Biosynthesis of the Tricyclic Aromatic Type II Polyketide Rishirilide: New Potential Third Ring Oxygenation after Three Cyclization Steps
Rishirilides are a group of PKS II secondary metabolites produced by Streptomyces bottropensis Gö C4/4. Biosynthetic studies in the past have elucidated early and late steps of rishirilide biosynthesis. This work is aiming to solve the remaining steps in the rishirilide biosynthesis. Inactivation of...
Gespeichert in:
Veröffentlicht in: | Molecular biotechnology 2021-06, Vol.63 (6), p.502-514 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 514 |
---|---|
container_issue | 6 |
container_start_page | 502 |
container_title | Molecular biotechnology |
container_volume | 63 |
creator | Alali, Ahmad Zhang, Lin Li, Jianyu Zuo, Chijian Wassouf, Dimah Yan, Xiaohui Schwarzer, Philipp Günther, Stefan Einsle, Oliver Bechthold, Andreas |
description | Rishirilides are a group of PKS II secondary metabolites produced by
Streptomyces bottropensis
Gö C4/4. Biosynthetic studies in the past have elucidated early and late steps of rishirilide biosynthesis. This work is aiming to solve the remaining steps in the rishirilide biosynthesis. Inactivation of the cyclase gene
rslC3
in
Streptomyces bottropensis
resulted in an interruption of rishirilide production. Instead, accumulation of the tricyclic aromatic galvaquinones was observed. Similar results were observed after deletion of
rslO4
. Closer inspection into RslO4 crystal structure in addition to site-directed mutagenesis and molecular dynamic simulations revealed that RslO4 might be responsible for quinone formation on the third ring. The RslO1 three-dimensional structure shows a high similarity to FMN-dependent luciferase-like monooxygenases such as the epoxy-forming MsnO8 which acts with the flavin reductase MsnO3 in mensacarcin biosynthesis in the same strain. The high sequence similarity between RslO2 and MsnO3 suggests that RslO2 provides RslO1 with reduced FMN to form an epoxide that serves as substrate for RslO5. |
doi_str_mv | 10.1007/s12033-021-00314-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8093152</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2521270344</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-15df2fd608323a6e282a4d3158ff78c65a892bbfa414683e1096264d4db105e3</originalsourceid><addsrcrecordid>eNp9UU1v1DAUtBCIlsIf4IAscQ74M8lyqNSuCl2poghyt7zJ865LNt7a3nbDP-Bf95WUAhdOHnnmzbynIeQ1Z-84Y9X7xAWTsmCCF4xJror9E3LItZ4VTDL9FDGrZFGyWh-QFyldMVRqJZ-TAymrUtZCHZKfpz6kcchrSD7R4Cgi2kTfjm3vW3oSw8ZmBM24BbpY0C-hH79D9h3Qrz6tffQ94g_0M9wil2HI3va0QaJDwbCil_txBQN6hIFalyEiGQHo_D7gx_T_LcM2vSTPnO0TvHp4j0jz8ayZnxcXl58W85OLolWVygXXnROuw6ukkLYEUQurOsl17VxVt6W29Uwsl84qrspaAmezUpSqU92SMw3yiBxPttvdcgNdixtH25tt9BsbRxOsN_8yg1-bVbgxNZthikCDtw8GMVzvIGVzFXZxwJWN0IKLikmlUCUmVRtDShHcYwJn5r49M7VnsBPzqz2zx6E3f-_2OPK7LhTISZCQGlYQ_2T_x_YOSvGoXg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2521270344</pqid></control><display><type>article</type><title>Biosynthesis of the Tricyclic Aromatic Type II Polyketide Rishirilide: New Potential Third Ring Oxygenation after Three Cyclization Steps</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Alali, Ahmad ; Zhang, Lin ; Li, Jianyu ; Zuo, Chijian ; Wassouf, Dimah ; Yan, Xiaohui ; Schwarzer, Philipp ; Günther, Stefan ; Einsle, Oliver ; Bechthold, Andreas</creator><creatorcontrib>Alali, Ahmad ; Zhang, Lin ; Li, Jianyu ; Zuo, Chijian ; Wassouf, Dimah ; Yan, Xiaohui ; Schwarzer, Philipp ; Günther, Stefan ; Einsle, Oliver ; Bechthold, Andreas</creatorcontrib><description>Rishirilides are a group of PKS II secondary metabolites produced by
Streptomyces bottropensis
Gö C4/4. Biosynthetic studies in the past have elucidated early and late steps of rishirilide biosynthesis. This work is aiming to solve the remaining steps in the rishirilide biosynthesis. Inactivation of the cyclase gene
rslC3
in
Streptomyces bottropensis
resulted in an interruption of rishirilide production. Instead, accumulation of the tricyclic aromatic galvaquinones was observed. Similar results were observed after deletion of
rslO4
