The RNA Polymerase α Subunit Recognizes the DNA Shape of the Upstream Promoter Element
We demonstrate here that the α subunit C-terminal domain of Escherichia coli RNA polymerase (αCTD) recognizes the upstream promoter (UP) DNA element via its characteristic minor groove shape and electrostatic potential. In two compositionally distinct crystallized assemblies, a pair of αCTD subunits...
Gespeichert in:
Veröffentlicht in: | Biochemistry (Easton) 2020-12, Vol.59 (48), p.4523-4532 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4532 |
---|---|
container_issue | 48 |
container_start_page | 4523 |
container_title | Biochemistry (Easton) |
container_volume | 59 |
creator | Lara-Gonzalez, Samuel Dantas Machado, Ana Carolina Rao, Satyanarayan Napoli, Andrew A Birktoft, Jens Di Felice, Rosa Rohs, Remo Lawson, Catherine L |
description | We demonstrate here that the α subunit C-terminal domain of Escherichia coli RNA polymerase (αCTD) recognizes the upstream promoter (UP) DNA element via its characteristic minor groove shape and electrostatic potential. In two compositionally distinct crystallized assemblies, a pair of αCTD subunits bind in tandem to the UP element consensus A-tract that is 6 bp in length (A6-tract), each with their arginine 265 guanidinium group inserted into the minor groove. The A6-tract minor groove is significantly narrowed in these crystal structures, as well as in computationally predicted structures of free and bound DNA duplexes derived by Monte Carlo and molecular dynamics simulations, respectively. The negative electrostatic potential of free A6-tract DNA is substantially enhanced compared to that of generic DNA. Shortening the A-tract by 1 bp is shown to “knock out” binding of the second αCTD through widening of the minor groove. Furthermore, in computationally derived structures with arginine 265 mutated to alanine in either αCTD, either with or without the “knockout” DNA mutation, contact with the DNA is perturbed, highlighting the importance of arginine 265 in achieving αCTD–DNA binding. These results demonstrate that the importance of the DNA shape in sequence-dependent recognition of DNA by RNA polymerase is comparable to that of certain transcription factors. |
doi_str_mv | 10.1021/acs.biochem.0c00571 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8100869</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2461863900</sourcerecordid><originalsourceid>FETCH-LOGICAL-a445t-5bd68b44ba212e9e0c2d3346afed6b1a50b9b80bfad30efd4290f78185e1cc563</originalsourceid><addsrcrecordid>eNp9kc1O3DAURi3UqkyhT4BUedlNhmvH9sQbJAS0RUIt4kcsLdu5YYKSeLATJPpWfZE-Uw0zRWXDyrJ9vu9aPoTsMZgz4Gzf-jR3bfBL7OfgAeSCbZEZkxwKobV8R2YAoAquFWyTjynd5a2AhfhAtsuSg9RCzsjN1RLpxY9Deh66xx6jTUj__KaXk5uGdqQX6MPt0P7CRMcMHmfwcmlXSEPzfHC9SmNE29PzGPowYqQnHfY4jLvkfWO7hJ826w65_npydfS9OPv57fTo8KywQsixkK5WlRPCWc44agTP67IUyjZYK8esBKddBa6xdQnY1IJraBYVqyQy76Uqd8jBunc1uR5rn0dH25lVbHsbH02wrXl9M7RLcxseTMUAKqVzwZdNQQz3E6bR9G3y2HV2wDAlw4VilSo1QEbLNepjSCli8zKGgXlSYrISs1FiNkpy6vP_L3zJ_HOQgf018JS-C1Mc8oe9WfkXWP6cNA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2461863900</pqid></control><display><type>article</type><title>The RNA Polymerase α Subunit Recognizes the DNA Shape of the Upstream Promoter Element</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Lara-Gonzalez, Samuel ; Dantas Machado, Ana Carolina ; Rao, Satyanarayan ; Napoli, Andrew A ; Birktoft, Jens ; Di Felice, Rosa ; Rohs, Remo ; Lawson, Catherine L</creator><creatorcontrib>Lara-Gonzalez, Samuel ; Dantas Machado, Ana Carolina ; Rao, Satyanarayan ; Napoli, Andrew A ; Birktoft, Jens ; Di Felice, Rosa ; Rohs, Remo ; Lawson, Catherine L</creatorcontrib><description>We demonstrate here that the α subunit C-terminal domain of Escherichia coli RNA polymerase (αCTD) recognizes the upstream promoter (UP) DNA element via its characteristic minor groove shape and electrostatic potential. In two compositionally distinct crystallized assemblies, a pair of αCTD subunits bind in tandem to the UP element consensus A-tract that is 6 bp in length (A6-tract), each with their arginine 265 guanidinium group inserted into the minor groove. The A6-tract minor groove is significantly