VEGFR2 blockade augments the effects of tyrosine kinase inhibitors by inhibiting angiogenesis and oncogenic signaling in oncogene‐driven non‐small‐cell lung cancers
Molecular agents targeting the epidermal growth factor receptor (EGFR)‐, anaplastic lymphoma kinase (ALK)‐ or c‐ros oncogene 1 (ROS1) alterations have revolutionized the treatment of oncogene‐driven non‐small‐cell lung cancer (NSCLC). However, the emergence of acquired resistance remains a significa...
Gespeichert in:
Veröffentlicht in: | Cancer science 2021-05, Vol.112 (5), p.1853-1864 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1864 |
---|---|
container_issue | 5 |
container_start_page | 1853 |
container_title | Cancer science |
container_volume | 112 |
creator | Watanabe, Hiromi Ichihara, Eiki Kayatani, Hiroe Makimoto, Go Ninomiya, Kiichiro Nishii, Kazuya Higo, Hisao Ando, Chihiro Okawa, Sachi Nakasuka, Takamasa Kano, Hirohisa Hara, Naofumi Hirabae, Atsuko Kato, Yuka Ninomiya, Takashi Kubo, Toshio Rai, Kammei Ohashi, Kadoaki Hotta, Katsuyuki Tabata, Masahiro Maeda, Yoshinobu Kiura, Katsuyuki |
description | Molecular agents targeting the epidermal growth factor receptor (EGFR)‐, anaplastic lymphoma kinase (ALK)‐ or c‐ros oncogene 1 (ROS1) alterations have revolutionized the treatment of oncogene‐driven non‐small‐cell lung cancer (NSCLC). However, the emergence of acquired resistance remains a significant challenge, limiting the wider clinical success of these molecular targeted therapies. In this study, we investigated the efficacy of various molecular targeted agents, including erlotinib, alectinib, and crizotinib, combined with anti‐vascular endothelial growth factor receptor (VEGFR) 2 therapy. The combination of VEGFR2 blockade with molecular targeted agents enhanced the anti‐tumor effects of these agents in xenograft mouse models of EGFR‐, ALK‐, or ROS1‐altered NSCLC. The numbers of CD31‐positive blood vessels were significantly lower in the tumors of mice treated with an anti‐VEGFR2 antibody combined with molecular targeted agents compared with in those of mice treated with molecular targeted agents alone, implying the antiangiogenic effects of VEGFR2 blockade. Additionally, the combination therapies exerted more potent antiproliferative effects in vitro in EGFR‐, ALK‐, or ROS1‐altered NSCLC cells, implying that VEGFR2 inhibition also has direct anti‐tumor effects on cancer cells. Furthermore, VEGFR2 expression was induced following exposure to molecular targeted agents, implying the importance of VEGFR2 signaling in NSCLC patients undergoing molecular targeted therapy. In conclusion, VEGFR2 inhibition enhanced the anti‐tumor effects of molecular targeted agents in various oncogene‐driven NSCLC models, not only by inhibiting tumor angiogenesis but also by exerting direct antiproliferative effects on cancer cells. Hence, combination therapy with anti‐VEGFR2 antibodies and molecular targeted agents could serve as a promising treatment strategy for oncogene‐driven NSCLC.
