Biophysical analysis of the plant-specific GIPC sphingolipids reveals multiple modes of membrane regulation
The plant plasma membrane (PM) is an essential barrier between the cell and the external environment, controlling signal perception and transmission. It consists of an asymmetrical lipid bilayer made up of three different lipid classes: sphingolipids, sterols, and phospholipids. The glycosyl inosito...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2021-01, Vol.296, p.100602-100602, Article 100602 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 100602 |
---|---|
container_issue | |
container_start_page | 100602 |
container_title | The Journal of biological chemistry |
container_volume | 296 |
creator | Mamode Cassim, Adiilah Navon, Yotam Gao, Yu Decossas, Marion Fouillen, Laetitia Grélard, Axelle Nagano, Minoru Lambert, Olivier Bahammou, Delphine Van Delft, Pierre Maneta-Peyret, Lilly Simon-Plas, Françoise Heux, Laurent Jean, Bruno Fragneto, Giovanna Mortimer, Jenny C. Deleu, Magali Lins, Laurence Mongrand, Sébastien |
description | The plant plasma membrane (PM) is an essential barrier between the cell and the external environment, controlling signal perception and transmission. It consists of an asymmetrical lipid bilayer made up of three different lipid classes: sphingolipids, sterols, and phospholipids. The glycosyl inositol phosphoryl ceramides (GIPCs), representing up to 40% of total sphingolipids, are assumed to be almost exclusively in the outer leaflet of the PM. However, their biological role and properties are poorly defined. In this study, we investigated the role of GIPCs in membrane organization. Because GIPCs are not commercially available, we developed a protocol to extract and isolate GIPC-enriched fractions from eudicots (cauliflower and tobacco) and monocots (leek and rice). Lipidomic analysis confirmed the presence of trihydroxylated long chain bases and 2-hydroxylated very long-chain fatty acids up to 26 carbon atoms. The glycan head groups of the GIPCs from monocots and dicots were analyzed by gas chromatograph–mass spectrometry, revealing different sugar moieties. Multiple biophysics tools, namely Langmuir monolayer, ζ-Potential, light scattering, neutron reflectivity, solid state 2H-NMR, and molecular modeling, were used to investigate the physical properties of the GIPCs, as well as their interaction with free and conjugated phytosterols. We showed that GIPCs increase the thickness and electronegativity of model membranes, interact differentially with the different phytosterols species, and regulate the gel-to-fluid phase transition during temperature variations. These results unveil the multiple roles played by GIPCs in the plant PM. |
doi_str_mv | 10.1016/j.jbc.2021.100602 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8099651</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925821003823</els_id><sourcerecordid>2507667244</sourcerecordid><originalsourceid>FETCH-LOGICAL-c622t-8e68e844d82c18692a130af522f1864b9bbaba5a80e9d7e99aae6fe78c33cc7e3</originalsourceid><addsrcrecordid>eNp9Uk1v1DAQjRCIlsIP4IIiTnDI4o_EcYSEVFbQVloJDiBxGznOZOPFiVM7Wan_HmdTKuCAL57xvPc0nnlJ8pKSDSVUvDtsDrXeMMJozIkg7FFyTonkGS_oj8fJOYmVrGKFPEuehXAg8eQVfZqccV7KghfVefLzo3FjdxeMVjZVg7IxDKlr06nDdLRqmLIwojat0enVzddtGsbODHtnzWiakHo8orIh7Wc7mdFi2rsGT_we-9qrASNkP1s1GTc8T560EYwv7u-L5PvnT9-219nuy9XN9nKXacHYlEkUEmWeN5JpKkXFFOVEtQVjbUzzuqprVatCSYJVU2JVKYWixVJqzrUukV8kH1bdca57bDQOk1cWRm965e_AKQN_VwbTwd4dQZKqEgWNAq9XARcmA0GbCXWn3TCgnoBKVgiZRxBfQdbgHsH52sCRndRP8Wz3oDTUCIwJCUxQVpSR9XZldf90dH25g-WNcCrjythxaePN_T-8u50xTNCboNHGraCbA7CClEKULF-aoStUexeCx_ZBmxJYvAIHiF6BxSuweiVyXv05pgfGb3NEwPsVgHFZR4N-GQUOGhvjl0k0zvxH_hdZ2dBH</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2507667244</pqid></control><display><type>article</type><title>Biophysical