narrowed in these crystal structures, as well as in computationally predicted structures of free and bound DNA duplexes derived by Monte Carlo and molecular dynamics simulations, respectively. The negative electrostatic potential of free A6-tract DNA is substantially enhanced compared to that of generic DNA. Shortening the A-tract by 1 bp is shown to “knock out” binding of the second αCTD through widening of the minor groove. Furthermore, in computationally derived structures with arginine 265 mutated to alanine in either αCTD, either with or without the “knockout” DNA mutation, contact with the DNA is perturbed, highlighting the importance of arginine 265 in achieving αCTD–DNA binding. These results demonstrate that the importance of the DNA shape in sequence-dependent recognition of DNA by RNA polymerase is comparable to that of certain transcription factors.</description><identifier>ISSN: 0006-2960</identifier><identifier>EISSN: 1520-4995</identifier><identifier>DOI: 10.1021/acs.biochem.0c00571</identifier><identifier>PMID: 33205945</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Binding Sites ; Crystallography, X-Ray ; Cyclic AMP Receptor Protein - chemistry ; Cyclic AMP Receptor Protein - genetics ; Cyclic AMP Receptor Protein - metabolism ; DNA, Bacterial - chemistry ; DNA, Bacterial - genetics ; DNA, Bacterial - metabolism ; DNA-Directed RNA Polymerases - chemistry ; DNA-Directed RNA Polymerases - genetics ; DNA-Directed RNA Polymerases - metabolism ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Escherichia coli Proteins - chemistry ; Escherichia coli Proteins - genetics ; Escherichia coli Proteins - metabolism ; Gene Knockout Techniques ; Genes, Bacterial ; Models, Molecular ; Mutation ; Nucleic Acid Conformation ; Promoter Regions, Genetic ; Protein Domains ; Static Electricity</subject><ispartof>Biochemistry (Easton), 2020-12, Vol.59 (48), p.4523-4532</ispartof><rights>2020 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a445t-5bd68b44ba212e9e0c2d3346afed6b1a50b9b80bfad30efd4290f78185e1cc563</citedby><cites>FETCH-LOGICAL-a445t-5bd68b44ba212e9e0c2d3346afed6b1a50b9b80bfad30efd4290f78185e1cc563</cites><orcidid>0000-0002-3313-0165 ; 0000-0002-3261-7035 ; 0000-0001-7678-3505 ; 0000-0002-7772-6550 ; 0000-0003-1752-1884</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.biochem.0c00571$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.biochem.0c00571$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33205945$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lara-Gonzalez, Samuel</creatorcontrib><creatorcontrib>Dantas Machado, Ana Carolina</creatorcontrib><creatorcontrib>Rao, Satyanarayan</creatorcontrib><creatorcontrib>Napoli, Andrew A</creatorcontrib><creatorcontrib>Birktoft, Jens</creatorcontrib><creatorcontrib>Di Felice, Rosa</creatorcontrib><creatorcontrib>Rohs, Remo</creatorcontrib><creatorcontrib>Lawson, Catherine L</creatorcontrib><title>The RNA Polymerase α Subunit Recognizes the DNA Shape of the Upstream Promoter Element</title><title>Biochemistry (Easton)</title><addtitle>Biochemistry</addtitle><description>We demonstrate here that the α subunit C-terminal domain of Escherichia coli RNA polymerase (αCTD) recognizes the upstream promoter (UP) DNA element via its characteristic minor groove shape and electrostatic potential. In two compositionally distinct crystallized assemblies, a pair of αCTD subunits bind in tandem to the UP element consensus A-tract that is 6 bp in length (A6-tract), each with their arginine 265 guanidinium group inserted into the minor groove. The A6-tract minor groove is significantly narrowed in these crystal structures, as well as in computationally predicted structures of free and bound DNA duplexes derived by Monte Carlo and molecular dynamics simulations, respectively. The negative electrostatic potential of free A6-tract DNA is substantially enhanced compared to that of generic DNA. Shortening the A-tract by 1 bp is shown to “knock out” binding of the second αCTD through widening of the minor groove. Furthermore, in computationally derived structures with arginine 265 mutated to alanine in either αCTD, either with or without the “knockout” DNA mutation, contact with the DNA is perturbed, highlighting the importance of arginine 265 in achieving αCTD–DNA binding. These results demonstrate that the importance of the DNA shape in sequence-dependent recognition of DNA by RNA polymerase is comparable to that of certain transcription factors.