Monitoring of Tumor Growth and Post-Irradiation Recurrence in a Diffuse Intrinsic Pontine Glioma Mouse Model

Diffuse intrinsic pontine glioma (DIPG) is a fatal malignancy because of its diffuse infiltrative growth pattern. Translational research suffers from the lack of a representative DIPG animal model. Hence, human E98 glioma cells were stereotactically injected into the pons of nude mice. The E98 DIPG...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Brain pathology (Zurich, Switzerland) Switzerland), 2011-07, Vol.21 (4), p.441-451
Hauptverfasser: Caretti, Viola, Zondervan, Ilse, Meijer, Dimphna H., Idema, Sander, Vos, Wim, Hamans, Bob, Bugiani, Marianna, Hulleman, Esther, Wesseling, Pieter, Vandertop, W. Peter, Noske, David P., Kaspers, Gertjan, Molthoff, Carla F.M., Wurdinger, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 451
container_issue 4
container_start_page 441
container_title Brain pathology (Zurich, Switzerland)
container_volume 21
creator Caretti, Viola
Zondervan, Ilse
Meijer, Dimphna H.
Idema, Sander
Vos, Wim
Hamans, Bob
Bugiani, Marianna
Hulleman, Esther
Wesseling, Pieter
Vandertop, W. Peter
Noske, David P.
Kaspers, Gertjan
Molthoff, Carla F.M.
Wurdinger, Thomas
description Diffuse intrinsic pontine glioma (DIPG) is a fatal malignancy because of its diffuse infiltrative growth pattern. Translational research suffers from the lack of a representative DIPG animal model. Hence, human E98 glioma cells were stereotactically injected into the pons of nude mice. The E98 DIPG tumors presented a strikingly similar histhopathology to autopsy material of a DIPG patient, including diffuse and perivascular growth, brainstem‐ and supratentorial invasiveness and leptomeningeal growth. Magnetic resonance imaging (MRI) was effectively employed to image the E98 DIPG tumor. [18F] 3′‐deoxy‐3′‐[18F]fluorothymidine (FLT) positron emission tomography (PET) imaging was applied to assess the subcutaneous (s.c.) E98 tumor proliferation status but no orthotopic DIPG activity could be visualized. Next, E98 cells were cultured in vitro and engineered to express firefly luciferase and mCherry (E98‐Fluc‐mCherry). These cultured E98‐Fluc‐mCherry cells developed focal pontine glioma when injected into the pons directly. However, the diffuse E98 DIPG infiltrative phenotype was restored when cells were injected into the pons immediately after an intermediate s.c. passage. The diffuse E98‐Fluc‐mCherry model was subsequently used to test escalating doses of irradiation, applying the bioluminescent Fluc signal to monitor tumor recurrence over time. Altogether, we here describe an accurate DIPG mouse model that can be of clinical relevance for testing experimental therapeutics in vivo.
doi_str_mv 10.1111/j.1750-3639.2010.00468.x
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8094295</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>883027300</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5428-21eab41b1fd57974e32fa568dd6668231b276a2dbc80fa5f28abaaef05a666e13</originalsourceid><addsrcrecordid>eNqNkc1u1DAUhSMEoj_wCsg7Vple27HjSAipFDqM1IEKirq8chKn9ZDYxU7o9O1xmDKCHd7Y8jnf8bVOlhEKC5rWyWZBSwE5l7xaMEi3AIVUi-2T7HAvPE1noCKXHMRBdhTjBoBWshLPswNGqagA1GHWr72zow_W3RDfkatp8IEsg78fb4l2Lbn0ccxXIejW6tF6R76YZgrBuMYQ64gm723XTdGQlRtTSLRNQtxonSHL3vpBk7Wf5bVvTf8ie9bpPpqXj_tx9u38w9XZx_zi83J1dnqRN6JgKmfU6LqgNe1aUVZlYTjrtJCqbaWUinFas1Jq1taNgiR0TOlaa9OB0MlgKD_O3u5y76Z6MG1j0my6x7tgBx0e0GuL_yrO3uKN_4kKqoJVIgW8fgwI_sdk4oiDjY3pe-1M-g4qxYGVHCA51c7ZBB9jMN3-FQo4d4UbnCvBuRKcu8LfXeE2oa_-nnIP_iknGd7sDPe2Nw__HYzvLk_TIeH5DrdxNNs9rsN3lCUvBV5_WuL1OYVKfl2j4L8AMKuzsg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>883027300</pqid></control><display><type>article</type><title>Monitoring of Tumor Growth and Post-Irradiation Recurrence in a Diffuse Intrinsic