We found that VEGFR2 blockade augmented the anti‐tumor effects of molecular targeted agents in oncogene‐driven NSCLC, particularly in EGFR/ALK/ROS1‐driven NSCLC. We also identified 2 mechanisms underlying the synergistic effects of anti‐VEGFR2 therapy with molecular targeted agents. VEGFR2 blockade not only inhibited tumor angiogenesis but also exerted direct antiproliferative effects on cancer cells. |
doi_str_mv | 10.1111/cas.14801 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8088971</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2520636718</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5771-dae005535752d1bb715e9dd400fbe8770b42e65040b53a84a2cc052d259c87923</originalsourceid><addsrcrecordid>eNp1kc1u1DAUhSMEoqV0wQsgS6xYpL127DjZIFWjtlSqhMRPt5bj3GTceuxiJ0Wz4xF4Dh6LJ6mn06lggTf3HvvTsX1PUbyhcETzOjY6HVHeAH1W7NOKt6UEqJ8_9LJsoWJ7xauUrgGqmrf8ZbFXVZwC43S_-H11en72mZHOBXOjeyR6Hlfop0SmJRIcBjS5DwOZ1jEk65HcWK8TEuuXtrNTiIl0652yfiTajzaM6DHZlEVPgjcbbQ1JdvTabSDrd9v45-evPto79MQHn0VaaedyNegccXOGjfYGY3pdvBi0S3j4WA-Kb2enXxcfy8tP5xeLk8vSCClp2WsEEKISUrCedp2kAtu-5wBDh42U0HGGtQAOnah0wzUzBjLKRGsa2bLqoPiw9b2duxX2Jk8jaqduo13puFZBW_XvibdLNYY71UDTtJJmg3ePBjF8nzFN6jrMMf88KSYY1FUtaZOp91vK5MGmiMPTDRTUJlaVY1UPsWb27d9PeiJ3OWbgeAv8sA7X_3dSi5MvW8t7CmKzJA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2520636718</pqid></control><display><type>article</type><title>VEGFR2 blockade augments the effects of tyrosine kinase inhibitors by inhibiting angiogenesis and oncogenic signaling in oncogene‐driven non‐small‐cell lung cancers</title><source>MEDLINE</source><source>Wiley Online Library Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>PubMed Central</source><creator>Watanabe, Hiromi ; Ichihara, Eiki ; Kayatani, Hiroe ; Makimoto, Go ; Ninomiya, Kiichiro ; Nishii, Kazuya ; Higo, Hisao ; Ando, Chihiro ; Okawa, Sachi ; Nakasuka, Takamasa ; Kano, Hirohisa ; Hara, Naofumi ; Hirabae, Atsuko ; Kato, Yuka ; Ninomiya, Takashi ; Kubo, Toshio ; Rai, Kammei ; Ohashi, Kadoaki ; Hotta, Katsuyuki ; Tabata, Masahiro ; Maeda, Yoshinobu ; Kiura, Katsuyuki</creator><creatorcontrib>Watanabe, Hiromi ; Ichihara, Eiki ; Kayatani, Hiroe ; Makimoto, Go ; Ninomiya, Kiichiro ; Nishii, Kazuya ; Higo, Hisao ; Ando, Chihiro ; Okawa, Sachi ; Nakasuka, Takamasa ; Kano, Hirohisa ; Hara, Naofumi ; Hirabae, Atsuko ; Kato, Yuka ; Ninomiya, Takashi ; Kubo, Toshio ; Rai, Kammei ; Ohashi, Kadoaki ; Hotta, Katsuyuki ; Tabata, Masahiro ; Maeda, Yoshinobu ; Kiura, Katsuyuki</creatorcontrib><description>Molecular agents targeting the epidermal growth factor receptor (EGFR)‐, anaplastic lymphoma kinase (ALK)‐ or c‐ros oncogene 1 (ROS1) alterations have revolutionized the treatment of oncogene‐driven non‐small‐cell lung cancer (NSCLC). However, the emergence of acquired resistance remains a significant challenge, limiting the wider clinical success of these molecular targeted therapies. In this study, we investigated the efficacy of various molecular targeted agents, including erlotinib, alectinib, and crizotinib, combined with anti‐vascular endothelial growth factor receptor (VEGFR) 2 therapy. The combination of VEGFR2 blockade with molecular targeted agents enhanced the anti‐tumor effects of these agents in xenograft mouse models of EGFR‐, ALK‐, or ROS1‐altered NSCLC. The numbers of CD31‐positive blood vessels were significantly lower in the tumors of mice treated with an anti‐VEGFR2 antibody combined with molecular targeted agents compared with in those of mice treated with molecular targeted agents alone, implying the antiangiogenic effects of VEGFR2 blockade. Additionally, the combination therapies exerted more potent antiproliferative effects in vitro in EGFR‐, ALK‐, or ROS1‐altered NSCLC cells, implying that VEGFR2 inhibition also has direct anti‐tumor effects on cancer cells. Furthermore, VEGFR2 expression was induced following exposure to molecular targeted agents, implying the importance of VEGFR2 signaling in NSCLC patients undergoing molecular targeted therapy. In conclusion, VEGFR2 inhibition enhanced the anti‐tumor effects of molecular targeted agents in various oncogene‐driven NSCLC models, not only by inhibiting tumor angiogenesis but also by exerting direct antiproliferative effects on cancer cells. Hence, combination therapy with anti‐VEGFR2 antibodies and molecular targeted agents could serve as a promising treatment strategy for oncogene‐driven NSCLC.
