Liver metastasis restrains immunotherapy efficacy via macrophage-mediated T cell elimination
Metastasis is the primary cause of cancer mortality, and cancer frequently metastasizes to the liver. It is not clear whether liver immune tolerance mechanisms contribute to cancer outcomes. We report that liver metastases diminish immunotherapy efficacy systemically in patients and preclinical mode...
Gespeichert in:
Veröffentlicht in: | Nature medicine 2021-01, Vol.27 (1), p.152-164 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 164 |
---|---|
container_issue | 1 |
container_start_page | 152 |
container_title | Nature medicine |
container_volume | 27 |
creator | Yu, Jiali Green, Michael D. Li, Shasha Sun, Yilun Journey, Sara N. Choi, Jae Eun Rizvi, Syed Monem Qin, Angel Waninger, Jessica J. Lang, Xueting Chopra, Zoey El Naqa, Issam Zhou, Jiajia Bian, Yingjie Jiang, Long Tezel, Alangoya Skvarce, Jeremy Achar, Rohan K. Sitto, Merna Rosen, Benjamin S. Su, Fengyun Narayanan, Sathiya P. Cao, Xuhong Wei, Shuang Szeliga, Wojciech Vatan, Linda Mayo, Charles Morgan, Meredith A. Schonewolf, Caitlin A. Cuneo, Kyle Kryczek, Ilona Ma, Vincent T. Lao, Christopher D. Lawrence, Theodore S. Ramnath, Nithya Wen, Fei Chinnaiyan, Arul M. Cieslik, Marcin Alva, Ajjai Zou, Weiping |
description | Metastasis is the primary cause of cancer mortality, and cancer frequently metastasizes to the liver. It is not clear whether liver immune tolerance mechanisms contribute to cancer outcomes. We report that liver metastases diminish immunotherapy efficacy systemically in patients and preclinical models. Patients with liver metastases derive limited benefit from immunotherapy independent of other established biomarkers of response. In multiple mouse models, we show that liver metastases siphon activated CD8
+
T cells from systemic circulation. Within the liver, activated antigen-specific Fas
+
CD8
+
T cells undergo apoptosis following their interaction with FasL
+
CD11b
+
F4/80
+
monocyte-derived macrophages. Consequently, liver metastases create a systemic immune desert in preclinical models. Similarly, patients with liver metastases have reduced peripheral T cell numbers and diminished tumoral T cell diversity and function. In preclinical models, liver-directed radiotherapy eliminates immunosuppressive hepatic macrophages, increases hepatic T cell survival and reduces hepatic siphoning of T cells. Thus, liver metastases co-opt host peripheral tolerance mechanisms to cause acquired immunotherapy resistance through CD8
+
T cell deletion, and the combination of liver-directed radiotherapy and immunotherapy could promote systemic antitumor immunity.
Liver metastases reduce clinical and preclinical immune-checkpoint inhibitor efficacy through hepatic siphoning of circulating activated CD8
+
T cells, but therapeutic benefit can be improved by combining immunotherapy with liver-directed radiotherapy. |
doi_str_mv | 10.1038/s41591-020-1131-x |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8095049</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A650181248</galeid><sourcerecordid>A650181248</sourcerecordid><originalsourceid>FETCH-LOGICAL-c674t-6642a311d7d4feda85d81de2d4afb1d0d04151a2131c582bb1eed60f02655f2b3</originalsourceid><addsrcrecordid>eNqNku1r1TAUxosobk7_AL9IQRD9kJmkTV--CGP4Mrgw0Cl-EELanLYZbXKXtJd7_3tPuXNb5QqSQkLzO0_7nPNE0UtGTxlNivchZaJkhHJKGEsY2T6KjplIM8Jy-vMxnmlekKIU2VH0LIRrSmlCRfk0OkqSpCxYxo-jXyuzAR8PMKqAjwmxhzB6ZWyIzTBM1o0deLXexdA0plb1Lt4YFQ-q9m7dqRbIANqoEXR8FdfQ9zH0ZjBWjcbZ59GTRvUBXtzuJ9H3Tx-vzr-Q1eXni_OzFamzPB1JlqVcJYzpXKcNaFUIXTANXKeqqZimmqJPpjharEXBq4oB6Iw2lGdCNLxKTqIPe931VOHv1GDRQS_X3gzK76RTRi5vrOlk6zayoKWgaYkCb28FvLuZsAFyMGF2oyy4KUie5iKl2GyB6Ou_0Gs3eYv2ZipPctRM7qlW9SCNbRx-t55F5VkmKCsYTwukyAGqBYsd752FxuDrBX96gMelYTD1wYJ3iwJkRtiOrZpCkBffvv4_e_ljyb55wHag-rELrp_moYclyPYgxiUED83dUBiVc4blPsMSMyznDMst1rx6OM27ij-hRYDvgYBXtgV_P4J_q_4GWVL6XA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2477378093</pqid></control><display><type>article</type><title>Liver metastasis restrains immunotherapy efficacy via macrophage-mediated T cell elimination</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Yu, Jiali ; Green, Michael D. ; Li, Shasha ; Sun, Yilun ; Journey, Sara N. ; Choi, Jae Eun ; Rizvi, Syed Monem ; Qin, Angel ; Waninger, Jessica J. ; Lang, Xueting ; Chopra, Zoey ; El Naqa, Issam ; Zhou, Jiajia ; Bian, Yingjie ; Jiang, Long ; Tezel, Alangoya ; Skvarce, Jeremy ; Achar, Rohan K. ; Sitto, Merna ; Rosen, Benjamin S. ; Su, Fengyun ; Narayanan, Sathiya P. ; Cao, Xuhong ; Wei, Shuang ; Szeliga, Wojciech ; Vatan, Linda ; Mayo, Charles ; Morgan, Meredith A. ; Schonewolf, Caitlin A. ; Cuneo, Kyle ; Kryczek, Ilona ; Ma, Vincent T. ; Lao, Christopher D. ; Lawrence, Theodore S. ; Ramnath, Nithya ; Wen, Fei ; Chinnaiyan, Arul M. ; Cieslik, Marcin ; Alva, Ajjai ; Zou, Weiping</creator><creatorcontrib>Yu, Jiali ; Green, Michael D. ; Li, Shasha ; Sun, Yilun ; Journey, Sara N. ; Choi, Jae Eun ; Rizvi, Syed Monem ; Qin, Angel ; Waninger, Jessica J. ; Lang, Xueting ; Chopra, Zoey ; El Naqa, Issam ; Zhou, Jiajia ; Bian, Yingjie ; Jiang, Long ; Tezel, Alangoya ; Skvarce, Jeremy ; Achar, Rohan K. ; Sitto, Merna ; Rosen, Benjamin S. ; Su, Fengyun ; Narayanan, Sathiya P. ; Cao, Xuhong ; Wei, Shuang ; Szeliga, Wojciech ; Vatan, Linda ; Mayo, Charles ; Morgan, Meredith A. ; Schonewolf, Caitlin A. ; Cuneo, Kyle ; Kryczek, Ilona ; Ma, Vincent T. ; Lao, Christopher D. ; Lawrence, Theodore S. ; Ramnath, Nithya ; Wen, Fei ; Chinnaiyan, Arul M. ; Cieslik, Marcin ; Alva, Ajjai ; Zou, Weiping</creatorcontrib><description>Metastasis is the primary cause of cancer mortality, and cancer frequently metastasizes to the liver. It is not clear whether liver immune tolerance mechanisms contribute to cancer outcomes. We report that liver metastases diminish immunotherapy efficacy systemically in patients and preclinical models. Patients with liver metastases derive limited benefit from immunotherapy independent of other established biomarkers of response. In multiple mouse models, we show that liver metastases siphon activated CD8
+
T cells from systemic circulation. Within the liver, activated antigen-specific Fas
+
CD8
+
T cells undergo apoptosis following their interaction with FasL
+
CD11b
+
F4/80
+
monocyte-derived macrophages. Consequently, liver metastases create a systemic immune desert in preclinical models. Similarly, patients with liver metastases have reduced peripheral T cell numbers and diminished tumoral T cell diversity and function. In preclinical models, liver-directed radiotherapy eliminates immunosuppressive hepatic macrophages, increases hepatic T cell survival and reduces hepatic siphoning of T cells. Thus, liver metastases co-opt host peripheral tolerance mechanisms to cause acquired immunotherapy resistance through CD8
+
T cell deletion, and the combination of liver-directed radiotherapy and immunotherapy could promote systemic antitumor immunity.
