Machine learning in orthodontics: Introducing a 3D auto-segmentation and auto-landmark finder of CBCT images to assess maxillary constriction in unilateral impacted canine patients
To (1) introduce a novel machine learning method and (2) assess maxillary structure variation in unilateral canine impaction for advancing clinically viable information. A machine learning algorithm utilizing Learning-based multi-source IntegratioN frameworK for Segmentation (LINKS) was used with co...
Gespeichert in:
Veröffentlicht in: | The Angle orthodontist 2020-01, Vol.90 (1), p.77-84 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 84 |
---|---|
container_issue | 1 |
container_start_page | 77 |
container_title | The Angle orthodontist |
container_volume | 90 |
creator | Chen, Si Wang, Li Li, Gang Wu, Tai-Hsien Diachina, Shannon Tejera, Beatriz Kwon, Jane Jungeun Lin, Feng-Chang Lee, Yan-Ting Xu, Tianmin Shen, Dinggang Ko, Ching-Chang |
description | To (1) introduce a novel machine learning method and (2) assess maxillary structure variation in unilateral canine impaction for advancing clinically viable information.
A machine learning algorithm utilizing Learning-based multi-source IntegratioN frameworK for Segmentation (LINKS) was used with cone-beam computed tomography (CBCT) images to quantify volumetric skeletal maxilla discrepancies of 30 study group (SG) patients with unilaterally impacted maxillary canines and 30 healthy control group (CG) subjects. Fully automatic segmentation was implemented for maxilla isolation, and maxillary volumetric and linear measurements were performed. Analysis of variance was used for statistical evaluation.
Maxillary structure was successfully auto-segmented, with an average dice ratio of 0.80 for three-dimensional image segmentations and a minimal mean difference of two voxels on the midsagittal plane for digitized landmarks between the manually identified and the machine learning-based (LINKS) methods. No significant difference in bone volume was found between impaction ([2.37 ± 0.34] [Formula: see text] 10
mm
) and nonimpaction ([2.36 ± 0.35] [Formula: see text] 10
mm
) sides of SG. The SG maxillae had significantly smaller volumes, widths, heights, and depths (
.05) than CG.
The data suggest that palatal expansion could be beneficial for those with unilateral canine impaction, as underdevelopment of the maxilla often accompanies that condition in the early teen years. Fast and efficient CBCT image segmentation will allow large clinical data sets to be analyzed effectively. |
doi_str_mv | 10.2319/012919-59.1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8087054</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2272737058</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-849e63132b9d08e2499b9c7dec0ce6f76bfd78f84d532079b03c10e91801b5413</originalsourceid><addsrcrecordid>eNpVkV9vFCEUxYnR2LX65Lvh0cRMvcDMDvhgUrf-aVLjS30mDNzZRWdgBcbY79UPKOvWRp8g3MP5nZtDyHMGZ1ww9RoYV0w1nTpjD8iKqbZregbiIVkBgGgEZ-qEPMn5GwDvupY_JieCtSCkWK_I7Wdjdz4gndCk4MOW-kBjKrvoYije5jf0MpQU3WIPQ0PFBTVLiU3G7YyhmOJjoCa44-tUb7NJ3-nog8NE40g37zbX1M9mi5mWSE3OmDOdzS8_TSbdUBtDLsnbP0YVvgQ_mYLJTPXX3tiCjloTDhn3lVaZ-Sl5NJop47O785R8_fD-evOpufry8XJzftVYIVlpZKtwLZjgg3IgkbdKDcr2Di1YXI_9ehhdL0fZuk5w6NUAwjJAxSSwoWuZOCVvj777ZZjR2cqusfQ-1XXSjY7G6_8nwe_0Nv7UEmQPXVsNXt4ZpPhjwVz07LPFunjAuGTNec97UaWySl8dpTbFnBOO9xgG-tCzPvasO6UPyV78m-xe-7dY8Rtkeqdt</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2272737058</pqid></control><display><type>article</type><title>Machine learning in orthodontics: Introducing a 3D auto-segmentation and auto-landmark finder of CBCT images to assess maxillary constriction in unilateral impacted canine patients</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Chen, Si ; Wang, Li ; Li, Gang ; Wu, Tai-Hsien ; Diachina, Shannon ; Tejera, Beatriz ; Kwon, Jane Jungeun ; Lin, Feng-Chang ; Lee, Yan-Ting ; Xu, Tianmin ; Shen, Dinggang ; Ko, Ching-Chang</creator><creatorcontrib>Chen, Si ; Wang, Li ; Li, Gang ; Wu, Tai-Hsien ; Diachina, Shannon ; Tejera, Beatriz ; Kwon, Jane Jungeun ; Lin, Feng-Chang ; Lee, Yan-Ting ; Xu, Tianmin ; Shen, Dinggang ; Ko, Ching-Chang</creatorcontrib><description>To (1) introduce a novel machine learning method and (2) assess maxillary structure variation in unilateral canine impaction for advancing clinically viable information.