Pontine Glioma Mouse Model</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Caretti, Viola ; Zondervan, Ilse ; Meijer, Dimphna H. ; Idema, Sander ; Vos, Wim ; Hamans, Bob ; Bugiani, Marianna ; Hulleman, Esther ; Wesseling, Pieter ; Vandertop, W. Peter ; Noske, David P. ; Kaspers, Gertjan ; Molthoff, Carla F.M. ; Wurdinger, Thomas</creator><creatorcontrib>Caretti, Viola ; Zondervan, Ilse ; Meijer, Dimphna H. ; Idema, Sander ; Vos, Wim ; Hamans, Bob ; Bugiani, Marianna ; Hulleman, Esther ; Wesseling, Pieter ; Vandertop, W. Peter ; Noske, David P. ; Kaspers, Gertjan ; Molthoff, Carla F.M. ; Wurdinger, Thomas</creatorcontrib><description>Diffuse intrinsic pontine glioma (DIPG) is a fatal malignancy because of its diffuse infiltrative growth pattern. Translational research suffers from the lack of a representative DIPG animal model. Hence, human E98 glioma cells were stereotactically injected into the pons of nude mice. The E98 DIPG tumors presented a strikingly similar histhopathology to autopsy material of a DIPG patient, including diffuse and perivascular growth, brainstem‐ and supratentorial invasiveness and leptomeningeal growth. Magnetic resonance imaging (MRI) was effectively employed to image the E98 DIPG tumor. [18F] 3′‐deoxy‐3′‐[18F]fluorothymidine (FLT) positron emission tomography (PET) imaging was applied to assess the subcutaneous (s.c.) E98 tumor proliferation status but no orthotopic DIPG activity could be visualized. Next, E98 cells were cultured in vitro and engineered to express firefly luciferase and mCherry (E98‐Fluc‐mCherry). These cultured E98‐Fluc‐mCherry cells developed focal pontine glioma when injected into the pons directly. However, the diffuse E98 DIPG infiltrative phenotype was restored when cells were injected into the pons immediately after an intermediate s.c. passage. The diffuse E98‐Fluc‐mCherry model was subsequently used to test escalating doses of irradiation, applying the bioluminescent Fluc signal to monitor tumor recurrence over time. Altogether, we here describe an accurate DIPG mouse model that can be of clinical relevance for testing experimental therapeutics in vivo.</description><identifier>ISSN: 1015-6305</identifier><identifier>EISSN: 1750-3639</identifier><identifier>DOI: 10.1111/j.1750-3639.2010.00468.x</identifier><identifier>PMID: 21159008</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Animal models ; Animals ; Autopsy ; Brain Stem Neoplasms - pathology ; Brain Stem Neoplasms - radiotherapy ; Brain tumors ; brainstem glioma ; Cell Line, Tumor ; DIPG ; Disease Models, Animal ; Female ; Glioma ; Glioma cells ; Growth patterns ; Humans ; imaging ; Immunohistochemistry ; Invasiveness ; luciferase ; Magnetic resonance imaging ; Malignancy ; Meninges ; Mice ; Mice, Nude ; Neoplasm Recurrence, Local - pathology ; Neoplasm Transplantation - methods ; Neuroimaging ; Pons ; Pons - pathology ; Pons - radiation effects ; Positron emission tomography ; Post-irradiation ; Radiation ; Radiotherapy ; Translation ; Tumors</subject><ispartof>Brain pathology (Zurich, Switzerland), 2011-07, Vol.21 (4), p.441-451</ispartof><rights>2010 The Authors; Brain Pathology © 2010 International Society of Neuropathology</rights><rights>2010 The Authors; Brain Pathology © 2010 International Society of Neuropathology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5428-21eab41b1fd57974e32fa568dd6668231b276a2dbc80fa5f28abaaef05a666e13</citedby><cites>FETCH-LOGICAL-c5428-21eab41b1fd57974e32fa568dd6668231b276a2dbc80fa5f28abaaef05a666e13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8094295/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8094295/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,1417,27924,27925,45574,45575,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21159008$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Caretti, Viola</creatorcontrib><creatorcontrib>Zondervan, Ilse</creatorcontrib><creatorcontrib>Meijer, Dimphna H.