Recurrent interactions in local cortical circuits
Most cortical synapses are local and excitatory. Local recurrent circuits could implement amplification, allowing pattern completion and other computations 1 – 4 . Cortical circuits contain subnetworks that consist of neurons with similar receptive fields and increased connectivity relative to the n...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2020-03, Vol.579 (7798), p.256-259 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 259 |
---|---|
container_issue | 7798 |
container_start_page | 256 |
container_title | Nature (London) |
container_volume | 579 |
creator | Peron, Simon Pancholi, Ravi Voelcker, Bettina Wittenbach, Jason D. Ólafsdóttir, H. Freyja Freeman, Jeremy Svoboda, Karel |
description | Most cortical synapses are local and excitatory. Local recurrent circuits could implement amplification, allowing pattern completion and other computations
1
–
4
. Cortical circuits contain subnetworks that consist of neurons with similar receptive fields and increased connectivity relative to the network average
5
,
6
. Cortical neurons that encode different types of information are spatially intermingled and distributed over large brain volumes
5
–
7
, and this complexity has hindered attempts to probe the function of these subnetworks by perturbing them individually
8
. Here we use computational modelling, optical recordings and manipulations to probe the function of recurrent coupling in layer 2/3 of the mouse vibrissal somatosensory cortex during active tactile discrimination. A neural circuit model of layer 2/3 revealed that recurrent excitation enhances sensory signals by amplification, but only for subnetworks with increased connectivity. Model networks with high amplification were sensitive to damage: loss of a few members of the subnetwork degraded stimulus encoding. We tested this prediction by mapping neuronal selectivity
7
and photoablating
9
,
10
neurons with specific selectivity. Ablation of a small proportion of layer 2/3 neurons (10–20, less than 5% of the total) representing touch markedly reduced responses in the spared touch representation, but not in other representations. Ablations most strongly affected neurons with stimulus responses that were similar to those of the ablated population, which is also consistent with network models. Recurrence among cortical neurons with similar selectivity therefore drives input-specific amplification during behaviour.
Computational modelling, imaging and single-cell ablation in layer 2/3 of the mouse vibrissal somatosensory cortex reveals that recurrent activity in cortical neurons can drive input-specific amplification during behaviour. |
doi_str_mv | 10.1038/s41586-020-2062-x |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8092186</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A621109870</galeid><sourcerecordid>A621109870</sourcerecordid><originalsourceid>FETCH-LOGICAL-c775t-e36107cf898a92d0ac5af1ca21b9200a9c406131c1d5d5a1790b0eaa8cb848243</originalsourceid><addsrcrecordid>eNp10l1v0zAUBmALgVgZ_ABuUAU3IJRxjp3Ezg1SVfExaQJpDHFpuY4TPKV2Zzuo_HtcOrYFdcpF4vg5bz7OIeQ5wgkCE-9iiZWoC6BQUKhpsX1AZljyuihrwR-SGQAVBQhWH5EnMV4CQIW8fEyOGEVGOTQzgudGjyEYl-bWJROUTta7mBfzwWs1zLUPyf69sEGPNsWn5FGnhmieXZ-PyfePHy6Wn4uzr59Ol4uzQnNepcKwGoHrTjRCNbQFpSvVoVYUVw0FUI0uoUaGGtuqrRTyBlZglBJ6JUpBS3ZM3u9zN-NqbVqdXzGoQW6CXavwW3pl5XTH2Z-y97-kgIaiqHPA6-uA4K9GE5Nc26jNMChn_BglZTwzpA3L9NV_9NKPweXPy0pQ4CXQ6lb1ajDSus7n5-pdqFzUFBEawSGr4oDqjcs_d_DOdDbfnviXB7ze2Ct5F50cQPlozdrqg6lvJgXZJLNNvRpjlKffzqf27f12cfFj-WWqca918DEG0920BEHuxlLux1LmsZS7sZTbXPPibi9vKv7NYQZ0D2Lecr0Jtw24P_UPnW3oPg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2382074025</pqid></control><display><type>article</type><title>Recurrent interactions in local cortical circuits</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature</source><creator>Peron, Simon ; Pancholi, Ravi ; Voelcker, Bettina ; Wittenbach, Jason D. ; Ólafsdóttir, H. Freyja ; Freeman, Jeremy ; Svoboda, Karel</creator><creatorcontrib>Peron, Simon ; Pancholi, Ravi ; Voelcker, Bettina ; Wittenbach, Jason D. ; Ólafsdóttir, H. Freyja ; Freeman, Jeremy ; Svoboda, Karel</creatorcontrib><description>Most cortical synapses are local and excitatory. Local recurrent circuits could implement amplification, allowing pattern completion and other computations
1
–
4
. Cortical circuits contain subnetworks that consist of neurons with similar receptive fields and increased connectivity relative to the network average
5
,
6
. Cortical neurons that encode different types of information are spatially intermingled and distributed over large brain volumes
5
–
7
, and this complexity has hindered attempts to probe the function of these subnetworks by perturbing them individually
8
