine L
description We demonstrate here that the α subunit C-terminal domain of Escherichia coli RNA polymerase (αCTD) recognizes the upstream promoter (UP) DNA element via its characteristic minor groove shape and electrostatic potential. In two compositionally distinct crystallized assemblies, a pair of αCTD subunits bind in tandem to the UP element consensus A-tract that is 6 bp in length (A6-tract), each with their arginine 265 guanidinium group inserted into the minor groove. The A6-tract minor groove is significantly narrowed in these crystal structures, as well as in computationally predicted structures of free and bound DNA duplexes derived by Monte Carlo and molecular dynamics simulations, respectively. The negative electrostatic potential of free A6-tract DNA is substantially enhanced compared to that of generic DNA. Shortening the A-tract by 1 bp is shown to “knock out” binding of the second αCTD through widening of the minor groove. Furthermore, in computationally derived structures with arginine 265 mutated to alanine in either αCTD, either with or without the “knockout” DNA mutation, contact with the DNA is perturbed, highlighting the importance of arginine 265 in achieving αCTD–DNA binding. These results demonstrate that the importance of the DNA shape in sequence-dependent recognition of DNA by RNA polymerase is comparable to that of certain transcription factors.
doi_str_mv 10.1021/acs.biochem.0c00571
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8100869</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2461863900</sourcerecordid><originalsourceid>FETCH-LOGICAL-a445t-5bd68b44ba212e9e0c2d3346afed6b1a50b9b80bfad30efd4290f78185e1cc563</originalsourceid><addsrcrecordid>eNp9kc1O3DAURi3UqkyhT4BUedlNhmvH9sQbJAS0RUIt4kcsLdu5YYKSeLATJPpWfZE-Uw0zRWXDyrJ9vu9aPoTsMZgz4Gzf-jR3bfBL7OfgAeSCbZEZkxwKobV8R2YAoAquFWyTjynd5a2AhfhAtsuSg9RCzsjN1RLpxY9Deh66xx6jTUj__KaXk5uGdqQX6MPt0P7CRMcMHmfwcmlXSEPzfHC9SmNE29PzGPowYqQnHfY4jLvkfWO7hJ826w65_npydfS9OPv57fTo8KywQsixkK5WlRPCWc44agTP67IUyjZYK8esBKddBa6xdQnY1IJraBYVqyQy76Uqd8jBunc1uR5rn0dH25lVbHsbH02wrXl9M7RLcxseTMUAKqVzwZdNQQz3E6bR9G3y2HV2wDAlw4VilSo1QEbLNepjSCli8zKGgXlSYrISs1FiNkpy6vP_L3zJ_HOQgf018JS-C1Mc8oe9WfkXWP6cNA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2461863900</pqid></control><display><type>article</type><title>The RNA Polymerase α Subunit Recognizes the DNA Shape of the Upstream Promoter Element</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Lara-Gonzalez, Samuel ; Dantas Machado, Ana Carolina ; Rao, Satyanarayan ; Napoli, Andrew A ; Birktoft, Jens ; Di Felice, Rosa ; Rohs, Remo ; Lawson, Catherine L</creator><creatorcontrib>Lara-Gonzalez, Samuel ; Dantas Machado, Ana Carolina ; Rao, Satyanarayan ; Napoli, Andrew A ; Birktoft, Jens ; Di Felice, Rosa ; Rohs, Remo ; Lawson, Catherine L</creatorcontrib><description>We demonstrate here that the α subunit C-terminal domain of Escherichia coli RNA polymerase (αCTD) recognizes the upstream promoter (UP) DNA element via its characteristic minor groove shape and electrostatic potential. In two compositionally distinct crystallized assemblies, a pair of αCTD subunits bind in tandem to the UP element consensus A-tract that is 6 bp in length (A6-tract), each with their arginine 265 guanidinium group inserted into the minor groove. The A6-tract minor groove is significantly narrowed in these crystal structures, as well as in computationally predicted structures of free and bound DNA duplexes derived by Monte Carlo and molecular dynamics simulations, respectively. The negative electrostatic potential of free A6-tract DNA is substantially enhanced compared to that of generic DNA. Shortening the A-tract by 1 bp is shown to “knock out” binding of the second αCTD through widening of the minor groove. Furthermore, in computationally derived structures with arginine 265 mutated to alanine in either αCTD, either with or without the “knockout” DNA mutation, contact with the DNA is perturbed, highlighting the importance of arginine 265 in achieving αCTD–DNA binding. These results demonstrate that the importance of the DNA shape in sequence-dependent recognition of DNA by RNA polymerase is comparable to that of certain transcription factors.