analysis of the plant-specific GIPC sphingolipids reveals multiple modes of membrane regulation</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Mamode Cassim, Adiilah ; Navon, Yotam ; Gao, Yu ; Decossas, Marion ; Fouillen, Laetitia ; Grélard, Axelle ; Nagano, Minoru ; Lambert, Olivier ; Bahammou, Delphine ; Van Delft, Pierre ; Maneta-Peyret, Lilly ; Simon-Plas, Françoise ; Heux, Laurent ; Jean, Bruno ; Fragneto, Giovanna ; Mortimer, Jenny C. ; Deleu, Magali ; Lins, Laurence ; Mongrand, Sébastien</creator><creatorcontrib>Mamode Cassim, Adiilah ; Navon, Yotam ; Gao, Yu ; Decossas, Marion ; Fouillen, Laetitia ; Grélard, Axelle ; Nagano, Minoru ; Lambert, Olivier ; Bahammou, Delphine ; Van Delft, Pierre ; Maneta-Peyret, Lilly ; Simon-Plas, Françoise ; Heux, Laurent ; Jean, Bruno ; Fragneto, Giovanna ; Mortimer, Jenny C. ; Deleu, Magali ; Lins, Laurence ; Mongrand, Sébastien ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><description>The plant plasma membrane (PM) is an essential barrier between the cell and the external environment, controlling signal perception and transmission. It consists of an asymmetrical lipid bilayer made up of three different lipid classes: sphingolipids, sterols, and phospholipids. The glycosyl inositol phosphoryl ceramides (GIPCs), representing up to 40% of total sphingolipids, are assumed to be almost exclusively in the outer leaflet of the PM. However, their biological role and properties are poorly defined. In this study, we investigated the role of GIPCs in membrane organization. Because GIPCs are not commercially available, we developed a protocol to extract and isolate GIPC-enriched fractions from eudicots (cauliflower and tobacco) and monocots (leek and rice). Lipidomic analysis confirmed the presence of trihydroxylated long chain bases and 2-hydroxylated very long-chain fatty acids up to 26 carbon atoms. The glycan head groups of the GIPCs from monocots and dicots were analyzed by gas chromatograph–mass spectrometry, revealing different sugar moieties. Multiple biophysics tools, namely Langmuir monolayer, ζ-Potential, light scattering, neutron reflectivity, solid state 2H-NMR, and molecular modeling, were used to investigate the physical properties of the GIPCs, as well as their interaction with free and conjugated phytosterols. We showed that GIPCs increase the thickness and electronegativity of model membranes, interact differentially with the different phytosterols species, and regulate the gel-to-fluid phase transition during temperature variations. These results unveil the multiple roles played by GIPCs in the plant PM.</description><identifier>ISSN: 0021-9258</identifier><identifier>ISSN: 1083-351X</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1016/j.jbc.2021.100602</identifier><identifier>PMID: 33785359</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>BASIC BIOLOGICAL SCIENCES ; Biochemistry, biophysics & molecular biology ; Biochimie, biophysique & biologie moléculaire ; cryo-EM ; GIPC ; Langmuir monolayer ; Life Sciences ; lipidomics ; modeling ; modelling ; neutron reflectivity ; phytosterol ; Plant ; plasma membrane ; purification ; Sciences du vivant ; solid state NMR ; sphingolipids ; Vegetal Biology ; ζ-Potential</subject><ispartof>The Journal of biological chemistry, 2021-01, Vol.296, p.100602-100602, Article 100602</ispartof><rights>2021 The Authors</rights><rights>Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2021 The Authors 