Biophysical analysis of the plant-specific GIPC sphingolipids reveals multiple modes of membrane regulation

The plant plasma membrane (PM) is an essential barrier between the cell and the external environment, controlling signal perception and transmission. It consists of an asymmetrical lipid bilayer made up of three different lipid classes: sphingolipids, sterols, and phospholipids. The glycosyl inosito...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2021-01, Vol.296, p.100602-100602, Article 100602
Hauptverfasser: Mamode Cassim, Adiilah, Navon, Yotam, Gao, Yu, Decossas, Marion, Fouillen, Laetitia, Grélard, Axelle, Nagano, Minoru, Lambert, Olivier, Bahammou, Delphine, Van Delft, Pierre, Maneta-Peyret, Lilly, Simon-Plas, Françoise, Heux, Laurent, Jean, Bruno, Fragneto, Giovanna, Mortimer, Jenny C., Deleu, Magali, Lins, Laurence, Mongrand, Sébastien
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 100602
container_issue
container_start_page 100602
container_title The Journal of biological chemistry
container_volume 296
creator Mamode Cassim, Adiilah
Navon, Yotam
Gao, Yu
Decossas, Marion
Fouillen, Laetitia
Grélard, Axelle
Nagano, Minoru
Lambert, Olivier
Bahammou, Delphine
Van Delft, Pierre
Maneta-Peyret, Lilly
Simon-Plas, Françoise
Heux, Laurent
Jean, Bruno
Fragneto, Giovanna
Mortimer, Jenny C.
Deleu, Magali
Lins, Laurence
Mongrand, Sébastien
description The plant plasma membrane (PM) is an essential barrier between the cell and the external environment, controlling signal perception and transmission. It consists of an asymmetrical lipid bilayer made up of three different lipid classes: sphingolipids, sterols, and phospholipids. The glycosyl inositol phosphoryl ceramides (GIPCs), representing up to 40% of total sphingolipids, are assumed to be almost exclusively in the outer leaflet of the PM. However, their biological role and properties are poorly defined. In this study, we investigated the role of GIPCs in membrane organization. Because GIPCs are not commercially available, we developed a protocol to extract and isolate GIPC-enriched fractions from eudicots (cauliflower and tobacco) and monocots (leek and rice). Lipidomic analysis confirmed the presence of trihydroxylated long chain bases and 2-hydroxylated very long-chain fatty acids up to 26 carbon atoms. The glycan head groups of the GIPCs from monocots and dicots were analyzed by gas chromatograph–mass spectrometry, revealing different sugar moieties. Multiple biophysics tools, namely Langmuir monolayer, ζ-Potential, light scattering, neutron reflectivity, solid state 2H-NMR, and molecular modeling, were used to investigate the physical properties of the GIPCs, as well as their interaction with free and conjugated phytosterols. We showed that GIPCs increase the thickness and electronegativity of model membranes, interact differentially with the different phytosterols species, and regulate the gel-to-fluid phase transition during temperature variations. These results unveil the multiple roles played by GIPCs in the plant PM.