</description><subject>Binding Sites</subject><subject>Crystallography, X-Ray</subject><subject>Cyclic AMP Receptor Protein - chemistry</subject><subject>Cyclic AMP Receptor Protein - genetics</subject><subject>Cyclic AMP Receptor Protein - metabolism</subject><subject>DNA, Bacterial - chemistry</subject><subject>DNA, Bacterial - genetics</subject><subject>DNA, Bacterial - metabolism</subject><subject>DNA-Directed RNA Polymerases - chemistry</subject><subject>DNA-Directed RNA Polymerases - genetics</subject><subject>DNA-Directed RNA Polymerases - metabolism</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Gene Knockout Techniques</subject><subject>Genes, Bacterial</subject><subject>Models, Molecular</subject><subject>Mutation</subject><subject>Nucleic Acid Conformation</subject><subject>Promoter Regions, Genetic</subject><subject>Protein Domains</subject><subject>Static Electricity</subject><issn>0006-2960</issn><issn>1520-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1O3DAURi3UqkyhT4BUedlNhmvH9sQbJAS0RUIt4kcsLdu5YYKSeLATJPpWfZE-Uw0zRWXDyrJ9vu9aPoTsMZgz4Gzf-jR3bfBL7OfgAeSCbZEZkxwKobV8R2YAoAquFWyTjynd5a2AhfhAtsuSg9RCzsjN1RLpxY9Deh66xx6jTUj__KaXk5uGdqQX6MPt0P7CRMcMHmfwcmlXSEPzfHC9SmNE29PzGPowYqQnHfY4jLvkfWO7hJ826w65_npydfS9OPv57fTo8KywQsixkK5WlRPCWc44agTP67IUyjZYK8esBKddBa6xdQnY1IJraBYVqyQy76Uqd8jBunc1uR5rn0dH25lVbHsbH02wrXl9M7RLcxseTMUAKqVzwZdNQQz3E6bR9G3y2HV2wDAlw4VilSo1QEbLNepjSCli8zKGgXlSYrISs1FiNkpy6vP_L3zJ_HOQgf018JS-C1Mc8oe9WfkXWP6cNA</recordid><startdate>20201208</startdate><enddate>20201208</enddate><creator>Lara-Gonzalez, Samuel</creator><creator>Dantas Machado, Ana Carolina</creator><creator>Rao, Satyanarayan</creator><creator>Napoli, Andrew A</creator><creator>Birktoft, Jens</creator><creator>Di Felice, Rosa</creator><creator>Rohs, Remo</creator><creator>Lawson, Catherine L</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3313-0165</orcidid><orcidid>https://orcid.org/0000-0002-3261-7035</orcidid><orcidid>https://orcid.org/0000-0001-7678-3505</orcidid><orcidid>https://orcid.org/0000-0002-7772-6550</orcidid><orcidid>https://orcid.org/0000-0003-1752-1884</orcidid></search><sort><creationdate>20201208</creationdate><title>The RNA Polymerase α Subunit Recognizes the DNA Shape of the Upstream Promoter Element</title><author>Lara-Gonzalez, Samuel ; Dantas Machado, Ana Carolina ; Rao, Satyanarayan ; Napoli, Andrew A ; Birktoft, Jens ; Di Felice, Rosa ; Rohs, Remo ; Lawson, Catherine L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a445t-5bd68b44ba212e9e0c2d3346afed6b1a50b9b80bfad30efd4290f78185e1cc563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Binding Sites</topic><topic>Crystallography, X-Ray</topic><topic>Cyclic AMP Receptor Protein - chemistry</topic><topic>Cyclic AMP Receptor Protein - genetics</topic><topic>Cyclic AMP Receptor Protein - metabolism</topic><topic>DNA, Bacterial - chemistry</topic><topic>DNA, Bacterial - genetics</topic><topic>DNA, Bacterial - metabolism</topic><topic>DNA-Directed RNA Polymerases - chemistry</topic><topic>DNA-Directed RNA Polymerases - genetics</topic><topic>DNA-Directed RNA Polymerases - metabolism</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Gene Knockout Techniques</topic><topic>Genes, Bacterial</topic><topic>Models, Molecular</topic><topic>Mutation</topic><topic>Nucleic Acid Conformation</topic><topic>Promoter Regions, Genetic</topic><topic>Protein Domains</topic><topic>Static Electricity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lara-Gonzalez, Samuel</creatorcontrib><creatorcontrib>Dantas Machado, Ana Carolina</creatorcontrib><creatorcontrib>Rao, Satyanarayan</creatorcontrib><creatorcontrib>Napoli, Andrew A</creatorcontrib><creatorcontrib>Birktoft, Jens</creatorcontrib><creatorcontrib>Di Felice, Rosa</creatorcontrib><creatorcontrib>Rohs, Remo</creatorcontrib><creatorcontrib>Lawson, Catherine