Liver metastases reduce clinical and preclinical immune-checkpoint inhibitor efficacy through hepatic siphoning of circulating activated CD8
+
T cells, but therapeutic benefit can be improved by combining immunotherapy with liver-directed radiotherapy.</description><identifier>ISSN: 1078-8956</identifier><identifier>EISSN: 1546-170X</identifier><identifier>DOI: 10.1038/s41591-020-1131-x</identifier><identifier>PMID: 33398162</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/250/1619/554 ; 631/250/2504/342 ; 631/67/322 ; 631/67/580 ; 692/699/67/1059/2325 ; Animal models ; Animals ; Antigens ; Apoptosis ; Biomarkers ; Biomedical and Life Sciences ; Biomedicine ; Cancer ; Cancer Research ; Carcinoma, Non-Small-Cell Lung - immunology ; Carcinoma, Non-Small-Cell Lung - secondary ; Carcinoma, Non-Small-Cell Lung - therapy ; Care and treatment ; CD11b antigen ; CD8 antigen ; CD95 antigen ; Cell Line, Tumor ; Cell survival ; Clonal deletion ; Cohort Studies ; Combined Modality Therapy ; Fas antigen ; FasL protein ; Female ; Hepatocytes ; Humans ; Immune checkpoint inhibitors ; Immunological tolerance ; Immunotherapy ; Infectious Diseases ; Liver ; Liver cancer ; Liver Neoplasms - immunology ; Liver Neoplasms - secondary ; Liver Neoplasms - therapy ; Liver Neoplasms, Experimental - immunology ; Liver Neoplasms, Experimental - secondary ; Liver Neoplasms, Experimental - therapy ; Lymphocyte Activation ; Lymphocytes ; Lymphocytes T ; Macrophages ; Macrophages - immunology ; Male ; Melanoma - immunology ; Melanoma - secondary ; Melanoma - therapy ; Metabolic Diseases ; Metastases ; Metastasis ; Methods ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Molecular Medicine ; Monocytes ; Neurosciences ; Patient outcomes ; Physiological aspects ; Radiation therapy ; Radiotherapy, Adjuvant ; Siphoning ; T cells ; T-Lymphocytes - classification ; T-Lymphocytes - immunology ; T-Lymphocytes - pathology ; Treatment Failure ; Treatment Outcome ; Tumor Microenvironment - immunology ; Tumor Microenvironment - radiation effects</subject><ispartof>Nature medicine, 2021-01, Vol.27 (1), p.152-164</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2021</rights><rights>COPYRIGHT 2021 Nature Publishing Group</rights><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c674t-6642a311d7d4feda85d81de2d4afb1d0d04151a2131c582bb1eed60f02655f2b3</citedby><cites>FETCH-LOGICAL-c674t-6642a311d7d4feda85d81de2d4afb1d0d04151a2131c582bb1eed60f02655f2b3</cites><orcidid>0000-0001-7970-4796 ; 0000-0001-9282-3415 ; 0000-0001-7952-3549 ; 0000-0002-1341-382X ; 0000-0001-6023-1132 ; 0000-0002-3130-2533 ; 0000-0002-0987-9774 ; 0000-0002-9599-9907 ; 0000-0002-6349-2431 ; 0000-0003-4951-7118</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41591-020-1131-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41591-020-1131-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33398162$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Jiali</creatorcontrib><creatorcontrib>Green, Michael D.</creatorcontrib><creatorcontrib>Li, Shasha</creatorcontrib><creatorcontrib>Sun, Yilun</creatorcontrib><creatorcontrib>Journey, Sara N.</creatorcontrib><creatorcontrib>Choi, Jae Eun</creatorcontrib><creatorcontrib>Rizvi, Syed Monem</creatorcontrib><creatorcontrib>Qin, Angel</creatorcontrib><creatorcontrib>Waninger, Jessica J.</creatorcontrib><creatorcontrib>Lang, Xueting</creatorcontrib><creatorcontrib>Chopra, Zoey</creatorcontrib><creatorcontrib>El Naqa, Issam</creatorcontrib><creatorcontrib>Zhou, Jiajia</creatorcontrib><creatorcontrib>Bian, Yingjie</creatorcontrib><creatorcontrib>Jiang, Long</creatorcontrib><creatorcontrib>Tezel, Alangoya</creatorcontrib><creatorcontrib>Skvarce, Jeremy</creatorcontrib><creatorcontrib>Achar, Rohan K.</creatorcontrib><creatorcontrib>Sitto, Merna</creatorcontrib><creatorcontrib>Rosen, Benjamin S.</creatorcontrib><creatorcontrib>Su, Fengyun</creatorcontrib><creatorcontrib>Narayanan, Sathiya P.