Mispair-bound human MutS–MutL complex triggers DNA incisions and activates mismatch repair
DNA mismatch repair (MMR) relies on MutS and MutL ATPases for mismatch recognition and strand-specific nuclease recruitment to remove mispaired bases in daughter strands. However, whether the MutS–MutL complex coordinates MMR by ATP-dependent sliding on DNA or protein–protein interactions between th...
Gespeichert in:
Veröffentlicht in: | Cell research 2021-05, Vol.31 (5), p.542-553 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 553 |
---|---|
container_issue | 5 |
container_start_page | 542 |
container_title | Cell research |
container_volume | 31 |
creator | Ortega, Janice Lee, Grace Sanghee Gu, Liya Yang, Wei Li, Guo-Min |
description | DNA mismatch repair (MMR) relies on MutS and MutL ATPases for mismatch recognition and strand-specific nuclease recruitment to remove mispaired bases in daughter strands. However, whether the MutS–MutL complex coordinates MMR by ATP-dependent sliding on DNA or protein–protein interactions between the mismatch and strand discrimination signal is ambiguous. Using functional MMR assays and systems preventing proteins from sliding, we show that sliding of human MutSα is required not for MMR initiation, but for final mismatch removal. MutSα recruits MutLα to form a mismatch-bound complex, which initiates MMR by nicking the daughter strand 5′ to the mismatch. Exonuclease 1 (Exo1) is then recruited to the nick and conducts 5′ → 3′ excision. ATP-dependent MutSα dissociation from the mismatch is necessary for Exo1 to remove the mispaired base when the excision reaches the mismatch. Therefore, our study has resolved a long-standing puzzle, and provided new insights into the mechanism of MMR initiation and mispair removal. |
doi_str_mv | 10.1038/s41422-021-00468-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8089094</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2520676371</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-7a0fb4bdc7e47e1f2881d70e5a136041ead853bf881e5e10d2f3fcbd4a5617db3</originalsourceid><addsrcrecordid>eNp9kctOwzAQRS0E4lH4ARbIEuvA-JHY3SAh3lKBBbBDshzHaV01SbGTiu74B_6QL8GlPDesxvK9c2Y0F6FdAgcEmDwMnHBKE6AkAeCZTOYraJMILhMhmVyNb4AoZUA30FYIYwCa8pSsow3G0gVBbKLHaxem2vkkb7q6wKOu0jW-7tq7t5fXWAbYNNV0Yp9x691waH3ApzfH2NXGBdfUAevYpE3rZrq1AVcuVLo1I-ztArqN1ko9CXbns_bQw_nZ_cllMri9uDo5HiSGC94mQkOZ87wwwnJhSUmlJIUAm2rCMuDE6kKmLC_jt00tgYKWrDR5wXWaEVHkrIeOltxpl1e2MLZuvZ6oqXeV9nPVaKf-KrUbqWEzUxJkH_o8AvY_Ab556mxo1bjpfB13VjSlkImMCRJddOkyvgnB2_J7AgG1uKdaJqJiIuojETWPTXu_d_tu-YogGtjSEKJUxxP_zP4H-w56TJqB</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2520676371</pqid></control><display><type>article</type><title>Mispair-bound human MutS–MutL complex triggers DNA incisions and activates mismatch repair</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>SpringerLink Journals - AutoHoldings</source><creator>Ortega, Janice ; Lee, Grace Sanghee ; Gu, Liya ; Yang, Wei ; Li, Guo-Min</creator><creatorcontrib>Ortega, Janice ; Lee, Grace Sanghee ; Gu, Liya ; Yang, Wei ; Li, Guo-Min</creatorcontrib><description>DNA mismatch repair (MMR) relies on MutS and MutL ATPases for mismatch recognition and strand-specific nuclease recruitment to remove mispaired bases in daughter strands. However, whether the MutS–MutL complex coordinates MMR by ATP-dependent sliding on DNA or protein–protein interactions between the mismatch and strand discrimination signal is ambiguous. Using functional MMR assays and systems preventing proteins from sliding, we show that sliding of human MutSα is required not for MMR initiation, but for final mismatch removal. MutSα recruits MutLα to form a mismatch-bound complex, which initiates MMR by nicking the daughter strand 5′ to the mismatch. Exonuclease 1 (Exo1) is then recruited to the nick and conducts 5′ → 3′ excision. ATP-dependent MutSα dissociation from the mismatch is necessary for Exo1 to remove the mispaired base when the excision reaches the mismatch. Therefore, our study has resolved a long-standing puzzle, and provided new insights into the mechanism of MMR initiation and mispair removal.