We found that VEGFR2 blockade augmented the anti‐tumor effects of molecular targeted agents in oncogene‐driven NSCLC, particularly in EGFR/ALK/ROS1‐driven NSCLC. We also identified 2 mechanisms underlying the synergistic effects of anti‐VEGFR2 therapy with molecular targeted agents. VEGFR2 blockade not only inhibited tumor angiogenesis but also exerted direct antiproliferative effects on cancer cells.</description><identifier>ISSN: 1347-9032</identifier><identifier>EISSN: 1349-7006</identifier><identifier>DOI: 10.1111/cas.14801</identifier><identifier>PMID: 33410241</identifier><language>eng</language><publisher>England: John Wiley & Sons, Inc</publisher><subject>A549 Cells ; Acrylamides - therapeutic use ; Anaplastic Lymphoma Kinase - genetics ; Angiogenesis inhibitors ; Angiogenesis Inhibitors - therapeutic use ; Aniline Compounds - therapeutic use ; Animal models ; Animals ; Antibodies ; Antibodies, Monoclonal - therapeutic use ; Antibodies, Monoclonal, Humanized - therapeutic use ; Blood vessels ; Cancer therapies ; Carbazoles - therapeutic use ; Carcinoma, Non-Small-Cell Lung - drug therapy ; Carcinoma, Non-Small-Cell Lung - genetics ; Carcinoma, Non-Small-Cell Lung - metabolism ; Cell Line, Tumor ; Combined Modality Therapy - methods ; Crizotinib - therapeutic use ; Drug Synergism ; Epidermal growth factor ; Epidermal growth factor receptors ; Erlotinib Hydrochloride - therapeutic use ; Female ; Genes, erbB-1 ; Heterografts ; Humans ; Kinases ; Laboratory animals ; Lung cancer ; Lung Neoplasms - drug therapy ; Lung Neoplasms - genetics ; Lung Neoplasms - metabolism ; Mice ; Mice, Inbred BALB C ; Mice, Nude ; Molecular Targeted Therapy - methods ; Mutation ; Neovascularization, Pathologic - prevention & control ; Non-small cell lung carcinoma ; Oncogenes ; Original ; Piperidines - therapeutic use ; Platelet Endothelial Cell Adhesion Molecule-1 - analysis ; Protein Kinase Inhibitors - therapeutic use ; Protein-Tyrosine Kinases - genetics ; Proto-Oncogene Proteins - genetics ; R&D ; Ramucirumab ; Random Allocation ; Reagents ; Research & development ; Signal Transduction - drug effects ; Statistical analysis ; Tumors ; Tyrosine kinase inhibitors ; Vascular endothelial growth factor ; Vascular Endothelial Growth Factor Receptor-2 - antagonists & inhibitors ; Vascular Endothelial Growth Factor Receptor-2 - metabolism ; Vascular endothelial growth factor receptors ; Xenografts</subject><ispartof>Cancer science, 2021-05, Vol.112 (5), p.1853-1864</ispartof><rights>2021 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.</rights><rights>2021 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.</rights><rights>2021. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5771-dae005535752d1bb715e9dd400fbe8770b42e65040b53a84a2cc052d259c87923</citedby><cites>FETCH-LOGICAL-c5771-dae005535752d1bb715e9dd400fbe8770b42e65040b53a84a2cc052d259c87923</cites><orcidid>0000-0003-4327-7547 ; 0000-0002-5180-3933 ; 0000-0002-2966-106X ; 