. Here we use computational modelling, optical recordings and manipulations to probe the function of recurrent coupling in layer 2/3 of the mouse vibrissal somatosensory cortex during active tactile discrimination. A neural circuit model of layer 2/3 revealed that recurrent excitation enhances sensory signals by amplification, but only for subnetworks with increased connectivity. Model networks with high amplification were sensitive to damage: loss of a few members of the subnetwork degraded stimulus encoding. We tested this prediction by mapping neuronal selectivity
7
and photoablating
9
,
10
neurons with specific selectivity. Ablation of a small proportion of layer 2/3 neurons (10–20, less than 5% of the total) representing touch markedly reduced responses in the spared touch representation, but not in other representations. Ablations most strongly affected neurons with stimulus responses that were similar to those of the ablated population, which is also consistent with network models. Recurrence among cortical neurons with similar selectivity therefore drives input-specific amplification during behaviour.
Computational modelling, imaging and single-cell ablation in layer 2/3 of the mouse vibrissal somatosensory cortex reveals that recurrent activity in cortical neurons can drive input-specific amplification during behaviour.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-020-2062-x</identifier><identifier>PMID: 32132709</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>14/69 ; 631/378/2620/2623 ; 631/378/3917 ; 631/378/3920 ; Ablation ; Amplification ; Analysis ; Animals ; Cell interaction ; Circuits ; Computational neuroscience ; Computer networks ; Computer Simulation ; Cortical columns ; Humanities and Social Sciences ; Influence ; Interneurons ; Mapping ; Mice ; Models, Neurological ; multidisciplinary ; Neural circuitry ; Neural networks ; Neurons ; Neurons - physiology ; Representations ; Science ; Science (multidisciplinary) ; Selectivity ; Somatosensory cortex ; Somatosensory Cortex - physiology ; Synapses ; Tactile discrimination ; Touch ; Touch - physiology ; Vibrissae</subject><ispartof>Nature (London), 2020-03, Vol.579 (7798), p.256-259</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>COPYRIGHT 2020 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Mar 12, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c775t-e36107cf898a92d0ac5af1ca21b9200a9c406131c1d5d5a1790b0eaa8cb848243</citedby><cites>FETCH-LOGICAL-c775t-e36107cf898a92d0ac5af1ca21b9200a9c406131c1d5d5a1790b0eaa8cb848243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-020-2062-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-020-2062-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32132709$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Peron, Simon</creatorcontrib><creatorcontrib>Pancholi, Ravi</creatorcontrib><creatorcontrib>Voelcker, Bettina</creatorcontrib><creatorcontrib>Wittenbach, Jason D.</creatorcontrib><creatorcontrib>Ólafsdóttir, H. Freyja</creatorcontrib><creatorcontrib>Freeman, Jeremy</creatorcontrib><creatorcontrib>Svoboda, Karel</creatorcontrib><title>Recurrent interactions in local cortical circuits</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Most cortical synapses are local and excitatory. Local recurrent circuits could implement amplification, allowing pattern completion and other computations
1
–
4
. Cortical circuits contain subnetworks that consist of neurons with similar receptive fields and increased connectivity relative to the network average
5
,
6
. Cortical neurons that encode different types of information are spatially intermingled and distributed over large brain volumes
5
–
7
, and this complexity has hindered attempts to probe the function of these subnetworks by perturbing them individually
8
. Here we use computational modelling, optical recordings and manipulations to probe the function of recurrent coupling in layer 2/3 of the mouse vibrissal somatosensory cortex during active tactile discrimination. A neural circuit model of layer 2/3 revealed that recurrent excitation enhances sensory signals by amplification, but only for subnetworks with increased connectivity. Model networks with high amplification were sensitive to damage: loss of a few members of the subnetwork degraded stimulus encoding. We tested this prediction by mapping neuronal selectivity
7
and photoablating
9
,
10
neurons with specific selectivity. Ablation of a small proportion of layer 2/3 neurons (10–20, less than 5% of the total) representing touch markedly reduced responses in the spared touch representation, but not in other representations. Ablations most strongly affected neurons with stimulus responses that were similar to those of the ablated population, which is also consistent with network models. Recurrence among cortical neurons with similar selectivity therefore drives input-specific amplification during behaviour.