</description><identifier>ISSN: 1001-0602</identifier><identifier>EISSN: 1748-7838</identifier><identifier>DOI: 10.1038/s41422-021-00468-y</identifier><identifier>PMID: 33510387</identifier><language>eng</language><publisher>Singapore: Springer Singapore</publisher><subject>631/337 ; Adenosine Triphosphatases ; Base Pair Mismatch ; Biomedical and Life Sciences ; Cell Biology ; Deoxyribonucleic acid ; DNA ; DNA Mismatch Repair ; DNA Repair ; DNA-Binding Proteins - metabolism ; Exonuclease ; Humans ; Life Sciences ; Mismatch repair ; MutS DNA Mismatch-Binding Protein - genetics ; Nicking endonuclease ; Nuclease ; Protein interaction ; Proteins ; Sliding ; Yeast</subject><ispartof>Cell research, 2021-05, Vol.31 (5), p.542-553</ispartof><rights>Center for Excellence in Molecular Cell Science, CAS 2021</rights><rights>Center for Excellence in Molecular Cell Science, CAS 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-7a0fb4bdc7e47e1f2881d70e5a136041ead853bf881e5e10d2f3fcbd4a5617db3</citedby><cites>FETCH-LOGICAL-c474t-7a0fb4bdc7e47e1f2881d70e5a136041ead853bf881e5e10d2f3fcbd4a5617db3</cites><orcidid>0000-0002-9842-4578 ; 0000-0002-1193-0532 ; 0000-0002-3591-2195</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8089094/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8089094/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27922,27923,41486,42555,51317,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33510387$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ortega, Janice</creatorcontrib><creatorcontrib>Lee, Grace Sanghee</creatorcontrib><creatorcontrib>Gu, Liya</creatorcontrib><creatorcontrib>Yang, Wei</creatorcontrib><creatorcontrib>Li, Guo-Min</creatorcontrib><title>Mispair-bound human MutS–MutL complex triggers DNA incisions and activates mismatch repair</title><title>Cell research</title><addtitle>Cell Res</addtitle><addtitle>Cell Res</addtitle><description>DNA mismatch repair (MMR) relies on MutS and MutL ATPases for mismatch recognition and strand-specific nuclease recruitment to remove mispaired bases in daughter strands. However, whether the MutS–MutL complex coordinates MMR by ATP-dependent sliding on DNA or protein–protein interactions between the mismatch and strand discrimination signal is ambiguous. Using functional MMR assays and systems preventing proteins from sliding, we show that sliding of human MutSα is required not for MMR initiation, but for final mismatch removal. MutSα recruits MutLα to form a mismatch-bound complex, which initiates MMR by nicking the daughter strand 5′ to the mismatch. Exonuclease 1 (Exo1) is then recruited to the nick and conducts 5′ → 3′ excision. ATP-dependent MutSα dissociation from the mismatch is necessary for Exo1 to remove the mispaired base when the excision reaches the mismatch. Therefore, our study has resolved a long-standing puzzle, and provided new insights into the mechanism of MMR initiation and mispair removal.</description><subject>631/337</subject><subject>Adenosine Triphosphatases</subject><subject>Base Pair Mismatch</subject><subject>Biomedical and Life Sciences</subject><subject>Cell Biology</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA Mismatch Repair</subject><subject>DNA Repair</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Exonuclease</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Mismatch repair</subject><subject>MutS DNA Mismatch-Binding Protein - genetics</subject><subject>Nicking endonuclease</subject><subject>Nuclease</subject><subject>Protein interaction</subject><subject>Proteins</subject><subject>Sliding</subject><subject>Yeast</subject><issn>1001-0602</issn><issn>1748-7838</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kctOwzAQRS0E4lH4ARbIEuvA-JHY3SAh3lKBBbBDshzHaV01SbGTiu74B_6QL8GlPDesxvK9c2Y0F6FdAgcEmDwMnHBKE6AkAeCZTOYraJMILhMhmVyNb4AoZUA30FYIYwCa8pSsow3G0gVBbKLHaxem2vkkb7q6wKOu0jW-7tq7t5fXWAbYNNV0Yp9x691waH3ApzfH2NXGBdfUAevYpE3rZrq1AVcuVLo1I-ztArqN1ko9CXbns_bQw_nZ_cllMri9uDo5HiSGC94mQkOZ87wwwnJhSUmlJIUAm2rCMuDE6kKmLC_jt00tgYKWrDR5wXWaEVHkrIeOltxpl1e2MLZuvZ6oqXeV9nPVaKf-KrUbqWEzUxJkH_o8AvY_Ab556mxo1bjpfB13VjSlkImMCRJddOkyvgnB2_J7AgG1uKdaJqJiIuojETWPTXu_d_tu-YogGtjSEKJUxxP_zP4H-w56TJqB</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Ortega, Janice</creator><creator>Lee, Grace Sanghee</creator><creator>Gu, Liya</creator><creator>Yang, Wei</creator><creator>Li, Guo-Min</creator><general>Springer Singapore</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9842-4578</orcidid><orcidid>https://orcid.org/0000-0002-1193-0532</orcidid><orcidid>https://orcid.org/0000-0002-3591-2195</orcidid></search><sort><creationdate>20210501</creationdate><title>Mispair-bound human MutS–MutL complex