. Closer inspection into RslO4 crystal structure in addition to site-directed mutagenesis and molecular dynamic simulations revealed that RslO4 might be responsible for quinone formation on the third ring. The RslO1 three-dimensional structure shows a high similarity to FMN-dependent luciferase-like monooxygenases such as the epoxy-forming MsnO8 which acts with the flavin reductase MsnO3 in mensacarcin biosynthesis in the same strain. The high sequence similarity between RslO2 and MsnO3 suggests that RslO2 provides RslO1 with reduced FMN to form an epoxide that serves as substrate for RslO5.</description><identifier>ISSN: 1073-6085</identifier><identifier>EISSN: 1559-0305</identifier><identifier>DOI: 10.1007/s12033-021-00314-x</identifier><identifier>PMID: 33763824</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Anthracenes - chemistry ; Anthracenes - pharmacology ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Biochemistry ; Biological Techniques ; Biosynthesis ; Biotechnology ; Cell Biology ; Chemistry ; Chemistry and Materials Science ; Crystal structure ; Cyclization ; Flavin mononucleotide ; Flavin reductase ; Human Genetics ; Inactivation ; Inspection ; Metabolites ; Molecular dynamics ; Multienzyme Complexes - chemistry ; Multienzyme Complexes - genetics ; Multienzyme Complexes - ultrastructure ; Multigene Family - genetics ; Mutagenesis, Site-Directed ; Original Paper ; Oxygenation ; Polyketide Synthases - biosynthesis ; Polyketide Synthases - chemistry ; Polyketide Synthases - genetics ; Polyketide Synthases - ultrastructure ; Polyketides - chemistry ; Protein Science ; Quinones ; Reductases ; Secondary metabolites ; Similarity ; Site-directed mutagenesis ; Streptomyces ; Streptomyces - enzymology ; Substrates</subject><ispartof>Molecular biotechnology, 2021-06, Vol.63 (6), p.502-514</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-15df2fd608323a6e282a4d3158ff78c65a892bbfa414683e1096264d4db105e3</citedby><cites>FETCH-LOGICAL-c474t-15df2fd608323a6e282a4d3158ff78c65a892bbfa414683e1096264d4db105e3</cites><orcidid>0000-0003-3594-6851</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12033-021-00314-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12033-021-00314-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33763824$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Alali, Ahmad</creatorcontrib><creatorcontrib>Zhang, Lin</creatorcontrib><creatorcontrib>Li, Jianyu</creatorcontrib><creatorcontrib>Zuo, Chijian</creatorcontrib><creatorcontrib>Wassouf, Dimah</creatorcontrib><creatorcontrib>Yan, Xiaohui</creatorcontrib><creatorcontrib>Schwarzer, Philipp</creatorcontrib><creatorcontrib>Günther, Stefan</creatorcontrib><creatorcontrib>Einsle, Oliver</creatorcontrib><creatorcontrib>Bechthold, Andreas</creatorcontrib><title>Biosynthesis of the Tricyclic Aromatic Type II Polyketide Rishirilide: New Potential Third Ring Oxygenation after Three Cyclization Steps</title><title>Molecular biotechnology</title><addtitle>Mol Biotechnol</addtitle><addtitle>Mol Biotechnol</addtitle><description>Rishirilides are a group of PKS II secondary metabolites produced by
Streptomyces bottropensis
Gö C4/4. Biosynthetic studies in the past have elucidated early and late steps of rishirilide biosynthesis. This work is aiming to solve the remaining steps in the rishirilide biosynthesis. Inactivation of the cyclase gene
rslC3
in
Streptomyces bottropensis
resulted in an interruption of rishirilide production. Instead, accumulation of the tricyclic aromatic galvaquinones was observed. Similar results were observed after deletion of
rslO4
. Closer inspection into RslO4 crystal structure in addition to site-directed mutagenesis and molecular dynamic simulations revealed that RslO4 might be responsible for quinone formation on the third ring. The RslO1 three-dimensional structure shows a high similarity to FMN-dependent luciferase-like monooxygenases such as the epoxy-forming MsnO8 which acts with the flavin reductase MsnO3 in mensacarcin biosynthesis in the same strain. The high sequence similarity between RslO2 and MsnO3 suggests that RslO2 provides RslO1 with reduced FMN to form an epoxide that serves as substrate for RslO5.