doi_str_mv 10.1016/j.jbc.2021.100602
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8099651</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925821003823</els_id><sourcerecordid>2507667244</sourcerecordid><originalsourceid>FETCH-LOGICAL-c622t-8e68e844d82c18692a130af522f1864b9bbaba5a80e9d7e99aae6fe78c33cc7e3</originalsourceid><addsrcrecordid>eNp9Uk1v1DAQjRCIlsIP4IIiTnDI4o_EcYSEVFbQVloJDiBxGznOZOPFiVM7Wan_HmdTKuCAL57xvPc0nnlJ8pKSDSVUvDtsDrXeMMJozIkg7FFyTonkGS_oj8fJOYmVrGKFPEuehXAg8eQVfZqccV7KghfVefLzo3FjdxeMVjZVg7IxDKlr06nDdLRqmLIwojat0enVzddtGsbODHtnzWiakHo8orIh7Wc7mdFi2rsGT_we-9qrASNkP1s1GTc8T560EYwv7u-L5PvnT9-219nuy9XN9nKXacHYlEkUEmWeN5JpKkXFFOVEtQVjbUzzuqprVatCSYJVU2JVKYWixVJqzrUukV8kH1bdca57bDQOk1cWRm965e_AKQN_VwbTwd4dQZKqEgWNAq9XARcmA0GbCXWn3TCgnoBKVgiZRxBfQdbgHsH52sCRndRP8Wz3oDTUCIwJCUxQVpSR9XZldf90dH25g-WNcCrjythxaePN_T-8u50xTNCboNHGraCbA7CClEKULF-aoStUexeCx_ZBmxJYvAIHiF6BxSuweiVyXv05pgfGb3NEwPsVgHFZR4N-GQUOGhvjl0k0zvxH_hdZ2dBH</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2507667244</pqid></control><display><type>article</type><title>Biophysical analysis of the plant-specific GIPC sphingolipids reveals multiple modes of membrane regulation</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Mamode Cassim, Adiilah ; Navon, Yotam ; Gao, Yu ; Decossas, Marion ; Fouillen, Laetitia ; Grélard, Axelle ; Nagano, Minoru ; Lambert, Olivier ; Bahammou, Delphine ; Van Delft, Pierre ; Maneta-Peyret, Lilly ; Simon-Plas, Françoise ; Heux, Laurent ; Jean, Bruno ; Fragneto, Giovanna ; Mortimer, Jenny C. ; Deleu, Magali ; Lins, Laurence ; Mongrand, Sébastien</creator><creatorcontrib>Mamode Cassim, Adiilah ; Navon, Yotam ; Gao, Yu ; Decossas, Marion ; Fouillen, Laetitia ; Grélard, Axelle ; Nagano, Minoru ; Lambert, Olivier ; Bahammou, Delphine ; Van Delft, Pierre ; Maneta-Peyret, Lilly ; Simon-Plas, Françoise ; Heux, Laurent ; Jean, Bruno ; Fragneto, Giovanna ; Mortimer, Jenny C. ; Deleu, Magali ; Lins, Laurence ; Mongrand, Sébastien ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><description>The plant plasma membrane (PM) is an essential barrier between the cell and the external environment, controlling signal perception and transmission. It consists of an asymmetrical lipid bilayer made up of three different lipid classes: sphingolipids, sterols, and phospholipids. The glycosyl inositol phosphoryl ceramides (GIPCs), representing up to 40% of total sphingolipids, are assumed to be almost exclusively in the outer leaflet of the PM. However, their biological role and properties are poorly defined. In this study, we investigated the role of GIPCs in membrane organization. Because GIPCs are not commercially available, we developed a protocol to extract and isolate GIPC-enriched fractions from eudicots (cauliflower and tobacco) and monocots (leek and rice). Lipidomic analysis confirmed the presence of trihydroxylated long chain bases and 2-hydroxylated very long-chain fatty acids up to 26 carbon atoms. The glycan head groups of the GIPCs from monocots and dicots were analyzed by gas chromatograph–mass spectrometry, revealing different sugar moieties. Multiple biophysics tools, namely Langmuir monolayer, ζ-Potential, light scattering, neutron reflectivity, solid state 2H-NMR, and molecular modeling, were used to investigate the physical properties of the GIPCs, as well as their interaction with free and conjugated phytosterols. We showed that GIPCs increase the thickness and electronegativity of model membranes, interact differentially with the different phytosterols species, and regulate the gel-to-fluid phase transition during temperature variations. These results unveil the multiple roles played by GIPCs in the plant PM.