Failure mechanisms and bending strength of Fuchsia magellanica var. gracilis stems
In the course of biological evolution, plant stems have evolved mechanical properties and an internal structure that makes them resistant to various types of failure. The mechanisms involved during damage development and failure in bending are complex and incompletely understood. The work presented...
Gespeichert in:
Veröffentlicht in: | Journal of the Royal Society interface 2021-02, Vol.18 (175), p.20201023-20201023, Article rsif.2020.1023 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20201023 |
---|---|
container_issue | 175 |
container_start_page | 20201023 |
container_title | Journal of the Royal Society interface |
container_volume | 18 |
creator | Hone, Timothy Mylo, Max Speck, Olga Speck, Thomas Taylor, David |
description | In the course of biological evolution, plant stems have evolved mechanical properties and an internal structure that makes them resistant to various types of failure. The mechanisms involved during damage development and failure in bending are complex and incompletely understood. The work presented builds on a theoretical framework outlined by Ennos and van Casteren, who applied engineering mechanics theory to explain why different woody stems fail in different ways. Our work has extended this approach, applying it to a detailed analysis of one particular species:
var.
. When subjected to three-point bending, stems of this species exhibited one of two failure mechanisms: a plastic hinge or a greenstick fracture. We developed a predictive model using a computer simulation and a mathematical analysis using the theory of plastic bending. Required material properties were obtained from tests, the literature and imaging techniques. We found that greenstick fractures are more likely to occur in more lignified stems with a higher density. We discovered a new failure mode: an internal crack caused by tensile transverse stress. This work helps in understanding how plants have evolved their bending resistance and may assist in the creation of novel engineering structures inspired by these principles. |
doi_str_mv | 10.1098/rsif.2020.1023 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8086850</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2490605439</sourcerecordid><originalsourceid>FETCH-LOGICAL-c535t-9b81f7f3f8fe1566756ff29fe318f1b3dfebb4bd56dcae4db5b2c209c9c211053</originalsourceid><addsrcrecordid>eNpVkdtLwzAUxoMobk5ffZQ8-tKaS9M2L4IMp8JAEH0OSZq0kV5m0g78723dHPMpJ5zf-c7lA-Aaoxgjnt_54GxMEJm-hJ6AOc4SErE0JadH8QxchPCJEM0oY-dgRinjlOBkDt5W0tWDN7AxupKtC02Asi2gMm3h2hKG3pu27CvYWbgadBWchI0sTV2PsJZwK30MSy-1q10YadOES3BmZR3M1f5dgI_V4_vyOVq_Pr0sH9aRZpT1EVc5tpmlNrcGj0NmLLWWcGsozi1WtLBGqUQVLC20NEmhmCKaIK65JhgjRhfgfqe7GVRjCm3a3stabLxrpP8WnXTif6Z1lSi7rchRnuYMjQK3ewHffQ0m9KJxQf-uZrohCJJwlCKWUD6i8Q7VvgvBG3tog5GYjBCTEWIyQkxGjAU3x8Md8L_L0x-TrIcK</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2490605439</pqid></control><display><type>article</type><title>Failure mechanisms and bending strength of Fuchsia magellanica var. gracilis stems</title><source>MEDLINE</source><source>PubMed Central</source><creator>Hone, Timothy ; Mylo, Max ; Speck, Olga ; Speck, Thomas ; Taylor, David</creator><creatorcontrib>Hone, Timothy ; Mylo, Max ; Speck, Olga ; Speck, Thomas ; Taylor, David</creatorcontrib><description>In the course of biological evolution, plant stems have evolved mechanical properties and an internal structure that makes them resistant to various types of failure. The mechanisms involved during damage development and failure in bending are complex and incompletely understood. The work presented builds on a theoretical framework outlined by Ennos and van Casteren, who applied engineering mechanics theory to explain why different woody stems fail in different ways. Our work has extended this approach, applying it to a detailed analysis of one particular species:
var.