</description><identifier>ISSN: 0006-2960</identifier><identifier>EISSN: 1520-4995</identifier><identifier>DOI: 10.1021/acs.biochem.0c00571</identifier><identifier>PMID: 33205945</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Binding Sites ; Crystallography, X-Ray ; Cyclic AMP Receptor Protein - chemistry ; Cyclic AMP Receptor Protein - genetics ; Cyclic AMP Receptor Protein - metabolism ; DNA, Bacterial - chemistry ; DNA, Bacterial - genetics ; DNA, Bacterial - metabolism ; DNA-Directed RNA Polymerases - chemistry ; DNA-Directed RNA Polymerases - genetics ; DNA-Directed RNA Polymerases - metabolism ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Escherichia coli Proteins - chemistry ; Escherichia coli Proteins - genetics ; Escherichia coli Proteins - metabolism ; Gene Knockout Techniques ; Genes, Bacterial ; Models, Molecular ; Mutation ; Nucleic Acid Conformation ; Promoter Regions, Genetic ; Protein Domains ; Static Electricity</subject><ispartof>Biochemistry (Easton), 2020-12, Vol.59 (48), p.4523-4532</ispartof><rights>2020 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a445t-5bd68b44ba212e9e0c2d3346afed6b1a50b9b80bfad30efd4290f78185e1cc563</citedby><cites>FETCH-LOGICAL-a445t-5bd68b44ba212e9e0c2d3346afed6b1a50b9b80bfad30efd4290f78185e1cc563</cites><orcidid>0000-0002-3313-0165 ; 0000-0002-3261-7035 ; 0000-0001-7678-3505 ; 0000-0002-7772-6550 ; 0000-0003-1752-1884</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.biochem.0c00571$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.biochem.0c00571$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33205945$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lara-Gonzalez, Samuel</creatorcontrib><creatorcontrib>Dantas Machado, Ana Carolina</creatorcontrib><creatorcontrib>Rao, Satyanarayan</creatorcontrib><creatorcontrib>Napoli, Andrew A</creatorcontrib><creatorcontrib>Birktoft, Jens</creatorcontrib><creatorcontrib>Di Felice, Rosa</creatorcontrib><creatorcontrib>Rohs, Remo</creatorcontrib><creatorcontrib>Lawson, Catherine L</creatorcontrib><title>The RNA Polymerase α Subunit Recognizes the DNA Shape of the Upstream Promoter Element</title><title>Biochemistry (Easton)</title><addtitle>Biochemistry</addtitle><description>We demonstrate here that the α subunit C-terminal domain of Escherichia coli RNA polymerase (αCTD) recognizes the upstream promoter (UP) DNA element via its characteristic minor groove shape and electrostatic potential. In two compositionally distinct crystallized assemblies, a pair of αCTD subunits bind in tandem to the UP element consensus A-tract that is 6 bp in length (A6-tract), each with their arginine 265 guanidinium group inserted into the minor groove. The A6-tract minor groove is significantly narrowed in these crystal structures, as well as in computationally predicted structures of free and bound DNA duplexes derived by Monte Carlo and molecular dynamics simulations, respectively. The negative electrostatic potential of free A6-tract DNA is substantially enhanced compared to that of generic DNA. Shortening the A-tract by 1 bp is shown to “knock out” binding of the second αCTD through widening of the minor groove. Furthermore, in computationally derived structures with arginine 265 mutated to alanine in either αCTD, either with or without the “knockout” DNA mutation, contact with the DNA is perturbed, highlighting the importance of arginine 265 in achieving αCTD–DNA binding. These results demonstrate that the importance of the DNA shape in sequence-dependent recognition of DNA by RNA polymerase is comparable to that of certain transcription factors.