</description><identifier>ISSN: 0021-9258</identifier><identifier>ISSN: 1083-351X</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1016/j.jbc.2021.100602</identifier><identifier>PMID: 33785359</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>BASIC BIOLOGICAL SCIENCES ; Biochemistry, biophysics &amp; molecular biology ; Biochimie, biophysique &amp; biologie moléculaire ; cryo-EM ; GIPC ; Langmuir monolayer ; Life Sciences ; lipidomics ; modeling ; modelling ; neutron reflectivity ; phytosterol ; Plant ; plasma membrane ; purification ; Sciences du vivant ; solid state NMR ; sphingolipids ; Vegetal Biology ; ζ-Potential</subject><ispartof>The Journal of biological chemistry, 2021-01, Vol.296, p.100602-100602, Article 100602</ispartof><rights>2021 The Authors</rights><rights>Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2021 The Authors 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c622t-8e68e844d82c18692a130af522f1864b9bbaba5a80e9d7e99aae6fe78c33cc7e3</citedby><cites>FETCH-LOGICAL-c622t-8e68e844d82c18692a130af522f1864b9bbaba5a80e9d7e99aae6fe78c33cc7e3</cites><orcidid>0000-0002-9198-015X ; 0000-0002-7950-0504 ; 0000-0003-0810-4309 ; 0000-0002-7919-2695 ; 0000-0002-8696-442X ; 0000-0002-5651-8082 ; 0000-0002-1934-4263 ; 0000-0002-1204-9296 ; 0000-0001-8255-2965 ; 0000-0002-6708-2253 ; 0009-0000-6251-3037 ; 0000-0002-4157-7186 ; 0000-0001-5839-8427 ; 0000-0001-7772-6748 ; 000000029198015X ; 0000000308104309 ; 000000028696442X ; 0000000279192695 ; 0000000279500504</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8099651/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8099651/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33785359$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03189252$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1825684$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Mamode Cassim, Adiilah</creatorcontrib><creatorcontrib>Navon, Yotam</creatorcontrib><creatorcontrib>Gao, Yu</creatorcontrib><creatorcontrib>Decossas, Marion</creatorcontrib><creatorcontrib>Fouillen, Laetitia</creatorcontrib><creatorcontrib>Grélard, Axelle</creatorcontrib><creatorcontrib>Nagano, Minoru</creatorcontrib><creatorcontrib>Lambert, Olivier</creatorcontrib><creatorcontrib>Bahammou, Delphine</creatorcontrib><creatorcontrib>Van Delft, Pierre</creatorcontrib><creatorcontrib>Maneta-Peyret, Lilly</creatorcontrib><creatorcontrib>Simon-Plas, Françoise</creatorcontrib><creatorcontrib>Heux, Laurent</creatorcontrib><creatorcontrib>Jean, Bruno</creatorcontrib><creatorcontrib>Fragneto, Giovanna</creatorcontrib><creatorcontrib>Mortimer, Jenny C.</creatorcontrib><creatorcontrib>Deleu, Magali</creatorcontrib><creatorcontrib>Lins, Laurence</creatorcontrib><creatorcontrib>Mongrand, Sébastien</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Biophysical analysis of the plant-specific GIPC sphingolipids reveals multiple modes of membrane regulation</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>The plant plasma membrane (PM) is an essential barrier between the cell and the external environment, controlling signal perception and transmission. It consists of an asymmetrical lipid bilayer made up of three different lipid classes: sphingolipids, sterols, and phospholipids. The glycosyl inositol phosphoryl ceramides (GIPCs), representing up to 40% of total sphingolipids, are assumed to be almost exclusively in the outer leaflet of the PM. However, their biological role and properties are poorly defined. In this study, we investigated the role of GIPCs in membrane organization. Because GIPCs are not commercially available, we developed a protocol to extract and isolate GIPC-enriched fractions from eudicots (cauliflower and tobacco) and monocots (leek and rice). Lipidomic analysis confirmed the presence of trihydroxylated long chain bases and 2-hydroxylated very long-chain fatty acids up to 26 carbon atoms. The glycan head groups of the GIPCs from monocots