. When subjected to three-point bending, stems of this species exhibited one of two failure mechanisms: a plastic hinge or a greenstick fracture. We developed a predictive model using a computer simulation and a mathematical analysis using the theory of plastic bending. Required material properties were obtained from tests, the literature and imaging techniques. We found that greenstick fractures are more likely to occur in more lignified stems with a higher density. We discovered a new failure mode: an internal crack caused by tensile transverse stress. This work helps in understanding how plants have evolved their bending resistance and may assist in the creation of novel engineering structures inspired by these principles.</description><identifier>ISSN: 1742-5662</identifier><identifier>ISSN: 1742-5689</identifier><identifier>EISSN: 1742-5662</identifier><identifier>DOI: 10.1098/rsif.2020.1023</identifier><identifier>PMID: 33593214</identifier><language>eng</language><publisher>England: The Royal Society</publisher><subject>Computer Simulation ; Life Sciences–Engineering interface ; Stress, Mechanical ; Tensile Strength</subject><ispartof>Journal of the Royal Society interface, 2021-02, Vol.18 (175), p.20201023-20201023, Article rsif.2020.1023</ispartof><rights>2021 The Author(s) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c535t-9b81f7f3f8fe1566756ff29fe318f1b3dfebb4bd56dcae4db5b2c209c9c211053</citedby><cites>FETCH-LOGICAL-c535t-9b81f7f3f8fe1566756ff29fe318f1b3dfebb4bd56dcae4db5b2c209c9c211053</cites><orcidid>0000-0002-5470-2062 ; 0000-0002-8865-9357 ; 0000-0002-8705-5121 ; 0000-0002-2245-2636</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8086850/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8086850/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33593214$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hone, Timothy</creatorcontrib><creatorcontrib>Mylo, Max</creatorcontrib><creatorcontrib>Speck, Olga</creatorcontrib><creatorcontrib>Speck, Thomas</creatorcontrib><creatorcontrib>Taylor, David</creatorcontrib><title>Failure mechanisms and bending strength of Fuchsia magellanica var. gracilis stems</title><title>Journal of the Royal Society interface</title><addtitle>J R Soc Interface</addtitle><description>In the course of biological evolution, plant stems have evolved mechanical properties and an internal structure that makes them resistant to various types of failure. The mechanisms involved during damage development and failure in bending are complex and incompletely understood. The work presented builds on a theoretical framework outlined by Ennos and van Casteren, who applied engineering mechanics theory to explain why different woody stems fail in different ways. Our work has extended this approach, applying it to a detailed analysis of one particular species:
var.
. When subjected to three-point bending, stems of this species exhibited one of two failure mechanisms: a plastic hinge or a greenstick fracture. We developed a predictive model using a computer simulation and a mathematical analysis using the theory of plastic bending. Required material properties were obtained from tests, the literature and imaging techniques. We found that greenstick fractures are more likely to occur in more lignified stems with a higher density. We discovered a new failure mode: an internal crack caused by tensile transverse stress. This work helps in understanding how plants have evolved their bending resistance and may assist in the creation of novel engineering structures inspired by these principles.</description><subject>Computer Simulation</subject><subject>Life Sciences–Engineering interface</subject><subject>Stress, Mechanical</subject><subject>Tensile Strength</subject><issn>1742-5662</issn><issn>1742-5689</issn><issn>1742-5662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkdtLwzAUxoMobk5ffZQ8-tKaS9M2L4IMp8JAEH0OSZq0kV5m0g78723dHPMpJ5zf-c7lA-Aaoxgjnt_54GxMEJm-hJ6AOc4SErE0JadH8QxchPCJEM0oY-dgRinjlOBkDt5W0tWDN7AxupKtC02Asi2gMm3h2hKG3pu27CvYWbgadBWchI0sTV2PsJZwK30MSy-1q10YadOES3BmZR3M1f5dgI_V4_vyOVq_Pr0sH9aRZpT1EVc5tpmlNrcGj0NmLLWWcGsozi1WtLBGqUQVLC20NEmhmCKaIK65JhgjRhfgfqe7GVRjCm3a3stabLxrpP8WnXTif6Z1lSi7rchRnuYMjQK3ewHffQ0m9KJxQf-uZrohCJJwlCKWUD6i8Q7VvgvBG3tog5GYjBCTEWIyQkxGjAU3x8Md8L_L0x-TrIcK</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Hone, Timothy</creator><creator>Mylo, Max</creator><creator>Speck, Olga</creator><creator>Speck, Thomas</creator><creator>Taylor, David</creator><general>The