0000-0002-0638-8435</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8088971/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8088971/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,1411,11541,27901,27902,45550,45551,46027,46451,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33410241$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Watanabe, Hiromi</creatorcontrib><creatorcontrib>Ichihara, Eiki</creatorcontrib><creatorcontrib>Kayatani, Hiroe</creatorcontrib><creatorcontrib>Makimoto, Go</creatorcontrib><creatorcontrib>Ninomiya, Kiichiro</creatorcontrib><creatorcontrib>Nishii, Kazuya</creatorcontrib><creatorcontrib>Higo, Hisao</creatorcontrib><creatorcontrib>Ando, Chihiro</creatorcontrib><creatorcontrib>Okawa, Sachi</creatorcontrib><creatorcontrib>Nakasuka, Takamasa</creatorcontrib><creatorcontrib>Kano, Hirohisa</creatorcontrib><creatorcontrib>Hara, Naofumi</creatorcontrib><creatorcontrib>Hirabae, Atsuko</creatorcontrib><creatorcontrib>Kato, Yuka</creatorcontrib><creatorcontrib>Ninomiya, Takashi</creatorcontrib><creatorcontrib>Kubo, Toshio</creatorcontrib><creatorcontrib>Rai, Kammei</creatorcontrib><creatorcontrib>Ohashi, Kadoaki</creatorcontrib><creatorcontrib>Hotta, Katsuyuki</creatorcontrib><creatorcontrib>Tabata, Masahiro</creatorcontrib><creatorcontrib>Maeda, Yoshinobu</creatorcontrib><creatorcontrib>Kiura, Katsuyuki</creatorcontrib><title>VEGFR2 blockade augments the effects of tyrosine kinase inhibitors by inhibiting angiogenesis and oncogenic signaling in oncogene‐driven non‐small‐cell lung cancers</title><title>Cancer science</title><addtitle>Cancer Sci</addtitle><description>Molecular agents targeting the epidermal growth factor receptor (EGFR)‐, anaplastic lymphoma kinase (ALK)‐ or c‐ros oncogene 1 (ROS1) alterations have revolutionized the treatment of oncogene‐driven non‐small‐cell lung cancer (NSCLC). However, the emergence of acquired resistance remains a significant challenge, limiting the wider clinical success of these molecular targeted therapies. In this study, we investigated the efficacy of various molecular targeted agents, including erlotinib, alectinib, and crizotinib, combined with anti‐vascular endothelial growth factor receptor (VEGFR) 2 therapy. The combination of VEGFR2 blockade with molecular targeted agents enhanced the anti‐tumor effects of these agents in xenograft mouse models of EGFR‐, ALK‐, or ROS1‐altered NSCLC. The numbers of CD31‐positive blood vessels were significantly lower in the tumors of mice treated with an anti‐VEGFR2 antibody combined with molecular targeted agents compared with in those of mice treated with molecular targeted agents alone, implying the antiangiogenic effects of VEGFR2 blockade. Additionally, the combination therapies exerted more potent antiproliferative effects in vitro in EGFR‐, ALK‐, or ROS1‐altered NSCLC cells, implying that VEGFR2 inhibition also has direct anti‐tumor effects on cancer cells. Furthermore, VEGFR2 expression was induced following exposure to molecular targeted agents, implying the importance of VEGFR2 signaling in NSCLC patients undergoing molecular targeted therapy. In conclusion, VEGFR2 inhibition enhanced the anti‐tumor effects of molecular targeted agents in various oncogene‐driven NSCLC models, not only by inhibiting tumor angiogenesis but also by exerting direct antiproliferative effects on cancer cells. Hence, combination therapy with anti‐VEGFR2 antibodies and molecular targeted agents could serve as a promising treatment strategy for oncogene‐driven NSCLC.