Computational modelling, imaging and single-cell ablation in layer 2/3 of the mouse vibrissal somatosensory cortex reveals that recurrent activity in cortical neurons can drive input-specific amplification during behaviour.</description><subject>14/69</subject><subject>631/378/2620/2623</subject><subject>631/378/3917</subject><subject>631/378/3920</subject><subject>Ablation</subject><subject>Amplification</subject><subject>Analysis</subject><subject>Animals</subject><subject>Cell interaction</subject><subject>Circuits</subject><subject>Computational neuroscience</subject><subject>Computer networks</subject><subject>Computer Simulation</subject><subject>Cortical columns</subject><subject>Humanities and Social Sciences</subject><subject>Influence</subject><subject>Interneurons</subject><subject>Mapping</subject><subject>Mice</subject><subject>Models, Neurological</subject><subject>multidisciplinary</subject><subject>Neural circuitry</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Neurons - physiology</subject><subject>Representations</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Selectivity</subject><subject>Somatosensory cortex</subject><subject>Somatosensory Cortex - physiology</subject><subject>Synapses</subject><subject>Tactile discrimination</subject><subject>Touch</subject><subject>Touch - physiology</subject><subject>Vibrissae</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp10l1v0zAUBmALgVgZ_ABuUAU3IJRxjp3Ezg1SVfExaQJpDHFpuY4TPKV2Zzuo_HtcOrYFdcpF4vg5bz7OIeQ5wgkCE-9iiZWoC6BQUKhpsX1AZljyuihrwR-SGQAVBQhWH5EnMV4CQIW8fEyOGEVGOTQzgudGjyEYl-bWJROUTta7mBfzwWs1zLUPyf69sEGPNsWn5FGnhmieXZ-PyfePHy6Wn4uzr59Ol4uzQnNepcKwGoHrTjRCNbQFpSvVoVYUVw0FUI0uoUaGGtuqrRTyBlZglBJ6JUpBS3ZM3u9zN-NqbVqdXzGoQW6CXavwW3pl5XTH2Z-y97-kgIaiqHPA6-uA4K9GE5Nc26jNMChn_BglZTwzpA3L9NV_9NKPweXPy0pQ4CXQ6lb1ajDSus7n5-pdqFzUFBEawSGr4oDqjcs_d_DOdDbfnviXB7ze2Ct5F50cQPlozdrqg6lvJgXZJLNNvRpjlKffzqf27f12cfFj-WWqca918DEG0920BEHuxlLux1LmsZS7sZTbXPPibi9vKv7NYQZ0D2Lecr0Jtw24P_UPnW3oPg</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Peron, Simon</creator><creator>Pancholi, Ravi</creator><creator>Voelcker, Bettina</creator><creator>Wittenbach, Jason D.</creator><creator>Ólafsdóttir, H. Freyja</creator><creator>Freeman, Jeremy</creator><creator>Svoboda, Karel</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200301</creationdate><title>Recurrent interactions in local cortical circuits</title><author>Peron, Simon ; Pancholi, Ravi ; Voelcker, Bettina ; Wittenbach, Jason D. ; Ólafsdóttir, H. Freyja ; Freeman, Jeremy ; Svoboda, Karel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c775t-e36107cf898a92d0ac5af1ca21b9200a9c406131c1d5d5a1790b0eaa8cb848243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>14/69</topic><topic>631/378/2620/2623</topic><topic>631/378/3917</topic><topic>631/378/3920</topic><topic>Ablation</topic><topic>Amplification</topic><topic>Analysis</topic><topic>Animals</topic><topic>Cell interaction</topic><topic>Circuits</topic><topic>Computational neuroscience</topic><topic>Computer networks</topic><topic>Computer Simulation</topic><topic>Cortical columns</topic><topic>Humanities and Social Sciences</topic><topic>Influence</topic><topic>Interneurons</topic><topic>Mapping</topic><topic>Mice</topic><topic>Models, Neurological</topic><topic>multidisciplinary</topic><topic>Neural circuitry</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Neurons - physiology</topic><topic>Representations</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Selectivity</topic><topic>Somatosensory cortex</topic><topic>Somatosensory Cortex - physiology</topic><topic>Synapses</topic><topic>Tactile discrimination</topic><topic>Touch</topic><topic>Touch - physiology</topic><topic>Vibrissae</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peron, Simon</creatorcontrib><creatorcontrib>Pancholi, Ravi</creatorcontrib><creatorcontrib>Voelcker, Bettina</creatorcontrib><creatorcontrib>Wittenbach, Jason D.