</description><subject>Binding Sites</subject><subject>Crystallography, X-Ray</subject><subject>Cyclic AMP Receptor Protein - chemistry</subject><subject>Cyclic AMP Receptor Protein - genetics</subject><subject>Cyclic AMP Receptor Protein - metabolism</subject><subject>DNA, Bacterial - chemistry</subject><subject>DNA, Bacterial - genetics</subject><subject>DNA, Bacterial - metabolism</subject><subject>DNA-Directed RNA Polymerases - chemistry</subject><subject>DNA-Directed RNA Polymerases - genetics</subject><subject>DNA-Directed RNA Polymerases - metabolism</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Gene Knockout Techniques</subject><subject>Genes, Bacterial</subject><subject>Models, Molecular</subject><subject>Mutation</subject><subject>Nucleic Acid Conformation</subject><subject>Promoter Regions, Genetic</subject><subject>Protein Domains</subject><subject>Static Electricity</subject><issn>0006-2960</issn><issn>1520-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1O3DAURi3UqkyhT4BUedlNhmvH9sQbJAS0RUIt4kcsLdu5YYKSeLATJPpWfZE-Uw0zRWXDyrJ9vu9aPoTsMZgz4Gzf-jR3bfBL7OfgAeSCbZEZkxwKobV8R2YAoAquFWyTjynd5a2AhfhAtsuSg9RCzsjN1RLpxY9Deh66xx6jTUj__KaXk5uGdqQX6MPt0P7CRMcMHmfwcmlXSEPzfHC9SmNE29PzGPowYqQnHfY4jLvkfWO7hJ826w65_npydfS9OPv57fTo8KywQsixkK5WlRPCWc44agTP67IUyjZYK8esBKddBa6xdQnY1IJraBYVqyQy76Uqd8jBunc1uR5rn0dH25lVbHsbH02wrXl9M7RLcxseTMUAKqVzwZdNQQz3E6bR9G3y2HV2wDAlw4VilSo1QEbLNepjSCli8zKGgXlSYrISs1FiNkpy6vP_L3zJ_HOQgf018JS-C1Mc8oe9WfkXWP6cNA</recordid><startdate>20201208</startdate><enddate>20201208</enddate><creator>Lara-Gonzalez, Samuel</creator><creator>Dantas Machado, Ana Carolina</creator><creator>Rao, Satyanarayan</creator><creator>Napoli, Andrew A</creator><creator>Birktoft, Jens</creator><creator>Di Felice, Rosa</creator><creator>Rohs, Remo</creator><creator>Lawson, Catherine L</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3313-0165</orcidid><orcidid>https://orcid.org/0000-0002-3261-7035</orcidid><orcidid>https://orcid.org/0000-0001-7678-3505</orcidid><orcidid>https://orcid.org/0000-0002-7772-6550</orcidid><orcidid>https://orcid.org/0000-0003-1752-1884</orcidid></search><sort><creationdate>20201208</creationdate><title>The RNA Polymerase α Subunit Recognizes the DNA Shape of the Upstream Promoter Element</title><author>Lara-Gonzalez, Samuel ; Dantas Machado, Ana Carolina ; Rao, Satyanarayan ; Napoli, Andrew A ; Birktoft, Jens ; Di Felice, Rosa ; Rohs, Remo ; Lawson, Catherine L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a445t-5bd68b44ba212e9e0c2d3346afed6b1a50b9b80bfad30efd4290f78185e1cc563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Binding Sites</topic><topic>Crystallography, X-Ray</topic><topic>Cyclic AMP Receptor Protein - chemistry</topic><topic>Cyclic AMP Receptor Protein - genetics</topic><topic>Cyclic AMP Receptor Protein - metabolism</topic><topic>DNA, Bacterial - chemistry</topic><topic>DNA, Bacterial - genetics</topic><topic>DNA, Bacterial - metabolism</topic><topic>DNA-Directed RNA Polymerases - chemistry</topic><topic>DNA-Directed RNA Polymerases - genetics</topic><topic>DNA-Directed RNA Polymerases - metabolism</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Gene Knockout Techniques</topic><topic>Genes, Bacterial</topic><topic>Models, Molecular</topic><topic>Mutation</topic><topic>Nucleic Acid Conformation</topic><topic>Promoter Regions, Genetic</topic><topic>Protein Domains</topic><topic>Static Electricity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lara-Gonzalez, Samuel</creatorcontrib><creatorcontrib>Dantas Machado, Ana Carolina</creatorcontrib><creatorcontrib>Rao, Satyanarayan</creatorcontrib><creatorcontrib>Napoli, Andrew A</creatorcontrib><creatorcontrib>Birktoft, Jens</creatorcontrib><creatorcontrib>Di Felice, Rosa</creatorcontrib><creatorcontrib>Rohs, Remo</creatorcontrib><creatorcontrib>Lawson, Catherine L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biochemistry (Easton)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lara-Gonzalez, Samuel</au><au>Dantas Machado, Ana Carolina</au><au>Rao, Satyanarayan</au><au>Napoli, Andrew