A machine learning algorithm utilizing Learning-based multi-source IntegratioN frameworK for Segmentation (LINKS) was used with cone-beam computed tomography (CBCT) images to quantify volumetric skeletal maxilla discrepancies of 30 study group (SG) patients with unilaterally impacted maxillary canines and 30 healthy control group (CG) subjects. Fully automatic segmentation was implemented for maxilla isolation, and maxillary volumetric and linear measurements were performed. Analysis of variance was used for statistical evaluation.
Maxillary structure was successfully auto-segmented, with an average dice ratio of 0.80 for three-dimensional image segmentations and a minimal mean difference of two voxels on the midsagittal plane for digitized landmarks between the manually identified and the machine learning-based (LINKS) methods. No significant difference in bone volume was found between impaction ([2.37 ± 0.34] [Formula: see text] 10
mm
) and nonimpaction ([2.36 ± 0.35] [Formula: see text] 10
mm
) sides of SG. The SG maxillae had significantly smaller volumes, widths, heights, and depths (
.05) than CG.
The data suggest that palatal expansion could be beneficial for those with unilateral canine impaction, as underdevelopment of the maxilla often accompanies that condition in the early teen years. Fast and efficient CBCT image segmentation will allow large clinical data sets to be analyzed effectively.</description><identifier>ISSN: 0003-3219</identifier><identifier>EISSN: 1945-7103</identifier><identifier>DOI: 10.2319/012919-59.1</identifier><identifier>PMID: 31403836</identifier><language>eng</language><publisher>United States: Edward H. Angle Society of Orthodontists</publisher><subject>Adolescent ; Cone-Beam Computed Tomography ; Constriction ; Cuspid ; Humans ; Incisor ; Machine Learning ; Maxilla ; Original ; Orthodontics ; Palatal Expansion Technique ; Spiral Cone-Beam Computed Tomography ; Tooth, Impacted</subject><ispartof>The Angle orthodontist, 2020-01, Vol.90 (1), p.77-84</ispartof><rights>2020 by The EH Angle Education and Research Foundation, Inc. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-849e63132b9d08e2499b9c7dec0ce6f76bfd78f84d532079b03c10e91801b5413</citedby><cites>FETCH-LOGICAL-c381t-849e63132b9d08e2499b9c7dec0ce6f76bfd78f84d532079b03c10e91801b5413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8087054/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8087054/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31403836$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Si</creatorcontrib><creatorcontrib>Wang, Li</creatorcontrib><creatorcontrib>Li, Gang</creatorcontrib><creatorcontrib>Wu, Tai-Hsien</creatorcontrib><creatorcontrib>Diachina, Shannon</creatorcontrib><creatorcontrib>Tejera, Beatriz</creatorcontrib><creatorcontrib>Kwon, Jane Jungeun</creatorcontrib><creatorcontrib>Lin, Feng-Chang</creatorcontrib><creatorcontrib>Lee, Yan-Ting</creatorcontrib><creatorcontrib>Xu, Tianmin</creatorcontrib><creatorcontrib>Shen, Dinggang</creatorcontrib><creatorcontrib>Ko, Ching-Chang</creatorcontrib><title>Machine learning in orthodontics: Introducing a 3D auto-segmentation and auto-landmark finder of CBCT images to assess maxillary constriction in unilateral impacted canine patients</title><title>The Angle orthodontist</title><addtitle>Angle Orthod</addtitle><description>To (1) introduce a novel machine learning method and (2) assess maxillary structure variation in unilateral canine impaction for advancing clinically viable information.
A machine learning algorithm utilizing Learning-based multi-source IntegratioN frameworK for Segmentation (LINKS) was used with cone-beam computed tomography (CBCT) images to quantify volumetric skeletal maxilla discrepancies of 30 study group (SG) patients with unilaterally impacted maxillary canines and 30 healthy control group (CG) subjects. Fully automatic segmentation was implemented for maxilla isolation, and maxillary volumetric and linear measurements were performed. Analysis of variance was used for statistical evaluation.