We found that VEGFR2 blockade augmented the anti‐tumor effects of molecular targeted agents in oncogene‐driven NSCLC, particularly in EGFR/ALK/ROS1‐driven NSCLC. We also identified 2 mechanisms underlying the synergistic effects of anti‐VEGFR2 therapy with molecular targeted agents. VEGFR2 blockade not only inhibited tumor angiogenesis but also exerted direct antiproliferative effects on cancer cells.</description><subject>A549 Cells</subject><subject>Acrylamides - therapeutic use</subject><subject>Anaplastic Lymphoma Kinase - genetics</subject><subject>Angiogenesis inhibitors</subject><subject>Angiogenesis Inhibitors - therapeutic use</subject><subject>Aniline Compounds - therapeutic use</subject><subject>Animal models</subject><subject>Animals</subject><subject>Antibodies</subject><subject>Antibodies, Monoclonal - therapeutic use</subject><subject>Antibodies, Monoclonal, Humanized - therapeutic use</subject><subject>Blood vessels</subject><subject>Cancer therapies</subject><subject>Carbazoles - therapeutic use</subject><subject>Carcinoma, Non-Small-Cell Lung - drug therapy</subject><subject>Carcinoma, Non-Small-Cell Lung - genetics</subject><subject>Carcinoma, Non-Small-Cell Lung - metabolism</subject><subject>Cell Line, Tumor</subject><subject>Combined Modality Therapy - methods</subject><subject>Crizotinib - therapeutic use</subject><subject>Drug Synergism</subject><subject>Epidermal growth factor</subject><subject>Epidermal growth factor receptors</subject><subject>Erlotinib Hydrochloride - therapeutic use</subject><subject>Female</subject><subject>Genes, erbB-1</subject><subject>Heterografts</subject><subject>Humans</subject><subject>Kinases</subject><subject>Laboratory animals</subject><subject>Lung cancer</subject><subject>Lung Neoplasms - drug therapy</subject><subject>Lung Neoplasms - genetics</subject><subject>Lung Neoplasms - metabolism</subject><subject>Mice</subject><subject>Mice, Inbred BALB C</subject><subject>Mice, Nude</subject><subject>Molecular Targeted Therapy - methods</subject><subject>Mutation</subject><subject>Neovascularization, Pathologic - prevention & control</subject><subject>Non-small cell lung carcinoma</subject><subject>Oncogenes</subject><subject>Original</subject><subject>Piperidines - therapeutic use</subject><subject>Platelet Endothelial Cell Adhesion Molecule-1 - analysis</subject><subject>Protein Kinase Inhibitors - therapeutic use</subject><subject>Protein-Tyrosine Kinases - genetics</subject><subject>Proto-Oncogene Proteins - genetics</subject><subject>R&D</subject><subject>Ramucirumab</subject><subject>Random Allocation</subject><subject>Reagents</subject><subject>Research & development</subject><subject>Signal Transduction - drug effects</subject><subject>Statistical analysis</subject><subject>Tumors</subject><subject>Tyrosine kinase inhibitors</subject><subject>Vascular endothelial growth factor</subject><subject>Vascular Endothelial Growth Factor Receptor-2 - antagonists & inhibitors</subject><subject>Vascular Endothelial Growth Factor Receptor-2 - metabolism</subject><subject>Vascular endothelial growth factor receptors</subject><subject>Xenografts</subject><issn>1347-9032</issn><issn>1349-7006</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kc1u1DAUhSMEoqV0wQsgS6xYpL127DjZIFWjtlSqhMRPt5bj3GTceuxiJ0Wz4xF4Dh6LJ6mn06lggTf3HvvTsX1PUbyhcETzOjY6HVHeAH1W7NOKt6UEqJ8_9LJsoWJ7xauUrgGqmrf8ZbFXVZwC43S_-H11en72mZHOBXOjeyR6Hlfop0SmJRIcBjS5DwOZ1jEk65HcWK8TEuuXtrNTiIl0652yfiTajzaM6DHZlEVPgjcbbQ1JdvTabSDrd9v45-evPto79MQHn0VaaedyNegccXOGjfYGY3pdvBi0S3j4WA-Kb2enXxcfy8tP5xeLk8vSCClp2WsEEKISUrCedp2kAtu-5wBDh42U0HGGtQAOnah0wzUzBjLKRGsa2bLqoPiw9b2duxX2Jk8jaqduo13puFZBW_XvibdLNYY71UDTtJJmg3ePBjF8nzFN6jrMMf88KSYY1FUtaZOp91vK5MGmiMPTDRTUJlaVY1UPsWb27d9PeiJ3OWbgeAv8sA7X_3dSi5MvW8t7CmKzJA</recordid><startdate>202105</startdate><enddate>202105</enddate><creator>Watanabe, Hiromi</creator><creator>Ichihara, Eiki</creator><creator>Kayatani, Hiroe</creator><creator>Makimoto, Go</creator><creator>Ninomiya, Kiichiro</creator><creator>Nishii