A</au><au>Birktoft, Jens</au><au>Di Felice, Rosa</au><au>Rohs, Remo</au><au>Lawson, Catherine L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The RNA Polymerase α Subunit Recognizes the DNA Shape of the Upstream Promoter Element</atitle><jtitle>Biochemistry (Easton)</jtitle><addtitle>Biochemistry</addtitle><date>2020-12-08</date><risdate>2020</risdate><volume>59</volume><issue>48</issue><spage>4523</spage><epage>4532</epage><pages>4523-4532</pages><issn>0006-2960</issn><eissn>1520-4995</eissn><abstract>We demonstrate here that the α subunit C-terminal domain of Escherichia coli RNA polymerase (αCTD) recognizes the upstream promoter (UP) DNA element via its characteristic minor groove shape and electrostatic potential. In two compositionally distinct crystallized assemblies, a pair of αCTD subunits bind in tandem to the UP element consensus A-tract that is 6 bp in length (A6-tract), each with their arginine 265 guanidinium group inserted into the minor groove. The A6-tract minor groove is significantly narrowed in these crystal structures, as well as in computationally predicted structures of free and bound DNA duplexes derived by Monte Carlo and molecular dynamics simulations, respectively. The negative electrostatic potential of free A6-tract DNA is substantially enhanced compared to that of generic DNA. Shortening the A-tract by 1 bp is shown to “knock out” binding of the second αCTD through widening of the minor groove. Furthermore, in computationally derived structures with arginine 265 mutated to alanine in either αCTD, either with or without the “knockout” DNA mutation, contact with the DNA is perturbed, highlighting the importance of arginine 265 in achieving αCTD–DNA binding. These results demonstrate that the importance of the DNA shape in sequence-dependent recognition of DNA by RNA polymerase is comparable to that of certain transcription factors.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33205945</pmid><doi>10.1021/acs.biochem.0c00571</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3313-0165</orcidid><orcidid>https://orcid.org/0000-0002-3261-7035</orcidid><orcidid>https://orcid.org/0000-0001-7678-3505</orcidid><orcidid>https://orcid.org/0000-0002-7772-6550</orcidid><orcidid>https://orcid.org/0000-0003-1752-1884</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-2960
ispartof Biochemistry (Easton), 2020-12, Vol.59 (48), p.4523-4532
issn 0006-2960
1520-4995
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8100869
source MEDLINE; American Chemical Society Journals
subjects Binding Sites
Crystallography, X-Ray
Cyclic AMP Receptor Protein - chemistry
Cyclic AMP Receptor Protein - genetics
Cyclic AMP Receptor Protein - metabolism
DNA, Bacterial - chemistry
DNA, Bacterial - genetics
DNA, Bacterial - metabolism
DNA-Directed RNA Polymerases - chemistry
DNA-Directed RNA Polymerases - genetics
DNA-Directed RNA Polymerases - metabolism
Escherichia coli - genetics
Escherichia coli - metabolism
Escherichia coli Proteins - chemistry
Escherichia coli Proteins - genetics
Escherichia coli Proteins - metabolism
Gene Knockout Techniques
Genes, Bacterial
Models, Molecular
Mutation
Nucleic Acid Conformation
Promoter Regions, Genetic
Protein Domains
Static Electricity
title The RNA Polymerase α Subunit Recognizes the DNA Shape of the Upstream Promoter Element
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T20%3A37%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20RNA%20Polymerase%20%CE%B1%20Subunit%20Recognizes%20the%20DNA%20Shape%20of%20the%20Upstream%20Promoter%20Element&rft.jtitle=Biochemistry%20(Easton)&rft.au=Lara-Gonzalez,%20Samuel&rft.date=2020-12-08&rft.volume=59&rft.issue=48&rft.spage=4523&rft.epage=4532&rft.pages=4523-4532&rft.issn=0006-2960&rft.eissn=1520-4995&rft_id=info:doi/10.1021/acs.biochem.0c00571&rft_dat=%3Cproquest_pubme%3E2461863900%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2461863900&rft_id=info:pmid/33205945&rfr_iscdi=true