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c622t-8e68e844d82c18692a130af522f1864b9bbaba5a80e9d7e99aae6fe78c33cc7e3</citedby><cites>FETCH-LOGICAL-c622t-8e68e844d82c18692a130af522f1864b9bbaba5a80e9d7e99aae6fe78c33cc7e3</cites><orcidid>0000-0002-9198-015X ; 0000-0002-7950-0504 ; 0000-0003-0810-4309 ; 0000-0002-7919-2695 ; 0000-0002-8696-442X ; 0000-0002-5651-8082 ; 0000-0002-1934-4263 ; 0000-0002-1204-9296 ; 0000-0001-8255-2965 ; 0000-0002-6708-2253 ; 0009-0000-6251-3037 ; 0000-0002-4157-7186 ; 0000-0001-5839-8427 ; 0000-0001-7772-6748 ; 000000029198015X ; 0000000308104309 ; 000000028696442X ; 0000000279192695 ; 0000000279500504</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8099651/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8099651/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33785359$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03189252$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1825684$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Mamode Cassim, Adiilah</creatorcontrib><creatorcontrib>Navon, Yotam</creatorcontrib><creatorcontrib>Gao, Yu</creatorcontrib><creatorcontrib>Decossas, Marion</creatorcontrib><creatorcontrib>Fouillen, Laetitia</creatorcontrib><creatorcontrib>Grélard, Axelle</creatorcontrib><creatorcontrib>Nagano, Minoru</creatorcontrib><creatorcontrib>Lambert, Olivier</creatorcontrib><creatorcontrib>Bahammou, Delphine</creatorcontrib><creatorcontrib>Van Delft, Pierre</creatorcontrib><creatorcontrib>Maneta-Peyret, Lilly</creatorcontrib><creatorcontrib>Simon-Plas, Françoise</creatorcontrib><creatorcontrib>Heux, Laurent</creatorcontrib><creatorcontrib>Jean, Bruno</creatorcontrib><creatorcontrib>Fragneto, Giovanna</creatorcontrib><creatorcontrib>Mortimer, Jenny C.</creatorcontrib><creatorcontrib>Deleu, Magali</creatorcontrib><creatorcontrib>Lins, Laurence</creatorcontrib><creatorcontrib>Mongrand, Sébastien</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Biophysical analysis of the plant-specific GIPC sphingolipids reveals multiple modes of membrane regulation</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>The plant plasma membrane (PM) is an essential barrier between the cell and the external environment, controlling signal perception and transmission. It consists of an asymmetrical lipid bilayer made up of three different lipid classes: sphingolipids, sterols, and phospholipids. The glycosyl inositol phosphoryl ceramides (GIPCs), representing up to 40% of total sphingolipids, are assumed to be almost exclusively in the outer leaflet of the PM. However, their biological role and properties are poorly defined. In this study, we investigated the role of GIPCs in membrane organization. Because GIPCs are not commercially available, we developed a protocol to extract and isolate GIPC-enriched fractions from eudicots (cauliflower and tobacco) and monocots (leek and rice). Lipidomic analysis confirmed the presence of trihydroxylated long chain bases and 2-hydroxylated very long-chain fatty acids up to 26 carbon atoms. The glycan head groups of the GIPCs from monocots and dicots were analyzed by gas chromatograph–mass spectrometry, revealing different sugar moieties. Multiple biophysics tools, namely Langmuir monolayer, ζ-Potential, light scattering, neutron reflectivity, solid state 2H-NMR, and molecular modeling, were used to investigate the physical properties of the GIPCs, as well as their interaction with free and conjugated phytosterols. We showed that GIPCs increase the thickness and electronegativity of model membranes, interact differentially with the different phytosterols species, and regulate the gel-to-fluid phase transition during temperature variations. These results unveil the multiple roles played by GIPCs in the plant PM.