and dicots were analyzed by gas chromatograph–mass spectrometry, revealing different sugar moieties. Multiple biophysics tools, namely Langmuir monolayer, ζ-Potential, light scattering, neutron reflectivity, solid state 2H-NMR, and molecular modeling, were used to investigate the physical properties of the GIPCs, as well as their interaction with free and conjugated phytosterols. We showed that GIPCs increase the thickness and electronegativity of model membranes, interact differentially with the different phytosterols species, and regulate the gel-to-fluid phase transition during temperature variations. These results unveil the multiple roles played by GIPCs in the plant PM.</description><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Biochemistry, biophysics &amp; molecular biology</subject><subject>Biochimie, biophysique &amp; biologie moléculaire</subject><subject>cryo-EM</subject><subject>GIPC</subject><subject>Langmuir monolayer</subject><subject>Life Sciences</subject><subject>lipidomics</subject><subject>modeling</subject><subject>modelling</subject><subject>neutron reflectivity</subject><subject>phytosterol</subject><subject>Plant</subject><subject>plasma membrane</subject><subject>purification</subject><subject>Sciences du vivant</subject><subject>solid state NMR</subject><subject>sphingolipids</subject><subject>Vegetal Biology</subject><subject>ζ-Potential</subject><issn>0021-9258</issn><issn>1083-351X</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9Uk1v1DAQjRCIlsIP4IIiTnDI4o_EcYSEVFbQVloJDiBxGznOZOPFiVM7Wan_HmdTKuCAL57xvPc0nnlJ8pKSDSVUvDtsDrXeMMJozIkg7FFyTonkGS_oj8fJOYmVrGKFPEuehXAg8eQVfZqccV7KghfVefLzo3FjdxeMVjZVg7IxDKlr06nDdLRqmLIwojat0enVzddtGsbODHtnzWiakHo8orIh7Wc7mdFi2rsGT_we-9qrASNkP1s1GTc8T560EYwv7u-L5PvnT9-219nuy9XN9nKXacHYlEkUEmWeN5JpKkXFFOVEtQVjbUzzuqprVatCSYJVU2JVKYWixVJqzrUukV8kH1bdca57bDQOk1cWRm965e_AKQN_VwbTwd4dQZKqEgWNAq9XARcmA0GbCXWn3TCgnoBKVgiZRxBfQdbgHsH52sCRndRP8Wz3oDTUCIwJCUxQVpSR9XZldf90dH25g-WNcCrjythxaePN_T-8u50xTNCboNHGraCbA7CClEKULF-aoStUexeCx_ZBmxJYvAIHiF6BxSuweiVyXv05pgfGb3NEwPsVgHFZR4N-GQUOGhvjl0k0zvxH_hdZ2dBH</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Mamode Cassim, Adiilah</creator><creator>Navon, Yotam</creator><creator>Gao, Yu</creator><creator>Decossas, Marion</creator><creator>Fouillen, Laetitia</creator><creator>Grélard, Axelle</creator><creator>Nagano, Minoru</creator><creator>Lambert, Olivier</creator><creator>Bahammou, Delphine</creator><creator>Van Delft, Pierre</creator><creator>Maneta-Peyret, Lilly</creator><creator>Simon-Plas, Françoise</creator><creator>Heux, Laurent</creator><creator>Jean, Bruno</creator><creator>Fragneto, Giovanna</creator><creator>Mortimer, Jenny C.</creator><creator>Deleu, Magali</creator><creator>Lins, Laurence</creator><creator>Mongrand, Sébastien</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>Q33</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9198-015X</orcidid><orcidid>https://orcid.org/0000-0002-7950-0504</orcidid><orcidid>https://orcid.org/0000-0003-0810-4309</orcidid><orcidid>https://orcid.org/0000-0002-7919-2695</orcidid><orcidid>https://orcid.org/0000-0002-8696-442X</orcidid><orcidid>https://orcid.org/0000-0002-5651-8082</orcidid><orcidid>https://orcid.org/0000-0002-1934-4263</orcidid><orcidid>https://orcid.org/0000-0002-1204-9296</orcidid><orcidid>https://orcid.org/0000-0001-8255-2965</orcidid><orcidid>https://orcid.org/0000-0002-6708-2253</orcidid><orcidid>https://orcid.org/0009-0000-6251-3037</orcidid><orcidid>https://orcid.org/0000-0002-4157-7186</orcidid><orcidid>https://orcid.org/0000-0001-5839-8427</orcidid><orcidid>https://orcid.org/0000-0001-7772-6748</orcidid><orcidid>https://orcid.org/000000029198015X</orcidid><orcidid>https://orcid.org/0000000308104309</orcidid><orcidid>https://orcid.org/000000028696442X</orcidid><orcidid>https://orcid.org/0000000279192695</orcidid><orcidid>https://orcid.org/0000000279500504</orcidid></search><sort><creationdate>20210101</creationdate><title>Biophysical