, Kazuya</creator><creator>Higo, Hisao</creator><creator>Ando, Chihiro</creator><creator>Okawa, Sachi</creator><creator>Nakasuka, Takamasa</creator><creator>Kano, Hirohisa</creator><creator>Hara, Naofumi</creator><creator>Hirabae, Atsuko</creator><creator>Kato, Yuka</creator><creator>Ninomiya, Takashi</creator><creator>Kubo, Toshio</creator><creator>Rai, Kammei</creator><creator>Ohashi, Kadoaki</creator><creator>Hotta, Katsuyuki</creator><creator>Tabata, Masahiro</creator><creator>Maeda, Yoshinobu</creator><creator>Kiura, Katsuyuki</creator><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4327-7547</orcidid><orcidid>https://orcid.org/0000-0002-5180-3933</orcidid><orcidid>https://orcid.org/0000-0002-2966-106X</orcidid><orcidid>https://orcid.org/0000-0002-0638-8435</orcidid></search><sort><creationdate>202105</creationdate><title>VEGFR2 blockade augments the effects of tyrosine kinase inhibitors by inhibiting angiogenesis and oncogenic signaling in oncogene‐driven non‐small‐cell lung cancers</title><author>Watanabe, Hiromi ; Ichihara, Eiki ; Kayatani, Hiroe ; Makimoto, Go ; Ninomiya, Kiichiro ; Nishii, Kazuya ; Higo, Hisao ; Ando, Chihiro ; Okawa, Sachi ; Nakasuka, Takamasa ; Kano, Hirohisa ; Hara, Naofumi ; Hirabae, Atsuko ; Kato, Yuka ; Ninomiya, Takashi ; Kubo, Toshio ; Rai, Kammei ; Ohashi, Kadoaki ; Hotta, Katsuyuki ; Tabata, Masahiro ; Maeda, Yoshinobu ; Kiura, Katsuyuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5771-dae005535752d1bb715e9dd400fbe8770b42e65040b53a84a2cc052d259c87923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>A549 Cells</topic><topic>Acrylamides - therapeutic use</topic><topic>Anaplastic Lymphoma Kinase - genetics</topic><topic>Angiogenesis inhibitors</topic><topic>Angiogenesis Inhibitors - therapeutic use</topic><topic>Aniline Compounds - therapeutic use</topic><topic>Animal models</topic><topic>Animals</topic><topic>Antibodies</topic><topic>Antibodies, Monoclonal - therapeutic use</topic><topic>Antibodies, Monoclonal, Humanized - therapeutic use</topic><topic>Blood vessels</topic><topic>Cancer therapies</topic><topic>Carbazoles - therapeutic use</topic><topic>Carcinoma, Non-Small-Cell Lung - drug therapy</topic><topic>Carcinoma, Non-Small-Cell Lung - genetics</topic><topic>Carcinoma, Non-Small-Cell Lung - metabolism</topic><topic>Cell Line, Tumor</topic><topic>Combined Modality Therapy - methods</topic><topic>Crizotinib - therapeutic use</topic><topic>Drug Synergism</topic><topic>Epidermal growth factor</topic><topic>Epidermal growth factor receptors</topic><topic>Erlotinib Hydrochloride - therapeutic use</topic><topic>Female</topic><topic>Genes, erbB-1</topic><topic>Heterografts</topic><topic>Humans</topic><topic>Kinases</topic><topic>Laboratory animals</topic><topic>Lung cancer</topic><topic>Lung Neoplasms - drug therapy</topic><topic>Lung Neoplasms - genetics</topic><topic>Lung Neoplasms - metabolism</topic><topic>Mice</topic><topic>Mice, Inbred BALB C</topic><topic>Mice, Nude</topic><topic>Molecular Targeted Therapy - methods</topic><topic>Mutation</topic><topic>Neovascularization, Pathologic - prevention & control</topic><topic>Non-small cell lung carcinoma</topic><topic>Oncogenes</topic><topic>Original</topic><topic>Piperidines - therapeutic use</topic><topic>Platelet Endothelial Cell Adhesion Molecule-1 - analysis</topic><topic>Protein Kinase Inhibitors - therapeutic use</topic><topic>Protein-Tyrosine Kinases - genetics</topic><topic>Proto-Oncogene Proteins - genetics</topic><topic>R&D</topic><topic>Ramucirumab</topic><topic>Random Allocation</topic><topic>Reagents</topic><topic>Research & development</topic><topic>Signal Transduction - drug effects</topic><topic>Statistical analysis</topic><topic>Tumors</topic><topic>Tyrosine kinase inhibitors</topic><topic>Vascular endothelial growth factor</topic><topic>Vascular Endothelial Growth Factor Receptor-2 - antagonists & inhibitors</topic><topic>Vascular Endothelial Growth Factor Receptor-2 - metabolism</topic><topic>Vascular endothelial growth factor