Modulation of keratocyte phenotype by collagen fibril nanoarchitecture in membranes for corneal repair

Abstract Type I collagen membranes with tailored fibril nanoarchitectures were fabricated through a vitrification processing, which mimicked, to a degree, the collagen maturation process of corneal stromal extracellular matrix in vivo . Vitrification was performed at a controlled temperature of eith...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials 2013-12, Vol.34 (37), p.9365-9372
Hauptverfasser: Guo, Qiongyu, Phillip, Jude M, Majumdar, Shoumyo, Wu, Pei-Hsun, Chen, Jiansu, Calderón-Colón, Xiomara, Schein, Oliver, Smith, Barbara J, Trexler, Morgana M, Wirtz, Denis, Elisseeff, Jennifer H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9372
container_issue 37
container_start_page 9365
container_title Biomaterials
container_volume 34
creator Guo, Qiongyu
Phillip, Jude M
Majumdar, Shoumyo
Wu, Pei-Hsun
Chen, Jiansu
Calderón-Colón, Xiomara
Schein, Oliver
Smith, Barbara J
Trexler, Morgana M
Wirtz, Denis
Elisseeff, Jennifer H
description Abstract Type I collagen membranes with tailored fibril nanoarchitectures were fabricated through a vitrification processing, which mimicked, to a degree, the collagen maturation process of corneal stromal extracellular matrix in vivo . Vitrification was performed at a controlled temperature of either 5 °C or 39 °C at a constant relative humidity of 40% for various time periods from 0.5 wk up to 8 wk. During vitrification, the vitrified collagen membranes (collagen vitrigels, CVs) exhibited a rapid growth in fibrillar density through the evaporation of water and an increase in fibrillar stiffness due to the formation of new and/or more-stable interactions. On the other hand, the collagen fibrils in CVs maintained their D-periodicity and showed no significant difference in fibrillar diameter, indicating preservation of the native states of the collagen fibrils during vitrification. Keratocyte phenotype was maintained on CVs to varying degrees that were strongly influenced by the collagen fibril nanoarchitectures. Specifically, the vitrification time of CVs mainly governed the keratocyte morphology, showing significant increases in the cell protrusion number, protrusion length, and cell size along with CV vitrification time. The CV vitrification temperature affected the regulation of keratocyte fibroblasts' gene expressions, including keratocan and aldehyde dehydrogenase (ALDH), demonstrating a unique way to control the expression of specific genes in vitro.
doi_str_mv 10.1016/j.biomaterials.2013.08.061
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8086596</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0142961213010247</els_id><sourcerecordid>1437581353</sourcerecordid><originalsourceid>FETCH-LOGICAL-c542t-2084a46c05ca5a2f6eb2b41335a2aec0587b84e0c2d92e5163ad187235f327053</originalsourceid><addsrcrecordid>eNqNUstu1DAUtRCIDoVfQBYrNgl-Jh4WlVB5SkUsgLXlODcdTxM72E6l_D2OplSFFSvr-p5z7uNchF5RUlNCmzfHunNhMhmiM2OqGaG8JqomDX2EdlS1qpJ7Ih-jHaGCVfuGsjP0LKUjKTER7Ck6Y-UtuWaHhq-hX0aTXfA4DPgGosnBrhnwfAAf8joD7lZswziaa_B4cF10I_bGBxPtwWWweYmAnccTTF00HhIeQiyM6MGMOMJsXHyOngylV3hx956jnx8__Lj8XF19-_Tl8t1VZaVguWJECSMaS6Q10rChgY51gnJeAgPlW7WdEkAs6_cMJG246cvAjMuBs5ZIfo4uTrrz0k3QW_A5mlHP0U0mrjoYp__OeHfQ1-FWK6IauW-KwOs7gRh-LZCynlyyUKb3EJakqeCtVJRLXqBvT1AbQ0oRhvsylOjNKH3UD43Sm1GaKF2MKuSXDxu9p_5xpgDenwBQ1nXrIOpkHXgLvYtl57oP7v_qXPwjY0fnnTXjDayQjmGJfuNQnZgm-vt2MtvFUE4oYaLlvwFWasMY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1437581353</pqid></control><display><type>article</type><title>Modulation of keratocyte phenotype by collagen fibril nanoarchitecture in membranes for corneal repair</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Guo, Qiongyu ; Phillip, Jude M ; Majumdar, Shoumyo ; Wu, Pei-Hsun ; Chen, Jiansu ; Calderón-Colón, Xiomara ; Schein, Oliver ; Smith, Barbara J ; Trexler, Morgana M ; Wirtz, Denis ; Elisseeff, Jennifer H</creator><creatorcontrib>Guo, Qiongyu ; Phillip, Jude M ; Majumdar, Shoumyo ; Wu, Pei-Hsun ; Chen, Jiansu ; Calderón-Colón, Xiomara ; Schein, Oliver ; Smith, Barbara