L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biochemistry (Easton)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lara-Gonzalez, Samuel</au><au>Dantas Machado, Ana Carolina</au><au>Rao, Satyanarayan</au><au>Napoli, Andrew A</au><au>Birktoft, Jens</au><au>Di Felice, Rosa</au><au>Rohs, Remo</au><au>Lawson, Catherine L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The RNA Polymerase α Subunit Recognizes the DNA Shape of the Upstream Promoter Element</atitle><jtitle>Biochemistry (Easton)</jtitle><addtitle>Biochemistry</addtitle><date>2020-12-08</date><risdate>2020</risdate><volume>59</volume><issue>48</issue><spage>4523</spage><epage>4532</epage><pages>4523-4532</pages><issn>0006-2960</issn><eissn>1520-4995</eissn><abstract>We demonstrate here that the α subunit C-terminal domain of Escherichia coli RNA polymerase (αCTD) recognizes the upstream promoter (UP) DNA element via its characteristic minor groove shape and electrostatic potential. In two compositionally distinct crystallized assemblies, a pair of αCTD subunits bind in tandem to the UP element consensus A-tract that is 6 bp in length (A6-tract), each with their arginine 265 guanidinium group inserted into the minor groove. The A6-tract minor groove is significantly narrowed in these crystal structures, as well as in computationally predicted structures of free and bound DNA duplexes derived by Monte Carlo and molecular dynamics simulations, respectively. The negative electrostatic potential of free A6-tract DNA is substantially enhanced compared to that of generic DNA. Shortening the A-tract by 1 bp is shown to “knock out” binding of the second αCTD through widening of the minor groove. Furthermore, in computationally derived structures with arginine 265 mutated to alanine in either αCTD, either with or without the “knockout” DNA mutation, contact with the DNA is perturbed, highlighting the importance of arginine 265 in achieving αCTD–DNA binding. These results demonstrate that the importance of the DNA shape in sequence-dependent recognition of DNA by RNA polymerase is comparable to that of certain transcription factors.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33205945</pmid><doi>10.1021/acs.biochem.0c00571</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3313-0165</orcidid><orcidid>https://orcid.org/0000-0002-3261-7035</orcidid><orcidid>https://orcid.org/0000-0001-7678-3505</orcidid><orcidid>https://orcid.org/0000-0002-7772-6550</orcidid><orcidid>https://orcid.org/0000-0003-1752-1884</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-2960 |
ispartof | Biochemistry (Easton), 2020-12, Vol.59 (48), p.4523-4532 |
issn | 0006-2960 1520-4995 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8100869 |
source | MEDLINE; American Chemical Society Journals |
subjects | Binding Sites Crystallography, X-Ray Cyclic AMP Receptor Protein - chemistry Cyclic AMP Receptor Protein - genetics Cyclic AMP Receptor Protein - metabolism DNA, Bacterial - chemistry DNA, Bacterial - genetics DNA, Bacterial - metabolism DNA-Directed RNA Polymerases - chemistry DNA-Directed RNA Polymerases - genetics DNA-Directed RNA Polymerases - metabolism Escherichia coli - genetics Escherichia coli - metabolism Escherichia coli Proteins - chemistry Escherichia coli Proteins - genetics Escherichia coli Proteins - metabolism Gene Knockout Techniques Genes, Bacterial Models, Molecular Mutation Nucleic Acid Conformation Promoter Regions, Genetic Protein Domains Static Electricity |
title | The RNA Polymerase α Subunit Recognizes the DNA Shape of the Upstream Promoter Element |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T20%3A37%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20RNA%20Polymerase%20%CE%B1%20Subunit%20Recognizes%20the%20DNA%20Shape%20of%20the%20Upstream%20Promoter%20Element&rft.jtitle=Biochemistry%20(Easton)&rft.au=Lara-Gonzalez,%20Samuel&rft.date=2020-12-08&rft.volume=59&rft.issue=48&rft.spage=4523&rft.epage=4532&rft.pages=4523-4532&rft.issn=0006-2960&rft.eissn=1520-4995&rft_id=info:doi/10.1021/acs.biochem.0c00571&rft_dat=%3Cproquest_pubme%3E2461863900%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2461863900&rft_id=info:pmid/33205945&rfr_iscdi=true |