</creatorcontrib><creatorcontrib>Idema, Sander</creatorcontrib><creatorcontrib>Vos, Wim</creatorcontrib><creatorcontrib>Hamans, Bob</creatorcontrib><creatorcontrib>Bugiani, Marianna</creatorcontrib><creatorcontrib>Hulleman, Esther</creatorcontrib><creatorcontrib>Wesseling, Pieter</creatorcontrib><creatorcontrib>Vandertop, W. Peter</creatorcontrib><creatorcontrib>Noske, David P.</creatorcontrib><creatorcontrib>Kaspers, Gertjan</creatorcontrib><creatorcontrib>Molthoff, Carla F.M.</creatorcontrib><creatorcontrib>Wurdinger, Thomas</creatorcontrib><title>Monitoring of Tumor Growth and Post-Irradiation Recurrence in a Diffuse Intrinsic Pontine Glioma Mouse Model</title><title>Brain pathology (Zurich, Switzerland)</title><addtitle>Brain Pathol</addtitle><description>Diffuse intrinsic pontine glioma (DIPG) is a fatal malignancy because of its diffuse infiltrative growth pattern. Translational research suffers from the lack of a representative DIPG animal model. Hence, human E98 glioma cells were stereotactically injected into the pons of nude mice. The E98 DIPG tumors presented a strikingly similar histhopathology to autopsy material of a DIPG patient, including diffuse and perivascular growth, brainstem‐ and supratentorial invasiveness and leptomeningeal growth. Magnetic resonance imaging (MRI) was effectively employed to image the E98 DIPG tumor. [18F] 3′‐deoxy‐3′‐[18F]fluorothymidine (FLT) positron emission tomography (PET) imaging was applied to assess the subcutaneous (s.c.) E98 tumor proliferation status but no orthotopic DIPG activity could be visualized. Next, E98 cells were cultured in vitro and engineered to express firefly luciferase and mCherry (E98‐Fluc‐mCherry). These cultured E98‐Fluc‐mCherry cells developed focal pontine glioma when injected into the pons directly. However, the diffuse E98 DIPG infiltrative phenotype was restored when cells were injected into the pons immediately after an intermediate s.c. passage. The diffuse E98‐Fluc‐mCherry model was subsequently used to test escalating doses of irradiation, applying the bioluminescent Fluc signal to monitor tumor recurrence over time. Altogether, we here describe an accurate DIPG mouse model that can be of clinical relevance for testing experimental therapeutics in vivo.</description><subject>Animal models</subject><subject>Animals</subject><subject>Autopsy</subject><subject>Brain Stem Neoplasms - pathology</subject><subject>Brain Stem Neoplasms - radiotherapy</subject><subject>Brain tumors</subject><subject>brainstem glioma</subject><subject>Cell Line, Tumor</subject><subject>DIPG</subject><subject>Disease Models, Animal</subject><subject>Female</subject><subject>Glioma</subject><subject>Glioma cells</subject><subject>Growth patterns</subject><subject>Humans</subject><subject>imaging</subject><subject>Immunohistochemistry</subject><subject>Invasiveness</subject><subject>luciferase</subject><subject>Magnetic resonance imaging</subject><subject>Malignancy</subject><subject>Meninges</subject><subject>Mice</subject><subject>Mice, Nude</subject><subject>Neoplasm Recurrence, Local - pathology</subject><subject>Neoplasm Transplantation - methods</subject><subject>Neuroimaging</subject><subject>Pons</subject><subject>Pons - pathology</subject><subject>Pons - radiation effects</subject><subject>Positron emission