</creatorcontrib><creatorcontrib>Cao, Xuhong</creatorcontrib><creatorcontrib>Wei, Shuang</creatorcontrib><creatorcontrib>Szeliga, Wojciech</creatorcontrib><creatorcontrib>Vatan, Linda</creatorcontrib><creatorcontrib>Mayo, Charles</creatorcontrib><creatorcontrib>Morgan, Meredith A.</creatorcontrib><creatorcontrib>Schonewolf, Caitlin A.</creatorcontrib><creatorcontrib>Cuneo, Kyle</creatorcontrib><creatorcontrib>Kryczek, Ilona</creatorcontrib><creatorcontrib>Ma, Vincent T.</creatorcontrib><creatorcontrib>Lao, Christopher D.</creatorcontrib><creatorcontrib>Lawrence, Theodore S.</creatorcontrib><creatorcontrib>Ramnath, Nithya</creatorcontrib><creatorcontrib>Wen, Fei</creatorcontrib><creatorcontrib>Chinnaiyan, Arul M.</creatorcontrib><creatorcontrib>Cieslik, Marcin</creatorcontrib><creatorcontrib>Alva, Ajjai</creatorcontrib><creatorcontrib>Zou, Weiping</creatorcontrib><title>Liver metastasis restrains immunotherapy efficacy via macrophage-mediated T cell elimination</title><title>Nature medicine</title><addtitle>Nat Med</addtitle><addtitle>Nat Med</addtitle><description>Metastasis is the primary cause of cancer mortality, and cancer frequently metastasizes to the liver. It is not clear whether liver immune tolerance mechanisms contribute to cancer outcomes. We report that liver metastases diminish immunotherapy efficacy systemically in patients and preclinical models. Patients with liver metastases derive limited benefit from immunotherapy independent of other established biomarkers of response. In multiple mouse models, we show that liver metastases siphon activated CD8
+
T cells from systemic circulation. Within the liver, activated antigen-specific Fas
+
CD8
+
T cells undergo apoptosis following their interaction with FasL
+
CD11b
+
F4/80
+
monocyte-derived macrophages. Consequently, liver metastases create a systemic immune desert in preclinical models. Similarly, patients with liver metastases have reduced peripheral T cell numbers and diminished tumoral T cell diversity and function. In preclinical models, liver-directed radiotherapy eliminates immunosuppressive hepatic macrophages, increases hepatic T cell survival and reduces hepatic siphoning of T cells. Thus, liver metastases co-opt host peripheral tolerance mechanisms to cause acquired immunotherapy resistance through CD8
+
T cell deletion, and the combination of liver-directed radiotherapy and immunotherapy could promote systemic antitumor immunity.
Liver metastases reduce clinical and preclinical immune-checkpoint inhibitor efficacy through hepatic siphoning of circulating activated CD8
+
T cells, but therapeutic benefit can be improved by combining immunotherapy with liver-directed radiotherapy.</description><subject>631/250/1619/554</subject><subject>631/250/2504/342</subject><subject>631/67/322</subject><subject>631/67/580</subject><subject>692/699/67/1059/2325</subject><subject>Animal models</subject><subject>Animals</subject><subject>Antigens</subject><subject>Apoptosis</subject><subject>Biomarkers</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cancer</subject><subject>Cancer Research</subject><subject>Carcinoma, Non-Small-Cell Lung - immunology</subject><subject>Carcinoma, Non-Small-Cell Lung - secondary</subject><subject>Carcinoma, Non-Small-Cell Lung - therapy</subject><subject>Care and treatment</subject><subject>CD11b antigen</subject><subject>CD8 antigen</subject><subject>CD95 antigen</subject><subject>Cell Line, Tumor</subject><subject>Cell survival</subject><subject>Clonal deletion</subject><subject>Cohort Studies</subject><subject>Combined Modality Therapy</subject><subject>Fas antigen</subject><subject>FasL protein</subject><subject>Female</subject><subject>Hepatocytes</subject><subject>Humans</subject><subject>Immune checkpoint inhibitors</subject><subject>Immunological tolerance</subject><subject>Immunotherapy</subject><subject>Infectious Diseases</subject><subject>Liver</subject><subject>Liver cancer</subject><subject>Liver Neoplasms - immunology</subject><subject>Liver Neoplasms - secondary</subject><subject>Liver