Royal Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5470-2062</orcidid><orcidid>https://orcid.org/0000-0002-8865-9357</orcidid><orcidid>https://orcid.org/0000-0002-8705-5121</orcidid><orcidid>https://orcid.org/0000-0002-2245-2636</orcidid></search><sort><creationdate>20210201</creationdate><title>Failure mechanisms and bending strength of Fuchsia magellanica var. gracilis stems</title><author>Hone, Timothy ; Mylo, Max ; Speck, Olga ; Speck, Thomas ; Taylor, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c535t-9b81f7f3f8fe1566756ff29fe318f1b3dfebb4bd56dcae4db5b2c209c9c211053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computer Simulation</topic><topic>Life Sciences–Engineering interface</topic><topic>Stress, Mechanical</topic><topic>Tensile Strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hone, Timothy</creatorcontrib><creatorcontrib>Mylo, Max</creatorcontrib><creatorcontrib>Speck, Olga</creatorcontrib><creatorcontrib>Speck, Thomas</creatorcontrib><creatorcontrib>Taylor, David</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the Royal Society interface</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hone, Timothy</au><au>Mylo, Max</au><au>Speck, Olga</au><au>Speck, Thomas</au><au>Taylor, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Failure mechanisms and bending strength of Fuchsia magellanica var. gracilis stems</atitle><jtitle>Journal of the Royal Society interface</jtitle><addtitle>J R Soc Interface</addtitle><date>2021-02-01</date><risdate>2021</risdate><volume>18</volume><issue>175</issue><spage>20201023</spage><epage>20201023</epage><pages>20201023-20201023</pages><artnum>rsif.2020.1023</artnum><artnum>20201023</artnum><issn>1742-5662</issn><issn>1742-5689</issn><eissn>1742-5662</eissn><abstract>In the course of biological evolution, plant stems have evolved mechanical properties and an internal structure that makes them resistant to various types of failure. The mechanisms involved during damage development and failure in bending are complex and incompletely understood. The work presented builds on a theoretical framework outlined by Ennos and van Casteren, who applied engineering mechanics theory to explain why different woody stems fail in different ways. Our work has extended this approach, applying it to a detailed analysis of one particular species:
var.
. When subjected to three-point bending, stems of this species exhibited one of two failure mechanisms: a plastic hinge or a greenstick fracture. We developed a predictive model using a computer simulation and a mathematical analysis using the theory of plastic bending. Required material properties were obtained from tests, the literature and imaging techniques. We found that greenstick fractures are more likely to occur in more lignified stems with a higher density. We discovered a new failure mode: an internal crack caused by tensile transverse stress. This work helps in understanding how plants have evolved their bending resistance and may assist in the creation of novel engineering structures inspired by these principles.</abstract><cop>England</cop><pub>The Royal Society</pub><pmid>33593214</pmid><doi>10.1098/rsif.2020.1023</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-5470-2062</orcidid><orcidid>https://orcid.org/0000-0002-8865-9357</orcidid><orcidid>https://orcid.org/0000-0002-8705-5121</orcidid><orcidid>https://orcid.org/0000-0002-2245-2636</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-5662 |
ispartof | Journal of the Royal Society interface, 2021-02, Vol.18 (175), p.20201023-20201023, Article rsif.2020.1023 |
issn | 1742-5662 1742-5689 1742-5662 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8086850 |
source | MEDLINE; PubMed Central |
subjects | Computer Simulation Life Sciences–Engineering interface Stress, Mechanical Tensile Strength |
title | Failure mechanisms and bending strength of Fuchsia magellanica var. gracilis stems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T02%3A54%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Failure%20mechanisms%20and%20bending%20strength%20of%20Fuchsia%20magellanica%20var.%20gracilis%20stems&rft.jtitle=Journal%20of%20the%20Royal%20Society%20interface&rft.au=Hone,%20Timothy&rft.date=2021-02-01&rft.volume=18&rft.issue=175&rft.spage=20201023&rft.epage=20201023&rft.pages=20201023-20201023&rft.artnum=rsif.2020.1023&rft.issn=1742-5662&rft.eissn=1742-5662&rft_id=info:doi/10.1098/rsif.2020.1023&rft_dat=%3Cproquest_pubme%3E2490605439%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2490605439&rft_id=info:pmid/33593214&rfr_iscdi=true |