</description><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Biochemistry, biophysics & molecular biology</subject><subject>Biochimie, biophysique & biologie moléculaire</subject><subject>cryo-EM</subject><subject>GIPC</subject><subject>Langmuir monolayer</subject><subject>Life Sciences</subject><subject>lipidomics</subject><subject>modeling</subject><subject>modelling</subject><subject>neutron reflectivity</subject><subject>phytosterol</subject><subject>Plant</subject><subject>plasma membrane</subject><subject>purification</subject><subject>Sciences du vivant</subject><subject>solid state NMR</subject><subject>sphingolipids</subject><subject>Vegetal Biology</subject><subject>ζ-Potential</subject><issn>0021-9258</issn><issn>1083-351X</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9Uk1v1DAQjRCIlsIP4IIiTnDI4o_EcYSEVFbQVloJDiBxGznOZOPFiVM7Wan_HmdTKuCAL57xvPc0nnlJ8pKSDSVUvDtsDrXeMMJozIkg7FFyTonkGS_oj8fJOYmVrGKFPEuehXAg8eQVfZqccV7KghfVefLzo3FjdxeMVjZVg7IxDKlr06nDdLRqmLIwojat0enVzddtGsbODHtnzWiakHo8orIh7Wc7mdFi2rsGT_we-9qrASNkP1s1GTc8T560EYwv7u-L5PvnT9-219nuy9XN9nKXacHYlEkUEmWeN5JpKkXFFOVEtQVjbUzzuqprVatCSYJVU2JVKYWixVJqzrUukV8kH1bdca57bDQOk1cWRm965e_AKQN_VwbTwd4dQZKqEgWNAq9XARcmA0GbCXWn3TCgnoBKVgiZRxBfQdbgHsH52sCRndRP8Wz3oDTUCIwJCUxQVpSR9XZldf90dH25g-WNcCrjythxaePN_T-8u50xTNCboNHGraCbA7CClEKULF-aoStUexeCx_ZBmxJYvAIHiF6BxSuweiVyXv05pgfGb3NEwPsVgHFZR4N-GQUOGhvjl0k0zvxH_hdZ2dBH</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Mamode Cassim, Adiilah</creator><creator>Navon, Yotam</creator><creator>Gao, Yu</creator><creator>Decossas, Marion</creator><creator>Fouillen, Laetitia</creator><creator>Grélard, Axelle</creator><creator>Nagano, Minoru</creator><creator>Lambert, Olivier</creator><creator>Bahammou, Delphine</creator><creator>Van Delft, Pierre</creator><creator>Maneta-Peyret, Lilly</creator><creator>Simon-Plas, Françoise</creator><creator>Heux, Laurent</creator><creator>Jean, Bruno</creator><creator>Fragneto, Giovanna</creator><creator>Mortimer, Jenny C.</creator><creator>Deleu, Magali</creator><creator>Lins, Laurence</creator><creator>Mongrand, Sébastien</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>Q33</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9198-015X</orcidid><orcidid>https://orcid.org/0000-0002-7950-0504</orcidid><orcidid>https://orcid.org/0000-0003-0810-4309</orcidid><orcidid>https://orcid.org/0000-0002-7919-2695</orcidid><orcidid>https://orcid.org/0000-0002-8696-442X</orcidid><orcidid>https://orcid.org/0000-0002-5651-8082</orcidid><orcidid>https://orcid.org/0000-0002-1934-4263</orcidid><orcidid>https://orcid.org/0000-0002-1204-9296</orcidid><orcidid>https://orcid.org/0000-0001-8255-2965</orcidid><orcidid>https://orcid.org/0000-0002-6708-2253</orcidid><orcidid>https://orcid.org/0009-0000-6251-3037</orcidid><orcidid>https://orcid.org/0000-0002-4157-7186</orcidid><orcidid>https://orcid.org/0000-0001-5839-8427</orcidid><orcidid>https://orcid.org/0000-0001-7772-6748</orcidid><orcidid>https://orcid.org/000000029198015X</orcidid><orcidid>https://orcid.org/0000000308104309</orcidid><orcidid>https://orcid.org/000000028696442X</orcidid><orcidid>https://orcid.org/0000000279192695</orcidid><orcidid>https://orcid.org/0000000279500504</orcidid></search><sort><creationdate>20210101</creationdate><title>Biophysical analysis of the plant-specific GIPC sphingolipids reveals multiple modes of membrane regulation</title><author>Mamode Cassim, Adiilah ; Navon, Yotam ; Gao, Yu ; Decossas, Marion ; Fouillen, Laetitia ; Grélard, Axelle ; Nagano, Minoru ; Lambert, Olivier ; Bahammou, Delphine ; Van Delft, Pierre ; Maneta-Peyret, Lilly ; Simon-Plas, Françoise ; Heux, Laurent ; Jean, Bruno ; Fragneto, Giovanna ; Mortimer, Jenny C. ; Deleu, Magali ; Lins, Laurence ; Mongrand, Sébastien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c622t-8e68e844d82c18692a130af522f1864b9bbaba5a80e9d7e99aae6fe78c33cc7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Biochemistry, biophysics & molecular biology</topic><topic>Biochimie, biophysique & biologie moléculaire</topic><topic>cryo-EM</topic><topic>GIPC</topic><topic>Langmuir monolayer</topic><topic>Life Sciences</topic><topic>lipidomics</topic><topic>modeling</topic><topic>modelling</topic><topic>neutron reflectivity</topic><topic>phytosterol</topic><topic>Plant</topic><topic>plasma membrane</topic><topic>purification</topic><topic>Sciences du vivant</topic><topic>solid state NMR</topic><topic>sphingolipids</topic><topic>Vegetal Biology</topic><topic>ζ-Potential</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mamode Cassim, Adiilah</creatorcontrib><creatorcontrib>Navon, Yotam</creatorcontrib><creatorcontrib>Gao, Yu</creatorcontrib><creatorcontrib>Decossas, Marion</creatorcontrib><creatorcontrib>Fouillen, Laetitia</creatorcontrib><creatorcontrib>Grélard, Axelle</creatorcontrib><creatorcontrib>Nagano, Minoru</creatorcontrib><creatorcontrib>Lambert, Olivier</creatorcontrib><creatorcontrib>Bahammou, Delphine</creatorcontrib><creatorcontrib>Van Delft, Pierre</creatorcontrib><creatorcontrib>Maneta-Peyret, Lilly</creatorcontrib><creatorcontrib>Simon-Plas, Françoise</creatorcontrib><creatorcontrib>Heux, Laurent</creatorcontrib><creatorcontrib>Jean, Bruno</creatorcontrib><creatorcontrib>Fragneto, Giovanna</creatorcontrib><creatorcontrib>Mortimer, Jenny C.</creatorcontrib><creatorcontrib>Deleu, Magali</creatorcontrib><creatorcontrib>Lins, Laurence</creatorcontrib><creatorcontrib>Mongrand, Sébastien</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>Université de Liège - Open Repository and Bibliography (ORBI)</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mamode Cassim, Adiilah</au><au>Navon, Yotam</au><au>Gao, Yu</au><au>Decossas, Marion</au><au>Fouillen, Laetitia</au><au>Grélard, Axelle</au><au>Nagano, Minoru</au><au>Lambert, Olivier</au><au>Bahammou, Delphine</au><au>Van Delft, Pierre</au><au>Maneta-Peyret, Lilly</au><au>Simon-Plas, Françoise</au><au>Heux, Laurent</au><au>Jean, Bruno</au><au>Fragneto, Giovanna</au><au>Mortimer, Jenny C.</au><au>Deleu, Magali</au><au>Lins, Laurence</au><au>Mongrand, Sébastien</au><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biophysical analysis of the plant-specific GIPC sphingolipids reveals multiple modes of membrane regulation</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>296</volume><spage>100602</spage><epage>100602</epage><pages>100602-100602</pages><artnum>100602</artnum><issn>0021-9258</issn><issn>1083-351X</issn><eissn>1083-351X</eissn><abstract>The plant plasma membrane (PM) is an essential barrier between the cell and the external environment, controlling signal perception and transmission. It consists of an asymmetrical lipid bilayer made up of three different lipid classes: sphingolipids, sterols, and phospholipids. The glycosyl inositol phosphoryl ceramides (GIPCs), representing up to 40% of total sphingolipids, are assumed to be almost exclusively in the outer leaflet of the PM. However, their biological role and properties are poorly defined. In this study, we investigated the role of GIPCs in membrane organization. Because GIPCs are not commercially available, we developed a protocol to extract