Maxillary structure was successfully auto-segmented, with an average dice ratio of 0.80 for three-dimensional image segmentations and a minimal mean difference of two voxels on the midsagittal plane for digitized landmarks between the manually identified and the machine learning-based (LINKS) methods. No significant difference in bone volume was found between impaction ([2.37 ± 0.34] [Formula: see text] 10
mm
) and nonimpaction ([2.36 ± 0.35] [Formula: see text] 10
mm
) sides of SG. The SG maxillae had significantly smaller volumes, widths, heights, and depths (
.05) than CG.
The data suggest that palatal expansion could be beneficial for those with unilateral canine impaction, as underdevelopment of the maxilla often accompanies that condition in the early teen years. Fast and efficient CBCT image segmentation will allow large clinical data sets to be analyzed effectively.</description><subject>Adolescent</subject><subject>Cone-Beam Computed Tomography</subject><subject>Constriction</subject><subject>Cuspid</subject><subject>Humans</subject><subject>Incisor</subject><subject>Machine Learning</subject><subject>Maxilla</subject><subject>Original</subject><subject>Orthodontics</subject><subject>Palatal Expansion Technique</subject><subject>Spiral Cone-Beam Computed Tomography</subject><subject>Tooth, Impacted</subject><issn>0003-3219</issn><issn>1945-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkV9vFCEUxYnR2LX65Lvh0cRMvcDMDvhgUrf-aVLjS30mDNzZRWdgBcbY79UPKOvWRp8g3MP5nZtDyHMGZ1ww9RoYV0w1nTpjD8iKqbZregbiIVkBgGgEZ-qEPMn5GwDvupY_JieCtSCkWK_I7Wdjdz4gndCk4MOW-kBjKrvoYije5jf0MpQU3WIPQ0PFBTVLiU3G7YyhmOJjoCa44-tUb7NJ3-nog8NE40g37zbX1M9mi5mWSE3OmDOdzS8_TSbdUBtDLsnbP0YVvgQ_mYLJTPXX3tiCjloTDhn3lVaZ-Sl5NJop47O785R8_fD-evOpufry8XJzftVYIVlpZKtwLZjgg3IgkbdKDcr2Di1YXI_9ehhdL0fZuk5w6NUAwjJAxSSwoWuZOCVvj777ZZjR2cqusfQ-1XXSjY7G6_8nwe_0Nv7UEmQPXVsNXt4ZpPhjwVz07LPFunjAuGTNec97UaWySl8dpTbFnBOO9xgG-tCzPvasO6UPyV78m-xe-7dY8Rtkeqdt</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Chen, Si</creator><creator>Wang, Li</creator><creator>Li, Gang</creator><creator>Wu, Tai-Hsien</creator><creator>Diachina, Shannon</creator><creator>Tejera, Beatriz</creator><creator>Kwon, Jane Jungeun</creator><creator>Lin, Feng-Chang</creator><creator>Lee, Yan-Ting</creator><creator>Xu, Tianmin</creator><creator>Shen, Dinggang</creator><creator>Ko, Ching-Chang</creator><general>Edward H. Angle Society of Orthodontists</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200101</creationdate><title>Machine learning in orthodontics: Introducing a 3D auto-segmentation and auto-landmark finder of CBCT images to assess maxillary constriction in unilateral impacted canine patients</title><author>Chen, Si ; Wang, Li ; Li, Gang ; Wu, Tai-Hsien ; Diachina, Shannon ; Tejera, Beatriz ; Kwon, Jane Jungeun ; Lin, Feng-Chang ; Lee, Yan-Ting ; Xu, Tianmin ; Shen, Dinggang ; Ko, Ching-Chang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-849e63132b9d08e2499b9c7dec0ce6f76bfd78f84d532079b03c10e91801b5413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adolescent</topic><topic>Cone-Beam Computed Tomography</topic><topic>Constriction</topic><topic>Cuspid</topic><topic>Humans</topic><topic>Incisor</topic><topic>Machine Learning</topic><topic>Maxilla</topic><topic>Original</topic><topic>Orthodontics</topic><topic>Palatal Expansion Technique</topic><topic>Spiral Cone-Beam Computed Tomography</topic><topic>Tooth, Impacted</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Si</creatorcontrib><creatorcontrib>Wang, Li</creatorcontrib><creatorcontrib>Li, Gang</creatorcontrib><creatorcontrib>Wu, Tai-Hsien</creatorcontrib><creatorcontrib>Diachina, Shannon</creatorcontrib><creatorcontrib>Tejera, Beatriz</creatorcontrib><creatorcontrib>Kwon, Jane Jungeun</creatorcontrib><creatorcontrib>Lin, Feng-Chang</creatorcontrib><creatorcontrib>Lee, Yan-Ting</creatorcontrib><creatorcontrib>Xu, Tianmin</creatorcontrib><creatorcontrib>Shen, Dinggang</creatorcontrib><creatorcontrib>Ko, Ching-Chang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Angle