triggers DNA incisions and activates mismatch repair</title><author>Ortega, Janice ; Lee, Grace Sanghee ; Gu, Liya ; Yang, Wei ; Li, Guo-Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-7a0fb4bdc7e47e1f2881d70e5a136041ead853bf881e5e10d2f3fcbd4a5617db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>631/337</topic><topic>Adenosine Triphosphatases</topic><topic>Base Pair Mismatch</topic><topic>Biomedical and Life Sciences</topic><topic>Cell Biology</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA Mismatch Repair</topic><topic>DNA Repair</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Exonuclease</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Mismatch repair</topic><topic>MutS DNA Mismatch-Binding Protein - genetics</topic><topic>Nicking endonuclease</topic><topic>Nuclease</topic><topic>Protein interaction</topic><topic>Proteins</topic><topic>Sliding</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ortega, Janice</creatorcontrib><creatorcontrib>Lee, Grace Sanghee</creatorcontrib><creatorcontrib>Gu, Liya</creatorcontrib><creatorcontrib>Yang, Wei</creatorcontrib><creatorcontrib>Li, Guo-Min</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ortega, Janice</au><au>Lee, Grace Sanghee</au><au>Gu, Liya</au><au>Yang, Wei</au><au>Li, Guo-Min</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mispair-bound human MutS–MutL complex triggers DNA incisions and activates mismatch repair</atitle><jtitle>Cell research</jtitle><stitle>Cell Res</stitle><addtitle>Cell Res</addtitle><date>2021-05-01</date><risdate>2021</risdate><volume>31</volume><issue>5</issue><spage>542</spage><epage>553</epage><pages>542-553</pages><issn>1001-0602</issn><eissn>1748-7838</eissn><abstract>DNA mismatch repair (MMR) relies on MutS and MutL ATPases for mismatch recognition and strand-specific nuclease recruitment to remove mispaired bases in daughter strands. However, whether the MutS–MutL complex coordinates MMR by ATP-dependent sliding on DNA or protein–protein interactions between the mismatch and strand discrimination signal is ambiguous. Using functional MMR assays and systems preventing proteins from sliding, we show that sliding of human MutSα is required not for MMR initiation, but for final mismatch removal. MutSα recruits MutLα to form a mismatch-bound complex, which initiates MMR by nicking the daughter strand 5′ to the mismatch. Exonuclease 1 (Exo1) is then recruited to the nick and conducts 5′ → 3′ excision. ATP-dependent MutSα dissociation from the mismatch is necessary for Exo1 to remove the mispaired base when the excision reaches the mismatch. Therefore, our study has resolved a long-standing puzzle, and provided new insights into the mechanism of MMR initiation and mispair removal.</abstract><cop>Singapore</cop><pub>Springer Singapore</pub><pmid>33510387</pmid><doi>10.1038/s41422-021-00468-y</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9842-4578</orcidid><orcidid>https://orcid.org/0000-0002-1193-0532</orcidid><orcidid>https://orcid.org/0000-0002-3591-2195</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1001-0602 |
ispartof | Cell research, 2021-05, Vol.31 (5), p.542-553 |
issn | 1001-0602 1748-7838 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8089094 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; SpringerLink Journals - AutoHoldings |
subjects | 631/337 Adenosine Triphosphatases Base Pair Mismatch Biomedical and Life Sciences Cell Biology Deoxyribonucleic acid DNA DNA Mismatch Repair DNA Repair DNA-Binding Proteins - metabolism Exonuclease Humans Life Sciences Mismatch repair MutS DNA Mismatch-Binding Protein - genetics Nicking endonuclease Nuclease Protein interaction Proteins Sliding Yeast |
title | Mispair-bound human MutS–MutL complex triggers DNA incisions and activates mismatch repair |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T01%3A43%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mispair-bound%20human%20MutS%E2%80%93MutL%20complex%20triggers%20DNA%20incisions%20and%20activates%20mismatch%20repair&rft.jtitle=Cell%20research&rft.au=Ortega,%20Janice&rft.date=2021-05-01&rft.volume=31&rft.issue=5&rft.spage=542&rft.epage=553&rft.pages=542-553&rft.issn=1001-0602&rft.eissn=1748-7838&rft_id=info:doi/10.1038/s41422-021-00468-y&rft_dat=%3Cproquest_pubme%3E2520676371%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2520676371&rft_id=info:pmid/33510387&rfr_iscdi=true |