and isolate GIPC-enriched fractions from eudicots (cauliflower and tobacco) and monocots (leek and rice). Lipidomic analysis confirmed the presence of trihydroxylated long chain bases and 2-hydroxylated very long-chain fatty acids up to 26 carbon atoms. The glycan head groups of the GIPCs from monocots and dicots were analyzed by gas chromatograph–mass spectrometry, revealing different sugar moieties. Multiple biophysics tools, namely Langmuir monolayer, ζ-Potential, light scattering, neutron reflectivity, solid state 2H-NMR, and molecular modeling, were used to investigate the physical properties of the GIPCs, as well as their interaction with free and conjugated phytosterols. We showed that GIPCs increase the thickness and electronegativity of model membranes, interact differentially with the different phytosterols species, and regulate the gel-to-fluid phase transition during temperature variations. These results unveil the multiple roles played by GIPCs in the plant PM.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>33785359</pmid><doi>10.1016/j.jbc.2021.100602</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-9198-015X</orcidid><orcidid>https://orcid.org/0000-0002-7950-0504</orcidid><orcidid>https://orcid.org/0000-0003-0810-4309</orcidid><orcidid>https://orcid.org/0000-0002-7919-2695</orcidid><orcidid>https://orcid.org/0000-0002-8696-442X</orcidid><orcidid>https://orcid.org/0000-0002-5651-8082</orcidid><orcidid>https://orcid.org/0000-0002-1934-4263</orcidid><orcidid>https://orcid.org/0000-0002-1204-9296</orcidid><orcidid>https://orcid.org/0000-0001-8255-2965</orcidid><orcidid>https://orcid.org/0000-0002-6708-2253</orcidid><orcidid>https://orcid.org/0009-0000-6251-3037</orcidid><orcidid>https://orcid.org/0000-0002-4157-7186</orcidid><orcidid>https://orcid.org/0000-0001-5839-8427</orcidid><orcidid>https://orcid.org/0000-0001-7772-6748</orcidid><orcidid>https://orcid.org/000000029198015X</orcidid><orcidid>https://orcid.org/0000000308104309</orcidid><orcidid>https://orcid.org/000000028696442X</orcidid><orcidid>https://orcid.org/0000000279192695</orcidid><orcidid>https://orcid.org/0000000279500504</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2021-01, Vol.296, p.100602-100602, Article 100602 |
issn | 0021-9258 1083-351X 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8099651 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection |
subjects | BASIC BIOLOGICAL SCIENCES Biochemistry, biophysics & molecular biology Biochimie, biophysique & biologie moléculaire cryo-EM GIPC Langmuir monolayer Life Sciences lipidomics modeling modelling neutron reflectivity phytosterol Plant plasma membrane purification Sciences du vivant solid state NMR sphingolipids Vegetal Biology ζ-Potential |
title | Biophysical analysis of the plant-specific GIPC sphingolipids reveals multiple modes of membrane regulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T04%3A27%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biophysical%20analysis%20of%20the%20plant-specific%20GIPC%20sphingolipids%20reveals%20multiple%20modes%20of%20membrane%20regulation&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Mamode%20Cassim,%20Adiilah&rft.aucorp=Lawrence%20Berkeley%20National%20Lab.%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2021-01-01&rft.volume=296&rft.spage=100602&rft.epage=100602&rft.pages=100602-100602&rft.artnum=100602&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1016/j.jbc.2021.100602&rft_dat=%3Cproquest_pubme%3E2507667244%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2507667244&rft_id=info:pmid/33785359&rft_els_id=S0021925821003823&rfr_iscdi=true |