receptors</topic><topic>Xenografts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Watanabe, Hiromi</creatorcontrib><creatorcontrib>Ichihara, Eiki</creatorcontrib><creatorcontrib>Kayatani, Hiroe</creatorcontrib><creatorcontrib>Makimoto, Go</creatorcontrib><creatorcontrib>Ninomiya, Kiichiro</creatorcontrib><creatorcontrib>Nishii, Kazuya</creatorcontrib><creatorcontrib>Higo, Hisao</creatorcontrib><creatorcontrib>Ando, Chihiro</creatorcontrib><creatorcontrib>Okawa, Sachi</creatorcontrib><creatorcontrib>Nakasuka, Takamasa</creatorcontrib><creatorcontrib>Kano, Hirohisa</creatorcontrib><creatorcontrib>Hara, Naofumi</creatorcontrib><creatorcontrib>Hirabae, Atsuko</creatorcontrib><creatorcontrib>Kato, Yuka</creatorcontrib><creatorcontrib>Ninomiya, Takashi</creatorcontrib><creatorcontrib>Kubo, Toshio</creatorcontrib><creatorcontrib>Rai, Kammei</creatorcontrib><creatorcontrib>Ohashi, Kadoaki</creatorcontrib><creatorcontrib>Hotta, Katsuyuki</creatorcontrib><creatorcontrib>Tabata, Masahiro</creatorcontrib><creatorcontrib>Maeda, Yoshinobu</creatorcontrib><creatorcontrib>Kiura, Katsuyuki</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Watanabe, Hiromi</au><au>Ichihara, Eiki</au><au>Kayatani, Hiroe</au><au>Makimoto, Go</au><au>Ninomiya, Kiichiro</au><au>Nishii, Kazuya</au><au>Higo, Hisao</au><au>Ando, Chihiro</au><au>Okawa, Sachi</au><au>Nakasuka, Takamasa</au><au>Kano, Hirohisa</au><au>Hara, Naofumi</au><au>Hirabae, Atsuko</au><au>Kato, Yuka</au><au>Ninomiya, Takashi</au><au>Kubo, Toshio</au><au>Rai, Kammei</au><au>Ohashi, Kadoaki</au><au>Hotta, Katsuyuki</au><au>Tabata, Masahiro</au><au>Maeda, Yoshinobu</au><au>Kiura, Katsuyuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>VEGFR2 blockade augments the effects of tyrosine kinase inhibitors by inhibiting angiogenesis and oncogenic signaling in oncogene‐driven non‐small‐cell lung cancers</atitle><jtitle>Cancer science</jtitle><addtitle>Cancer Sci</addtitle><date>2021-05</date><risdate>2021</risdate><volume>112</volume><issue>5</issue><spage>1853</spage><epage>1864</epage><pages>1853-1864</pages><issn>1347-9032</issn><eissn>1349-7006</eissn><abstract>Molecular agents targeting the epidermal growth factor receptor (EGFR)‐, anaplastic lymphoma kinase (ALK)‐ or c‐ros oncogene 1 (ROS1) alterations have revolutionized the treatment of oncogene‐driven non‐small‐cell lung cancer (NSCLC). However, the emergence of acquired resistance remains a significant challenge, limiting the wider clinical success of these molecular targeted therapies. In this study, we investigated the efficacy of various molecular targeted agents, including erlotinib, alectinib, and crizotinib, combined with anti‐vascular endothelial growth factor receptor (VEGFR) 2 therapy. The combination of VEGFR2 blockade with molecular targeted agents enhanced the anti‐tumor effects of these agents in xenograft mouse models of EGFR‐, ALK‐, or ROS1‐altered NSCLC. The numbers of CD31‐positive blood vessels were significantly lower in the tumors of mice treated with an anti‐VEGFR2 antibody combined with molecular targeted agents compared with in those of mice treated with molecular targeted agents alone, implying the antiangiogenic effects of VEGFR2 blockade. Additionally, the combination therapies exerted more potent antiproliferative effects in vitro in EGFR‐, ALK‐, or ROS1‐altered NSCLC cells, implying that VEGFR2 inhibition also has direct anti‐tumor effects on cancer cells. Furthermore, VEGFR2 expression was induced following exposure to molecular targeted agents, implying the importance of VEGFR2 signaling in NSCLC patients undergoing molecular targeted therapy. In conclusion, VEGFR2 inhibition enhanced the anti‐tumor effects of molecular targeted agents in various oncogene‐driven NSCLC models, not only by inhibiting tumor angiogenesis but also by exerting direct antiproliferative effects on cancer cells. Hence, combination therapy with anti‐VEGFR2 antibodies and molecular targeted agents could serve as a promising treatment strategy for oncogene‐driven NSCLC.