analysis of the plant-specific GIPC sphingolipids reveals multiple modes of membrane regulation</title><author>Mamode Cassim, Adiilah ; Navon, Yotam ; Gao, Yu ; Decossas, Marion ; Fouillen, Laetitia ; Grélard, Axelle ; Nagano, Minoru ; Lambert, Olivier ; Bahammou, Delphine ; Van Delft, Pierre ; Maneta-Peyret, Lilly ; Simon-Plas, Françoise ; Heux, Laurent ; Jean, Bruno ; Fragneto, Giovanna ; Mortimer, Jenny C. ; Deleu, Magali ; Lins, Laurence ; Mongrand, Sébastien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c622t-8e68e844d82c18692a130af522f1864b9bbaba5a80e9d7e99aae6fe78c33cc7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Biochemistry, biophysics &amp; molecular biology</topic><topic>Biochimie, biophysique &amp; biologie moléculaire</topic><topic>cryo-EM</topic><topic>GIPC</topic><topic>Langmuir monolayer</topic><topic>Life Sciences</topic><topic>lipidomics</topic><topic>modeling</topic><topic>modelling</topic><topic>neutron reflectivity</topic><topic>phytosterol</topic><topic>Plant</topic><topic>plasma membrane</topic><topic>purification</topic><topic>Sciences du vivant</topic><topic>solid state NMR</topic><topic>sphingolipids</topic><topic>Vegetal Biology</topic><topic>ζ-Potential</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mamode Cassim, Adiilah</creatorcontrib><creatorcontrib>Navon, Yotam</creatorcontrib><creatorcontrib>Gao, Yu</creatorcontrib><creatorcontrib>Decossas, Marion</creatorcontrib><creatorcontrib>Fouillen, Laetitia</creatorcontrib><creatorcontrib>Grélard, Axelle</creatorcontrib><creatorcontrib>Nagano, Minoru</creatorcontrib><creatorcontrib>Lambert, Olivier</creatorcontrib><creatorcontrib>Bahammou, Delphine</creatorcontrib><creatorcontrib>Van Delft, Pierre</creatorcontrib><creatorcontrib>Maneta-Peyret, Lilly</creatorcontrib><creatorcontrib>Simon-Plas, Françoise</creatorcontrib><creatorcontrib>Heux, Laurent</creatorcontrib><creatorcontrib>Jean, Bruno</creatorcontrib><creatorcontrib>Fragneto, Giovanna</creatorcontrib><creatorcontrib>Mortimer, Jenny C.</creatorcontrib><creatorcontrib>Deleu, Magali</creatorcontrib><creatorcontrib>Lins, Laurence</creatorcontrib><creatorcontrib>Mongrand, Sébastien</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>Université de Liège - Open Repository and Bibliography (ORBI)</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mamode Cassim, Adiilah</au><au>Navon, Yotam</au><au>Gao, Yu</au><au>Decossas, Marion</au><au>Fouillen, Laetitia</au><au>Grélard, Axelle</au><au>Nagano, Minoru</au><au>Lambert, Olivier</au><au>Bahammou, Delphine</au><au>Van Delft, Pierre</au><au>Maneta-Peyret, Lilly</au><au>Simon-Plas, Françoise</au><au>Heux, Laurent</au><au>Jean, Bruno</au><au>Fragneto, Giovanna</au><au>Mortimer, Jenny C.</au><au>Deleu, Magali</au><au>Lins, Laurence</au><au>Mongrand, Sébastien</au><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biophysical analysis of the plant-specific GIPC sphingolipids reveals multiple modes of membrane regulation</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>296</volume><spage>100602</spage><epage>100602</epage><pages>100602-100602</pages><artnum>100602</artnum><issn>0021-9258</issn><issn>1083-351X</issn><eissn>1083-351X</eissn><abstract>The plant plasma membrane (PM) is an essential barrier between the cell and the external environment, controlling signal perception and transmission. It consists of an asymmetrical lipid bilayer made up of three different lipid classes: sphingolipids, sterols, and phospholipids. The glycosyl inositol phosphoryl ceramides (GIPCs), representing up to 40% of total sphingolipids, are assumed to be almost exclusively in the outer leaflet of the PM. However, their