Neoplasms - therapy</subject><subject>Liver Neoplasms, Experimental - immunology</subject><subject>Liver Neoplasms, Experimental - secondary</subject><subject>Liver Neoplasms, Experimental - therapy</subject><subject>Lymphocyte Activation</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Macrophages</subject><subject>Macrophages - immunology</subject><subject>Male</subject><subject>Melanoma - immunology</subject><subject>Melanoma - secondary</subject><subject>Melanoma - therapy</subject><subject>Metabolic Diseases</subject><subject>Metastases</subject><subject>Metastasis</subject><subject>Methods</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>Molecular Medicine</subject><subject>Monocytes</subject><subject>Neurosciences</subject><subject>Patient outcomes</subject><subject>Physiological aspects</subject><subject>Radiation therapy</subject><subject>Radiotherapy, Adjuvant</subject><subject>Siphoning</subject><subject>T cells</subject><subject>T-Lymphocytes - classification</subject><subject>T-Lymphocytes - immunology</subject><subject>T-Lymphocytes - pathology</subject><subject>Treatment Failure</subject><subject>Treatment Outcome</subject><subject>Tumor Microenvironment - immunology</subject><subject>Tumor Microenvironment - radiation effects</subject><issn>1078-8956</issn><issn>1546-170X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNku1r1TAUxosobk7_AL9IQRD9kJmkTV--CGP4Mrgw0Cl-EELanLYZbXKXtJd7_3tPuXNb5QqSQkLzO0_7nPNE0UtGTxlNivchZaJkhHJKGEsY2T6KjplIM8Jy-vMxnmlekKIU2VH0LIRrSmlCRfk0OkqSpCxYxo-jXyuzAR8PMKqAjwmxhzB6ZWyIzTBM1o0deLXexdA0plb1Lt4YFQ-q9m7dqRbIANqoEXR8FdfQ9zH0ZjBWjcbZ59GTRvUBXtzuJ9H3Tx-vzr-Q1eXni_OzFamzPB1JlqVcJYzpXKcNaFUIXTANXKeqqZimmqJPpjharEXBq4oB6Iw2lGdCNLxKTqIPe931VOHv1GDRQS_X3gzK76RTRi5vrOlk6zayoKWgaYkCb28FvLuZsAFyMGF2oyy4KUie5iKl2GyB6Ou_0Gs3eYv2ZipPctRM7qlW9SCNbRx-t55F5VkmKCsYTwukyAGqBYsd752FxuDrBX96gMelYTD1wYJ3iwJkRtiOrZpCkBffvv4_e_ljyb55wHag-rELrp_moYclyPYgxiUED83dUBiVc4blPsMSMyznDMst1rx6OM27ij-hRYDvgYBXtgV_P4J_q_4GWVL6XA</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Yu, Jiali</creator><creator>Green, Michael D.</creator><creator>Li, Shasha</creator><creator>Sun, Yilun</creator><creator>Journey, Sara N.</creator><creator>Choi, Jae Eun</creator><creator>Rizvi, Syed Monem</creator><creator>Qin, Angel</creator><creator>Waninger, Jessica J.</creator><creator>Lang, Xueting</creator><creator>Chopra, Zoey</creator><creator>El Naqa, Issam</creator><creator>Zhou, Jiajia</creator><creator>Bian, Yingjie</creator><creator>Jiang, Long</creator><creator>Tezel, Alangoya</creator><creator>Skvarce, Jeremy</creator><creator>Achar, Rohan K.</creator><creator>Sitto, Merna</creator><creator>Rosen, Benjamin S.</creator><creator>Su, Fengyun</creator><creator>Narayanan, Sathiya P.</creator><creator>Cao, Xuhong</creator><creator>Wei, Shuang</creator><creator>Szeliga, Wojciech</creator><creator>Vatan, Linda</creator><creator>Mayo, Charles</creator><creator>Morgan, Meredith A.</creator><creator>Schonewolf, Caitlin A.</creator><creator>Cuneo, Kyle</creator><creator>Kryczek, Ilona</creator><creator>Ma, Vincent T.</creator><creator>Lao, Christopher D.</creator><creator>Lawrence, Theodore S.</creator><creator>Ramnath, Nithya</creator><creator>Wen, Fei</creator><creator>Chinnaiyan, Arul M.</creator><creator>Cieslik, Marcin</creator><creator>Alva, Ajjai</creator><creator>Zou, Weiping</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7970-4796</orcidid><orcidid>https://orcid.org/0000-0001-9282-3415</orcidid><orcidid>https://orcid.org/0000-0001-7952-3549</orcidid><orcidid>https://orcid.org/0000-0002-1341-382X</orcidid><orcidid>https://orcid.org/0000-0001-6023-1132</orcidid><orcidid>https://orcid.org/0000-0002-3130-2533</orcidid><orcidid>https://orcid.org/0000-0002-0987-9774</orcidid><orcidid>https://orcid.org/0000-0002-9599-9907</orcidid><orcidid>https://orcid.org/0000-0002-6349-2431</orcidid><orcidid>https://orcid.org/0000-0003-4951-7118</orcidid></search><sort><creationdate>20210101</creationdate><title>Liver