We found that VEGFR2 blockade augmented the anti‐tumor effects of molecular targeted agents in oncogene‐driven NSCLC, particularly in EGFR/ALK/ROS1‐driven NSCLC. We also identified 2 mechanisms underlying the synergistic effects of anti‐VEGFR2 therapy with molecular targeted agents. VEGFR2 blockade not only inhibited tumor angiogenesis but also exerted direct antiproliferative effects on cancer cells.</abstract><cop>England</cop><pub>John Wiley & Sons, Inc</pub><pmid>33410241</pmid><doi>10.1111/cas.14801</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4327-7547</orcidid><orcidid>https://orcid.org/0000-0002-5180-3933</orcidid><orcidid>https://orcid.org/0000-0002-2966-106X</orcidid><orcidid>https://orcid.org/0000-0002-0638-8435</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1347-9032 |
ispartof | Cancer science, 2021-05, Vol.112 (5), p.1853-1864 |
issn | 1347-9032 1349-7006 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8088971 |
source | MEDLINE; Wiley Online Library Open Access; DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; PubMed Central |
subjects | A549 Cells Acrylamides - therapeutic use Anaplastic Lymphoma Kinase - genetics Angiogenesis inhibitors Angiogenesis Inhibitors - therapeutic use Aniline Compounds - therapeutic use Animal models Animals Antibodies Antibodies, Monoclonal - therapeutic use Antibodies, Monoclonal, Humanized - therapeutic use Blood vessels Cancer therapies Carbazoles - therapeutic use Carcinoma, Non-Small-Cell Lung - drug therapy Carcinoma, Non-Small-Cell Lung - genetics Carcinoma, Non-Small-Cell Lung - metabolism Cell Line, Tumor Combined Modality Therapy - methods Crizotinib - therapeutic use Drug Synergism Epidermal growth factor Epidermal growth factor receptors Erlotinib Hydrochloride - therapeutic use Female Genes, erbB-1 Heterografts Humans Kinases Laboratory animals Lung cancer Lung Neoplasms - drug therapy Lung Neoplasms - genetics Lung Neoplasms - metabolism Mice Mice, Inbred BALB C Mice, Nude Molecular Targeted Therapy - methods Mutation Neovascularization, Pathologic - prevention & control Non-small cell lung carcinoma Oncogenes Original Piperidines - therapeutic use Platelet Endothelial Cell Adhesion Molecule-1 - analysis Protein Kinase Inhibitors - therapeutic use Protein-Tyrosine Kinases - genetics Proto-Oncogene Proteins - genetics R&D Ramucirumab Random Allocation Reagents Research & development Signal Transduction - drug effects Statistical analysis Tumors Tyrosine kinase inhibitors Vascular endothelial growth factor Vascular Endothelial Growth Factor Receptor-2 - antagonists & inhibitors Vascular Endothelial Growth Factor Receptor-2 - metabolism Vascular endothelial growth factor receptors Xenografts |
title | VEGFR2 blockade augments the effects of tyrosine kinase inhibitors by inhibiting angiogenesis and oncogenic signaling in oncogene‐driven non‐small‐cell lung cancers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T16%3A20%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=VEGFR2%20blockade%20augments%20the%20effects%20of%20tyrosine%20kinase%20inhibitors%20by%20inhibiting%20angiogenesis%20and%20oncogenic%20signaling%20in%20oncogene%E2%80%90driven%20non%E2%80%90small%E2%80%90cell%20lung%20cancers&rft.jtitle=Cancer%20science&rft.au=Watanabe,%20Hiromi&rft.date=2021-05&rft.volume=112&rft.issue=5&rft.spage=1853&rft.epage=1864&rft.pages=1853-1864&rft.issn=1347-9032&rft.eissn=1349-7006&rft_id=info:doi/10.1111/cas.14801&rft_dat=%3Cproquest_pubme%3E2520636718%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2520636718&rft_id=info:pmid/33410241&rfr_iscdi=true |