</description><subject>Anthracenes - chemistry</subject><subject>Anthracenes - pharmacology</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Biochemistry</subject><subject>Biological Techniques</subject><subject>Biosynthesis</subject><subject>Biotechnology</subject><subject>Cell Biology</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Crystal structure</subject><subject>Cyclization</subject><subject>Flavin mononucleotide</subject><subject>Flavin reductase</subject><subject>Human Genetics</subject><subject>Inactivation</subject><subject>Inspection</subject><subject>Metabolites</subject><subject>Molecular dynamics</subject><subject>Multienzyme Complexes - chemistry</subject><subject>Multienzyme Complexes - genetics</subject><subject>Multienzyme Complexes - ultrastructure</subject><subject>Multigene Family - genetics</subject><subject>Mutagenesis, Site-Directed</subject><subject>Original Paper</subject><subject>Oxygenation</subject><subject>Polyketide Synthases - biosynthesis</subject><subject>Polyketide Synthases - chemistry</subject><subject>Polyketide Synthases - genetics</subject><subject>Polyketide Synthases - ultrastructure</subject><subject>Polyketides - chemistry</subject><subject>Protein Science</subject><subject>Quinones</subject><subject>Reductases</subject><subject>Secondary metabolites</subject><subject>Similarity</subject><subject>Site-directed mutagenesis</subject><subject>Streptomyces</subject><subject>Streptomyces - enzymology</subject><subject>Substrates</subject><issn>1073-6085</issn><issn>1559-0305</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UU1v1DAUtBCIlsIf4IAscQ74M8lyqNSuCl2poghyt7zJ865LNt7a3nbDP-Bf95WUAhdOHnnmzbynIeQ1Z-84Y9X7xAWTsmCCF4xJror9E3LItZ4VTDL9FDGrZFGyWh-QFyldMVRqJZ-TAymrUtZCHZKfpz6kcchrSD7R4Cgi2kTfjm3vW3oSw8ZmBM24BbpY0C-hH79D9h3Qrz6tffQ94g_0M9wil2HI3va0QaJDwbCil_txBQN6hIFalyEiGQHo_D7gx_T_LcM2vSTPnO0TvHp4j0jz8ayZnxcXl58W85OLolWVygXXnROuw6ukkLYEUQurOsl17VxVt6W29Uwsl84qrspaAmezUpSqU92SMw3yiBxPttvdcgNdixtH25tt9BsbRxOsN_8yg1-bVbgxNZthikCDtw8GMVzvIGVzFXZxwJWN0IKLikmlUCUmVRtDShHcYwJn5r49M7VnsBPzqz2zx6E3f-_2OPK7LhTISZCQGlYQ_2T_x_YOSvGoXg</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Alali, Ahmad</creator><creator>Zhang, Lin</creator><creator>Li, Jianyu</creator><creator>Zuo, Chijian</creator><creator>Wassouf, Dimah</creator><creator>Yan, Xiaohui</creator><creator>Schwarzer, Philipp</creator><creator>Günther, Stefan</creator><creator>Einsle, Oliver</creator><creator>Bechthold, Andreas</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3594-6851</orcidid></search><sort><creationdate>20210601</creationdate><title>Biosynthesis of the Tricyclic Aromatic Type II Polyketide Rishirilide: New Potential Third Ring Oxygenation after Three Cyclization Steps</title><author>Alali, Ahmad ; Zhang, Lin ; Li, Jianyu ; Zuo, Chijian ; Wassouf, Dimah ; Yan, Xiaohui ; Schwarzer, Philipp ; Günther, Stefan ; Einsle, Oliver ; Bechthold, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-15df2fd608323a6e282a4d3158ff78c65a892bbfa414683e1096264d4db105e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anthracenes - chemistry</topic><topic>Anthracenes - pharmacology</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Biochemistry</topic><topic>Biological Techniques</topic><topic>Biosynthesis</topic><topic>Biotechnology</topic><topic>Cell Biology</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Crystal structure</topic><topic>Cyclization</topic><topic>Flavin mononucleotide</topic><topic>Flavin reductase</topic><topic>Human Genetics</topic><topic>Inactivation</topic><topic>Inspection</topic><topic>Metabolites</topic><topic>Molecular dynamics</topic><topic>Multienzyme Complexes - chemistry</topic><topic>Multienzyme Complexes - genetics</topic><topic>Multienzyme Complexes - ultrastructure</topic><topic>Multigene Family - genetics</topic><topic>Mutagenesis, Site-Directed</topic><topic>Original Paper</topic><topic>Oxygenation</topic><topic>Polyketide Synthases - biosynthesis</topic><topic>Polyketide Synthases - chemistry</topic><topic>Polyketide Synthases - genetics</topic><topic>Polyketide Synthases - ultrastructure</topic><topic>Polyketides - chemistry</topic><topic>Protein Science</topic><topic>Quinones</topic><topic>Reductases</topic><topic>Secondary metabolites</topic><topic>Similarity</topic><topic>Site-directed mutagenesis</topic><topic>Streptomyces</topic><topic>Streptomyces - enzymology</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alali, Ahmad</creatorcontrib><creatorcontrib>Zhang, Lin</creatorcontrib><creatorcontrib>Li, Jianyu</creatorcontrib><creatorcontrib>Zuo, Chijian</creatorcontrib><creatorcontrib>Wassouf, Dimah</creatorcontrib><creatorcontrib>Yan, Xiaohui</creatorcontrib><creatorcontrib>Schwarzer, Philipp</creatorcontrib><creatorcontrib>Günther, Stefan</creatorcontrib><creatorcontrib>Einsle, Oliver</creatorcontrib><creatorcontrib>Bechthold, Andreas</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alali, Ahmad</au><au>Zhang, Lin</au><au>Li, Jianyu</au><au>Zuo, Chijian</au><au>Wassouf, Dimah</au><au>Yan, Xiaohui</au><au>Schwarzer, Philipp</au><au>Günther, Stefan</au><au>Einsle, Oliver</au><au>Bechthold, Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biosynthesis of the Tricyclic Aromatic Type II Polyketide Rishirilide: New Potential Third Ring Oxygenation after Three Cyclization Steps</atitle><jtitle>Molecular biotechnology</jtitle><stitle>Mol Biotechnol</stitle><addtitle>Mol Biotechnol</addtitle><date>2021-06-01</date><risdate>2021</risdate><volume>63</volume><issue>6</issue><spage>502</spage><epage>514</epage><pages>502-514</pages><issn>1073-6085</issn><eissn>1559-0305</eissn><abstract>Rishirilides are a group of PKS II secondary metabolites produced by
Streptomyces bottropensis
Gö C4/4. Biosynthetic studies in the past have elucidated early and late steps of rishirilide biosynthesis. This work is aiming to solve the remaining steps in the rishirilide biosynthesis. Inactivation of the cyclase gene
rslC3
in
Streptomyces bottropensis
resulted in an interruption of rishirilide production. Instead, accumulation of the tricyclic aromatic galvaquinones was observed. Similar results were observed after deletion of
rslO4
. Closer inspection into RslO4 crystal structure in addition to site-directed mutagenesis and molecular dynamic simulations revealed that RslO4 might be responsible for quinone formation on the third ring. The RslO1 three-dimensional structure shows a high similarity to FMN-dependent luciferase-like monooxygenases such as the epoxy-forming MsnO8 which acts with the flavin reductase MsnO3 in mensacarcin biosynthesis in the same strain. The high sequence similarity between RslO2 and MsnO3 suggests that RslO2 provides RslO1 with reduced FMN to form an epoxide that serves as substrate for RslO5.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>33763824</pmid><doi>10.1007/s12033-021-00314-x</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-3594-6851</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1073-6085 |
ispartof | Molecular biotechnology, 2021-06, Vol.63 (6), p.502-514 |
issn | 1073-6085 1559-0305 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8093152 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Anthracenes - chemistry Anthracenes - pharmacology Bacterial Proteins - chemistry Bacterial Proteins - genetics Biochemistry Biological Techniques Biosynthesis Biotechnology Cell Biology Chemistry Chemistry and Materials Science Crystal structure Cyclization Flavin mononucleotide Flavin reductase Human Genetics Inactivation Inspection Metabolites Molecular dynamics Multienzyme Complexes - chemistry Multienzyme Complexes - genetics Multienzyme Complexes - ultrastructure Multigene Family - genetics Mutagenesis, Site-Directed Original Paper Oxygenation Polyketide Synthases - biosynthesis Polyketide Synthases - chemistry Polyketide Synthases - genetics Polyketide Synthases - ultrastructure Polyketides - chemistry Protein Science Quinones Reductases Secondary metabolites Similarity Site-directed mutagenesis Streptomyces Streptomyces - enzymology Substrates |
title | Biosynthesis of the Tricyclic Aromatic Type II Polyketide Rishirilide: New Potential Third Ring Oxygenation after Three Cyclization Steps |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T03%3A52%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biosynthesis%20of%20the%20Tricyclic%20Aromatic%20Type%20II%20Polyketide%20Rishirilide:%20New%20Potential%20Third%20Ring%20Oxygenation%20after%20Three%20Cyclization%20Steps&rft.jtitle=Molecular%20biotechnology&rft.au=Alali,%20Ahmad&rft.date=2021-06-01&rft.volume=63&rft.issue=6&rft.spage=502&rft.epage=514&rft.pages=502-514&rft.issn=1073-6085&rft.eissn=1559-0305&rft_id=info:doi/10.1007/s12033-021-00314-x&rft_dat=%3Cproquest_pubme%3E2521270344%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2521270344&rft_id=info:pmid/33763824&rfr_iscdi=true |