tomography</subject><subject>Post-irradiation</subject><subject>Radiation</subject><subject>Radiotherapy</subject><subject>Translation</subject><subject>Tumors</subject><issn>1015-6305</issn><issn>1750-3639</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1u1DAUhSMEoj_wCsg7Vple27HjSAipFDqM1IEKirq8chKn9ZDYxU7o9O1xmDKCHd7Y8jnf8bVOlhEKC5rWyWZBSwE5l7xaMEi3AIVUi-2T7HAvPE1noCKXHMRBdhTjBoBWshLPswNGqagA1GHWr72zow_W3RDfkatp8IEsg78fb4l2Lbn0ccxXIejW6tF6R76YZgrBuMYQ64gm723XTdGQlRtTSLRNQtxonSHL3vpBk7Wf5bVvTf8ie9bpPpqXj_tx9u38w9XZx_zi83J1dnqRN6JgKmfU6LqgNe1aUVZlYTjrtJCqbaWUinFas1Jq1taNgiR0TOlaa9OB0MlgKD_O3u5y76Z6MG1j0my6x7tgBx0e0GuL_yrO3uKN_4kKqoJVIgW8fgwI_sdk4oiDjY3pe-1M-g4qxYGVHCA51c7ZBB9jMN3-FQo4d4UbnCvBuRKcu8LfXeE2oa_-nnIP_iknGd7sDPe2Nw__HYzvLk_TIeH5DrdxNNs9rsN3lCUvBV5_WuL1OYVKfl2j4L8AMKuzsg</recordid><startdate>201107</startdate><enddate>201107</enddate><creator>Caretti, Viola</creator><creator>Zondervan, Ilse</creator><creator>Meijer, Dimphna H.</creator><creator>Idema, Sander</creator><creator>Vos, Wim</creator><creator>Hamans, Bob</creator><creator>Bugiani, Marianna</creator><creator>Hulleman, Esther</creator><creator>Wesseling, Pieter</creator><creator>Vandertop, W. Peter</creator><creator>Noske, David P.</creator><creator>Kaspers, Gertjan</creator><creator>Molthoff, Carla F.M.</creator><creator>Wurdinger, Thomas</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>5PM</scope></search><sort><creationdate>201107</creationdate><title>Monitoring of Tumor Growth and Post-Irradiation Recurrence in a Diffuse Intrinsic Pontine Glioma Mouse Model</title><author>Caretti, Viola ; Zondervan, Ilse ; Meijer, Dimphna H. ; Idema, Sander ; Vos, Wim ; Hamans, Bob ; Bugiani, Marianna ; Hulleman, Esther ; Wesseling, Pieter ; Vandertop, W. Peter ; Noske, David P. ; Kaspers, Gertjan ; Molthoff, Carla F.M. ; Wurdinger, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5428-21eab41b1fd57974e32fa568dd6668231b276a2dbc80fa5f28abaaef05a666e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animal models</topic><topic>Animals</topic><topic>Autopsy</topic><topic>Brain Stem Neoplasms - pathology</topic><topic>Brain Stem Neoplasms - radiotherapy</topic><topic>Brain tumors</topic><topic>brainstem glioma</topic><topic>Cell Line, Tumor</topic><topic>DIPG</topic><topic>Disease Models, Animal</topic><topic>Female</topic><topic>Glioma</topic><topic>Glioma cells</topic><topic>Growth patterns</topic><topic>Humans</topic><topic>imaging</topic><topic>Immunohistochemistry</topic><topic>Invasiveness</topic><topic>luciferase</topic><topic>Magnetic resonance imaging</topic><topic>Malignancy</topic><topic>Meninges</topic><topic>Mice</topic><topic>Mice, Nude</topic><topic>Neoplasm Recurrence, Local - pathology</topic><topic>Neoplasm Transplantation - methods</topic><topic>Neuroimaging</topic><topic>Pons</topic><topic>Pons - pathology</topic><topic>Pons - radiation effects</topic><topic>Positron emission tomography</topic><topic>Post-irradiation</topic><topic>Radiation</topic><topic>Radiotherapy</topic><topic>Translation</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caretti, Viola</creatorcontrib><creatorcontrib>Zondervan, Ilse</creatorcontrib><creatorcontrib>Meijer, Dimphna H.</creatorcontrib><creatorcontrib>Idema, Sander</creatorcontrib><creatorcontrib>Vos, Wim</creatorcontrib><creatorcontrib>Hamans, Bob</creatorcontrib><creatorcontrib>Bugiani, Marianna</creatorcontrib><creatorcontrib>Hulleman, Esther</creatorcontrib><creatorcontrib>Wesseling, Pieter</creatorcontrib><creatorcontrib>Vandertop, W. Peter</creatorcontrib><creatorcontrib>Noske, David P.</creatorcontrib><creatorcontrib>Kaspers, Gertjan</creatorcontrib><creatorcontrib>Molthoff, Carla F.M.</creatorcontrib><creatorcontrib>Wurdinger, Thomas</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Brain pathology (Zurich, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caretti, Viola</au><au>Zondervan, Ilse</au><au>Meijer, Dimphna H.</au><au>Idema, Sander</au><au>Vos, Wim</au><au>Hamans, Bob</au><au>Bugiani, Marianna</au><au>Hulleman, Esther</au><au>Wesseling, Pieter</au><au>Vandertop, W. Peter</au><au>Noske, David P.