metastasis restrains immunotherapy efficacy via macrophage-mediated T cell elimination</title><author>Yu, Jiali ; Green, Michael D. ; Li, Shasha ; Sun, Yilun ; Journey, Sara N. ; Choi, Jae Eun ; Rizvi, Syed Monem ; Qin, Angel ; Waninger, Jessica J. ; Lang, Xueting ; Chopra, Zoey ; El Naqa, Issam ; Zhou, Jiajia ; Bian, Yingjie ; Jiang, Long ; Tezel, Alangoya ; Skvarce, Jeremy ; Achar, Rohan K. ; Sitto, Merna ; Rosen, Benjamin S. ; Su, Fengyun ; Narayanan, Sathiya P. ; Cao, Xuhong ; Wei, Shuang ; Szeliga, Wojciech ; Vatan, Linda ; Mayo, Charles ; Morgan, Meredith A. ; Schonewolf, Caitlin A. ; Cuneo, Kyle ; Kryczek, Ilona ; Ma, Vincent T. ; Lao, Christopher D. ; Lawrence, Theodore S. ; Ramnath, Nithya ; Wen, Fei ; Chinnaiyan, Arul M. ; Cieslik, Marcin ; Alva, Ajjai ; Zou, Weiping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c674t-6642a311d7d4feda85d81de2d4afb1d0d04151a2131c582bb1eed60f02655f2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>631/250/1619/554</topic><topic>631/250/2504/342</topic><topic>631/67/322</topic><topic>631/67/580</topic><topic>692/699/67/1059/2325</topic><topic>Animal models</topic><topic>Animals</topic><topic>Antigens</topic><topic>Apoptosis</topic><topic>Biomarkers</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cancer</topic><topic>Cancer Research</topic><topic>Carcinoma, Non-Small-Cell Lung - immunology</topic><topic>Carcinoma, Non-Small-Cell Lung - secondary</topic><topic>Carcinoma, Non-Small-Cell Lung - therapy</topic><topic>Care and treatment</topic><topic>CD11b antigen</topic><topic>CD8 antigen</topic><topic>CD95 antigen</topic><topic>Cell Line, Tumor</topic><topic>Cell survival</topic><topic>Clonal deletion</topic><topic>Cohort Studies</topic><topic>Combined Modality Therapy</topic><topic>Fas antigen</topic><topic>FasL protein</topic><topic>Female</topic><topic>Hepatocytes</topic><topic>Humans</topic><topic>Immune checkpoint inhibitors</topic><topic>Immunological tolerance</topic><topic>Immunotherapy</topic><topic>Infectious Diseases</topic><topic>Liver</topic><topic>Liver cancer</topic><topic>Liver Neoplasms - immunology</topic><topic>Liver Neoplasms - secondary</topic><topic>Liver Neoplasms - therapy</topic><topic>Liver Neoplasms, Experimental - immunology</topic><topic>Liver Neoplasms, Experimental - secondary</topic><topic>Liver Neoplasms, Experimental - therapy</topic><topic>Lymphocyte Activation</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Macrophages</topic><topic>Macrophages - immunology</topic><topic>Male</topic><topic>Melanoma - immunology</topic><topic>Melanoma - secondary</topic><topic>Melanoma - therapy</topic><topic>Metabolic Diseases</topic><topic>Metastases</topic><topic>Metastasis</topic><topic>Methods</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>Molecular Medicine</topic><topic>Monocytes</topic><topic>Neurosciences</topic><topic>Patient outcomes</topic><topic>Physiological aspects</topic><topic>Radiation therapy</topic><topic>Radiotherapy, Adjuvant</topic><topic>Siphoning</topic><topic>T cells</topic><topic>T-Lymphocytes - classification</topic><topic>T-Lymphocytes - immunology</topic><topic>T-Lymphocytes - pathology</topic><topic>Treatment Failure</topic><topic>Treatment Outcome</topic><topic>Tumor Microenvironment - immunology</topic><topic>Tumor Microenvironment - radiation effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Jiali</creatorcontrib><creatorcontrib>Green, Michael D.</creatorcontrib><creatorcontrib>Li, Shasha</creatorcontrib><creatorcontrib>Sun, Yilun</creatorcontrib><creatorcontrib>Journey, Sara N.</creatorcontrib><creatorcontrib>Choi, Jae Eun</creatorcontrib><creatorcontrib>Rizvi, Syed Monem</creatorcontrib><creatorcontrib>Qin, Angel</creatorcontrib><creatorcontrib>Waninger, Jessica J.</creatorcontrib><creatorcontrib>Lang, Xueting</creatorcontrib><creatorcontrib>Chopra, Zoey</creatorcontrib><creatorcontrib>El Naqa, Issam</creatorcontrib><creatorcontrib>Zhou, Jiajia</creatorcontrib><creatorcontrib>Bian, Yingjie</creatorcontrib><creatorcontrib>Jiang, Long</creatorcontrib><creatorcontrib>Tezel, Alangoya</creatorcontrib><creatorcontrib>Skvarce, Jeremy</creatorcontrib><creatorcontrib>Achar, Rohan K.