orthodontist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Si</au><au>Wang, Li</au><au>Li, Gang</au><au>Wu, Tai-Hsien</au><au>Diachina, Shannon</au><au>Tejera, Beatriz</au><au>Kwon, Jane Jungeun</au><au>Lin, Feng-Chang</au><au>Lee, Yan-Ting</au><au>Xu, Tianmin</au><au>Shen, Dinggang</au><au>Ko, Ching-Chang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning in orthodontics: Introducing a 3D auto-segmentation and auto-landmark finder of CBCT images to assess maxillary constriction in unilateral impacted canine patients</atitle><jtitle>The Angle orthodontist</jtitle><addtitle>Angle Orthod</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>90</volume><issue>1</issue><spage>77</spage><epage>84</epage><pages>77-84</pages><issn>0003-3219</issn><eissn>1945-7103</eissn><abstract>To (1) introduce a novel machine learning method and (2) assess maxillary structure variation in unilateral canine impaction for advancing clinically viable information.
A machine learning algorithm utilizing Learning-based multi-source IntegratioN frameworK for Segmentation (LINKS) was used with cone-beam computed tomography (CBCT) images to quantify volumetric skeletal maxilla discrepancies of 30 study group (SG) patients with unilaterally impacted maxillary canines and 30 healthy control group (CG) subjects. Fully automatic segmentation was implemented for maxilla isolation, and maxillary volumetric and linear measurements were performed. Analysis of variance was used for statistical evaluation.
Maxillary structure was successfully auto-segmented, with an average dice ratio of 0.80 for three-dimensional image segmentations and a minimal mean difference of two voxels on the midsagittal plane for digitized landmarks between the manually identified and the machine learning-based (LINKS) methods. No significant difference in bone volume was found between impaction ([2.37 ± 0.34] [Formula: see text] 10
mm
) and nonimpaction ([2.36 ± 0.35] [Formula: see text] 10
mm
) sides of SG. The SG maxillae had significantly smaller volumes, widths, heights, and depths (
.05) than CG.
The data suggest that palatal expansion could be beneficial for those with unilateral canine impaction, as underdevelopment of the maxilla often accompanies that condition in the early teen years. Fast and efficient CBCT image segmentation will allow large clinical data sets to be analyzed effectively.</abstract><cop>United States</cop><pub>Edward H. Angle Society of Orthodontists</pub><pmid>31403836</pmid><doi>10.2319/012919-59.1</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-3219 |
ispartof | The Angle orthodontist, 2020-01, Vol.90 (1), p.77-84 |
issn | 0003-3219 1945-7103 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8087054 |
source | MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Adolescent Cone-Beam Computed Tomography Constriction Cuspid Humans Incisor Machine Learning Maxilla Original Orthodontics Palatal Expansion Technique Spiral Cone-Beam Computed Tomography Tooth, Impacted |
title | Machine learning in orthodontics: Introducing a 3D auto-segmentation and auto-landmark finder of CBCT images to assess maxillary constriction in unilateral impacted canine patients |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T08%3A22%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20in%20orthodontics:%20Introducing%20a%203D%20auto-segmentation%20and%20auto-landmark%20finder%20of%20CBCT%20images%20to%20assess%20maxillary%20constriction%20in%20unilateral%20impacted%20canine%20patients&rft.jtitle=The%20Angle%20orthodontist&rft.au=Chen,%20Si&rft.date=2020-01-01&rft.volume=90&rft.issue=1&rft.spage=77&rft.epage=84&rft.pages=77-84&rft.issn=0003-3219&rft.eissn=1945-7103&rft_id=info:doi/10.2319/012919-59.1&rft_dat=%3Cproquest_pubme%3E2272737058%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2272737058&rft_id=info:pmid/31403836&rfr_iscdi=true |