biological role and properties are poorly defined. In this study, we investigated the role of GIPCs in membrane organization. Because GIPCs are not commercially available, we developed a protocol to extract and isolate GIPC-enriched fractions from eudicots (cauliflower and tobacco) and monocots (leek and rice). Lipidomic analysis confirmed the presence of trihydroxylated long chain bases and 2-hydroxylated very long-chain fatty acids up to 26 carbon atoms. The glycan head groups of the GIPCs from monocots and dicots were analyzed by gas chromatograph–mass spectrometry, revealing different sugar moieties. Multiple biophysics tools, namely Langmuir monolayer, ζ-Potential, light scattering, neutron reflectivity, solid state 2H-NMR, and molecular modeling, were used to investigate the physical properties of the GIPCs, as well as their interaction with free and conjugated phytosterols. We showed that GIPCs increase the thickness and electronegativity of model membranes, interact differentially with the different phytosterols species, and regulate the gel-to-fluid phase transition during temperature variations. These results unveil the multiple roles played by GIPCs in the plant PM.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>33785359</pmid><doi>10.1016/j.jbc.2021.100602</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-9198-015X</orcidid><orcidid>https://orcid.org/0000-0002-7950-0504</orcidid><orcidid>https://orcid.org/0000-0003-0810-4309</orcidid><orcidid>https://orcid.org/0000-0002-7919-2695</orcidid><orcidid>https://orcid.org/0000-0002-8696-442X</orcidid><orcidid>https://orcid.org/0000-0002-5651-8082</orcidid><orcidid>https://orcid.org/0000-0002-1934-4263</orcidid><orcidid>https://orcid.org/0000-0002-1204-9296</orcidid><orcidid>https://orcid.org/0000-0001-8255-2965</orcidid><orcidid>https://orcid.org/0000-0002-6708-2253</orcidid><orcidid>https://orcid.org/0009-0000-6251-3037</orcidid><orcidid>https://orcid.org/0000-0002-4157-7186</orcidid><orcidid>https://orcid.org/0000-0001-5839-8427</orcidid><orcidid>https://orcid.org/0000-0001-7772-6748</orcidid><orcidid>https://orcid.org/000000029198015X</orcidid><orcidid>https://orcid.org/0000000308104309</orcidid><orcidid>https://orcid.org/000000028696442X</orcidid><orcidid>https://orcid.org/0000000279192695</orcidid><orcidid>https://orcid.org/0000000279500504</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2021-01, Vol.296, p.100602-100602, Article 100602
issn 0021-9258
1083-351X
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8099651
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects BASIC BIOLOGICAL SCIENCES
Biochemistry, biophysics & molecular biology
Biochimie, biophysique & biologie moléculaire
cryo-EM
GIPC
Langmuir monolayer
Life Sciences
lipidomics
modeling
modelling
neutron reflectivity
phytosterol
Plant
plasma membrane
purification
Sciences du vivant
solid state NMR
sphingolipids
Vegetal Biology
ζ-Potential
title Biophysical analysis of the plant-specific GIPC sphingolipids reveals multiple modes of membrane regulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T04%3A27%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biophysical%20analysis%20of%20the%20plant-specific%20GIPC%20sphingolipids%20reveals%20multiple%20modes%20of%20membrane%20regulation&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Mamode%20Cassim,%20Adiilah&rft.aucorp=Lawrence%20Berkeley%20National%20Lab.%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2021-01-01&rft.volume=296&rft.spage=100602&rft.epage=100602&rft.pages=100602-100602&rft.artnum=100602&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1016/j.jbc.2021.100602&rft_dat=%3Cproquest_pubme%3E2507667244%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2507667244&rft_id=info:pmid/33785359&rft_els_id=S0021925821003823&rfr_iscdi=true