</creatorcontrib><creatorcontrib>Sitto, Merna</creatorcontrib><creatorcontrib>Rosen, Benjamin S.</creatorcontrib><creatorcontrib>Su, Fengyun</creatorcontrib><creatorcontrib>Narayanan, Sathiya P.</creatorcontrib><creatorcontrib>Cao, Xuhong</creatorcontrib><creatorcontrib>Wei, Shuang</creatorcontrib><creatorcontrib>Szeliga, Wojciech</creatorcontrib><creatorcontrib>Vatan, Linda</creatorcontrib><creatorcontrib>Mayo, Charles</creatorcontrib><creatorcontrib>Morgan, Meredith A.</creatorcontrib><creatorcontrib>Schonewolf, Caitlin A.</creatorcontrib><creatorcontrib>Cuneo, Kyle</creatorcontrib><creatorcontrib>Kryczek, Ilona</creatorcontrib><creatorcontrib>Ma, Vincent T.</creatorcontrib><creatorcontrib>Lao, Christopher D.</creatorcontrib><creatorcontrib>Lawrence, Theodore S.</creatorcontrib><creatorcontrib>Ramnath, Nithya</creatorcontrib><creatorcontrib>Wen, Fei</creatorcontrib><creatorcontrib>Chinnaiyan, Arul M.</creatorcontrib><creatorcontrib>Cieslik, Marcin</creatorcontrib><creatorcontrib>Alva, Ajjai</creatorcontrib><creatorcontrib>Zou, Weiping</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Jiali</au><au>Green, Michael D.</au><au>Li, Shasha</au><au>Sun, Yilun</au><au>Journey, Sara N.</au><au>Choi, Jae Eun</au><au>Rizvi, Syed Monem</au><au>Qin, Angel</au><au>Waninger, Jessica J.</au><au>Lang, Xueting</au><au>Chopra, Zoey</au><au>El Naqa, Issam</au><au>Zhou, Jiajia</au><au>Bian, Yingjie</au><au>Jiang, Long</au><au>Tezel, Alangoya</au><au>Skvarce, Jeremy</au><au>Achar, Rohan K.</au><au>Sitto, Merna</au><au>Rosen, Benjamin S.</au><au>Su, Fengyun</au><au>Narayanan, Sathiya P.</au><au>Cao, Xuhong</au><au>Wei, Shuang</au><au>Szeliga, Wojciech</au><au>Vatan, Linda</au><au>Mayo, Charles</au><au>Morgan, Meredith A.</au><au>Schonewolf, Caitlin A.</au><au>Cuneo, Kyle</au><au>Kryczek, Ilona</au><au>Ma, Vincent T.</au><au>Lao, Christopher D.</au><au>Lawrence, Theodore S.</au><au>Ramnath, Nithya</au><au>Wen, Fei</au><au>Chinnaiyan, Arul M.</au><au>Cieslik, Marcin</au><au>Alva, Ajjai</au><au>Zou, Weiping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Liver metastasis restrains immunotherapy efficacy via macrophage-mediated T cell elimination</atitle><jtitle>Nature medicine</jtitle><stitle>Nat Med</stitle><addtitle>Nat Med</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>27</volume><issue>1</issue><spage>152</spage><epage>164</epage><pages>152-164</pages><issn>1078-8956</issn><eissn>1546-170X</eissn><abstract>Metastasis is the primary cause of cancer mortality, and cancer frequently metastasizes to the liver. It is not clear whether liver immune tolerance mechanisms contribute to cancer outcomes. We report that liver metastases diminish immunotherapy efficacy systemically in patients and preclinical models. Patients with liver metastases derive limited benefit from immunotherapy independent of other established biomarkers of response. In multiple mouse models, we show that liver metastases siphon activated CD8
+
T cells from systemic circulation. Within the liver, activated antigen-specific Fas
+
CD8
+
T cells undergo apoptosis following their interaction with FasL
+
CD11b
+
F4/80
+
monocyte-derived macrophages. Consequently, liver metastases create a systemic immune desert in preclinical models. Similarly, patients with liver metastases have reduced peripheral T cell numbers and diminished tumoral T cell diversity and function. In preclinical models, liver-directed radiotherapy eliminates immunosuppressive hepatic macrophages, increases hepatic T cell survival and reduces hepatic siphoning of T cells. Thus, liver metastases co-opt host peripheral tolerance mechanisms to cause acquired immunotherapy resistance through CD8
+
T cell deletion, and the combination of liver-directed radiotherapy and immunotherapy could promote systemic antitumor immunity.