</au><au>Kaspers, Gertjan</au><au>Molthoff, Carla F.M.</au><au>Wurdinger, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monitoring of Tumor Growth and Post-Irradiation Recurrence in a Diffuse Intrinsic Pontine Glioma Mouse Model</atitle><jtitle>Brain pathology (Zurich, Switzerland)</jtitle><addtitle>Brain Pathol</addtitle><date>2011-07</date><risdate>2011</risdate><volume>21</volume><issue>4</issue><spage>441</spage><epage>451</epage><pages>441-451</pages><issn>1015-6305</issn><eissn>1750-3639</eissn><abstract>Diffuse intrinsic pontine glioma (DIPG) is a fatal malignancy because of its diffuse infiltrative growth pattern. Translational research suffers from the lack of a representative DIPG animal model. Hence, human E98 glioma cells were stereotactically injected into the pons of nude mice. The E98 DIPG tumors presented a strikingly similar histhopathology to autopsy material of a DIPG patient, including diffuse and perivascular growth, brainstem‐ and supratentorial invasiveness and leptomeningeal growth. Magnetic resonance imaging (MRI) was effectively employed to image the E98 DIPG tumor. [18F] 3′‐deoxy‐3′‐[18F]fluorothymidine (FLT) positron emission tomography (PET) imaging was applied to assess the subcutaneous (s.c.) E98 tumor proliferation status but no orthotopic DIPG activity could be visualized. Next, E98 cells were cultured in vitro and engineered to express firefly luciferase and mCherry (E98‐Fluc‐mCherry). These cultured E98‐Fluc‐mCherry cells developed focal pontine glioma when injected into the pons directly. However, the diffuse E98 DIPG infiltrative phenotype was restored when cells were injected into the pons immediately after an intermediate s.c. passage. The diffuse E98‐Fluc‐mCherry model was subsequently used to test escalating doses of irradiation, applying the bioluminescent Fluc signal to monitor tumor recurrence over time. Altogether, we here describe an accurate DIPG mouse model that can be of clinical relevance for testing experimental therapeutics in vivo.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>21159008</pmid><doi>10.1111/j.1750-3639.2010.00468.x</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1015-6305
ispartof Brain pathology (Zurich, Switzerland), 2011-07, Vol.21 (4), p.441-451
issn 1015-6305
1750-3639
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8094295
source MEDLINE; Access via Wiley Online Library; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Animal models
Animals
Autopsy
Brain Stem Neoplasms - pathology
Brain Stem Neoplasms - radiotherapy
Brain tumors
brainstem glioma
Cell Line, Tumor
DIPG
Disease Models, Animal
Female
Glioma
Glioma cells
Growth patterns
Humans
imaging
Immunohistochemistry
Invasiveness
luciferase
Magnetic resonance imaging
Malignancy
Meninges
Mice
Mice, Nude
Neoplasm Recurrence, Local - pathology
Neoplasm Transplantation - methods
Neuroimaging
Pons
Pons - pathology
Pons - radiation effects
Positron emission tomography
Post-irradiation
Radiation
Radiotherapy
Translation
Tumors
title Monitoring of Tumor Growth and Post-Irradiation Recurrence in a Diffuse Intrinsic Pontine Glioma Mouse Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T01%3A31%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monitoring%20of%20Tumor%20Growth%20and%20Post-Irradiation%20Recurrence%20in%20a%20Diffuse%20Intrinsic%20Pontine%20Glioma%20Mouse%20Model&rft.jtitle=Brain%20pathology%20(Zurich,%20Switzerland)&rft.au=Caretti,%20Viola&rft.date=2011-07&rft.volume=21&rft.issue=4&rft.spage=441&rft.epage=451&rft.pages=441-451&rft.issn=1015-6305&rft.eissn=1750-3639&rft_id=info:doi/10.1111/j.1750-3639.2010.00468.x&rft_dat=%3Cproquest_pubme%3E883027300%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=883027300&rft_id=info:pmid/21159008&rfr_iscdi=true