</creatorcontrib><creatorcontrib>Ólafsdóttir, H. Freyja</creatorcontrib><creatorcontrib>Freeman, Jeremy</creatorcontrib><creatorcontrib>Svoboda, Karel</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peron, Simon</au><au>Pancholi, Ravi</au><au>Voelcker, Bettina</au><au>Wittenbach, Jason D.</au><au>Ólafsdóttir, H. Freyja</au><au>Freeman, Jeremy</au><au>Svoboda, Karel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recurrent interactions in local cortical circuits</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2020-03-01</date><risdate>2020</risdate><volume>579</volume><issue>7798</issue><spage>256</spage><epage>259</epage><pages>256-259</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>Most cortical synapses are local and excitatory. Local recurrent circuits could implement amplification, allowing pattern completion and other computations
1
–
4
. Cortical circuits contain subnetworks that consist of neurons with similar receptive fields and increased connectivity relative to the network average
5
,
6
. Cortical neurons that encode different types of information are spatially intermingled and distributed over large brain volumes
5
–
7
, and this complexity has hindered attempts to probe the function of these subnetworks by perturbing them individually
8
. Here we use computational modelling, optical recordings and manipulations to probe the function of recurrent coupling in layer 2/3 of the mouse vibrissal somatosensory cortex during active tactile discrimination. A neural circuit model of layer 2/3 revealed that recurrent excitation enhances sensory signals by amplification, but only for subnetworks with increased connectivity. Model networks with high amplification were sensitive to damage: loss of a few members of the subnetwork degraded stimulus encoding. We tested this prediction by mapping neuronal selectivity
7
and photoablating
9
,
10
neurons with specific selectivity. Ablation of a small proportion of layer 2/3 neurons (10–20, less than 5% of the total) representing touch markedly reduced responses in the spared touch representation, but not in other representations. Ablations most strongly affected neurons with stimulus responses that were similar to those of the ablated population, which is also consistent with network models. Recurrence among cortical neurons with similar selectivity therefore drives input-specific amplification during behaviour.
Computational modelling, imaging and single-cell ablation in layer 2/3 of the mouse vibrissal somatosensory cortex reveals that recurrent activity in cortical neurons can drive input-specific amplification during behaviour.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32132709</pmid><doi>10.1038/s41586-020-2062-x</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2020-03, Vol.579 (7798), p.256-259 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8092186 |
source | MEDLINE; SpringerLink Journals; Nature |
subjects | 14/69 631/378/2620/2623 631/378/3917 631/378/3920 Ablation Amplification Analysis Animals Cell interaction Circuits Computational neuroscience Computer networks Computer Simulation Cortical columns Humanities and Social Sciences Influence Interneurons Mapping Mice Models, Neurological multidisciplinary Neural circuitry Neural networks Neurons Neurons - physiology Representations Science Science (multidisciplinary) Selectivity Somatosensory cortex Somatosensory Cortex - physiology Synapses Tactile discrimination Touch Touch - physiology Vibrissae |
title | Recurrent interactions in local cortical circuits |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T00%3A45%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recurrent%20interactions%20in%20local%20cortical%20circuits&rft.jtitle=Nature%20(London)&rft.au=Peron,%20Simon&rft.date=2020-03-01&rft.volume=579&rft.issue=7798&rft.spage=256&rft.epage=259&rft.pages=256-259&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-020-2062-x&rft_dat=%3Cgale_pubme%3EA621109870%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2382074025&rft_id=info:pmid/32132709&rft_galeid=A621109870&rfr_iscdi=true |