Liver metastases reduce clinical and preclinical immune-checkpoint inhibitor efficacy through hepatic siphoning of circulating activated CD8
+
T cells, but therapeutic benefit can be improved by combining immunotherapy with liver-directed radiotherapy.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>33398162</pmid><doi>10.1038/s41591-020-1131-x</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-7970-4796</orcidid><orcidid>https://orcid.org/0000-0001-9282-3415</orcidid><orcidid>https://orcid.org/0000-0001-7952-3549</orcidid><orcidid>https://orcid.org/0000-0002-1341-382X</orcidid><orcidid>https://orcid.org/0000-0001-6023-1132</orcidid><orcidid>https://orcid.org/0000-0002-3130-2533</orcidid><orcidid>https://orcid.org/0000-0002-0987-9774</orcidid><orcidid>https://orcid.org/0000-0002-9599-9907</orcidid><orcidid>https://orcid.org/0000-0002-6349-2431</orcidid><orcidid>https://orcid.org/0000-0003-4951-7118</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1078-8956 |
ispartof | Nature medicine, 2021-01, Vol.27 (1), p.152-164 |
issn | 1078-8956 1546-170X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8095049 |
source | MEDLINE; SpringerLink Journals; Nature Journals Online |
subjects | 631/250/1619/554 631/250/2504/342 631/67/322 631/67/580 692/699/67/1059/2325 Animal models Animals Antigens Apoptosis Biomarkers Biomedical and Life Sciences Biomedicine Cancer Cancer Research Carcinoma, Non-Small-Cell Lung - immunology Carcinoma, Non-Small-Cell Lung - secondary Carcinoma, Non-Small-Cell Lung - therapy Care and treatment CD11b antigen CD8 antigen CD95 antigen Cell Line, Tumor Cell survival Clonal deletion Cohort Studies Combined Modality Therapy Fas antigen FasL protein Female Hepatocytes Humans Immune checkpoint inhibitors Immunological tolerance Immunotherapy Infectious Diseases Liver Liver cancer Liver Neoplasms - immunology Liver Neoplasms - secondary Liver Neoplasms - therapy Liver Neoplasms, Experimental - immunology Liver Neoplasms, Experimental - secondary Liver Neoplasms, Experimental - therapy Lymphocyte Activation Lymphocytes Lymphocytes T Macrophages Macrophages - immunology Male Melanoma - immunology Melanoma - secondary Melanoma - therapy Metabolic Diseases Metastases Metastasis Methods Mice Mice, Inbred C57BL Mice, Transgenic Molecular Medicine Monocytes Neurosciences Patient outcomes Physiological aspects Radiation therapy Radiotherapy, Adjuvant Siphoning T cells T-Lymphocytes - classification T-Lymphocytes - immunology T-Lymphocytes - pathology Treatment Failure Treatment Outcome Tumor Microenvironment - immunology Tumor Microenvironment - radiation effects |
title | Liver metastasis restrains immunotherapy efficacy via macrophage-mediated T cell elimination |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T04%3A46%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Liver%20metastasis%20restrains%20immunotherapy%20efficacy%20via%20macrophage-mediated%20T%20cell%20elimination&rft.jtitle=Nature%20medicine&rft.au=Yu,%20Jiali&rft.date=2021-01-01&rft.volume=27&rft.issue=1&rft.spage=152&rft.epage=164&rft.pages=152-164&rft.issn=1078-8956&rft.eissn=1546-170X&rft_id=info:doi/10.1038/s41591-020-1131-x&rft_dat=%3Cgale_pubme%3EA650181248%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2477378093&rft_id=info:pmid/33398162&rft_galeid=A650181248&rfr_iscdi=true |