J ; Trexler, Morgana M ; Wirtz, Denis ; Elisseeff, Jennifer H</creatorcontrib><description>Abstract Type I collagen membranes with tailored fibril nanoarchitectures were fabricated through a vitrification processing, which mimicked, to a degree, the collagen maturation process of corneal stromal extracellular matrix in vivo . Vitrification was performed at a controlled temperature of either 5 °C or 39 °C at a constant relative humidity of 40% for various time periods from 0.5 wk up to 8 wk. During vitrification, the vitrified collagen membranes (collagen vitrigels, CVs) exhibited a rapid growth in fibrillar density through the evaporation of water and an increase in fibrillar stiffness due to the formation of new and/or more-stable interactions. On the other hand, the collagen fibrils in CVs maintained their D-periodicity and showed no significant difference in fibrillar diameter, indicating preservation of the native states of the collagen fibrils during vitrification. Keratocyte phenotype was maintained on CVs to varying degrees that were strongly influenced by the collagen fibril nanoarchitectures. Specifically, the vitrification time of CVs mainly governed the keratocyte morphology, showing significant increases in the cell protrusion number, protrusion length, and cell size along with CV vitrification time. The CV vitrification temperature affected the regulation of keratocyte fibroblasts' gene expressions, including keratocan and aldehyde dehydrogenase (ALDH), demonstrating a unique way to control the expression of specific genes in vitro.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2013.08.061</identifier><identifier>PMID: 24041426</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Advanced Basic Science ; Animals ; Biocompatible Materials - chemistry ; Cattle ; Cell Proliferation ; Cells, Cultured ; Collagen maturation ; Collagen Type I - chemistry ; Collagen Type I - ultrastructure ; Corneal Keratocytes - cytology ; Corneal Keratocytes - metabolism ; Corneal repair ; Dentistry ; Fibril nanoarchitecture ; Gene Expression ; Keratocyte phenotype ; Vitrification</subject><ispartof>Biomaterials, 2013-12, Vol.34 (37), p.9365-9372</ispartof><rights>Elsevier Ltd</rights><rights>2013 Elsevier Ltd</rights><rights>Copyright © 2013 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c542t-2084a46c05ca5a2f6eb2b41335a2aec0587b84e0c2d92e5163ad187235f327053</citedby><cites>FETCH-LOGICAL-c542t-2084a46c05ca5a2f6eb2b41335a2aec0587b84e0c2d92e5163ad187235f327053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0142961213010247$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24041426$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Qiongyu</creatorcontrib><creatorcontrib>Phillip, Jude M</creatorcontrib><creatorcontrib>Majumdar, Shoumyo</creatorcontrib><creatorcontrib>Wu, Pei-Hsun</creatorcontrib><creatorcontrib>Chen, Jiansu</creatorcontrib><creatorcontrib>Calderón-Colón, Xiomara</creatorcontrib><creatorcontrib>Schein, Oliver</creatorcontrib><creatorcontrib>Smith, Barbara J</creatorcontrib><creatorcontrib>Trexler, Morgana M</creatorcontrib><creatorcontrib>Wirtz, Denis</creatorcontrib><creatorcontrib>Elisseeff, Jennifer H</creatorcontrib><title>Modulation of keratocyte phenotype by collagen fibril nanoarchitecture in membranes for corneal repair</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Abstract Type I collagen membranes with tailored fibril nanoarchitectures were fabricated through a vitrification processing, which mimicked, to a degree, the collagen maturation process of corneal stromal extracellular matrix in vivo . Vitrification was performed at a controlled temperature of either 5 °C or 39 °C at a constant relative humidity of 40% for various time periods from 0.5 wk up to 8 wk. During vitrification, the vitrified collagen membranes (collagen vitrigels, CVs) exhibited a rapid growth in fibrillar density through the evaporation of water and an increase in fibrillar stiffness due to the formation of new and/or more-stable interactions. On the other hand, the collagen fibrils in CVs maintained their D-periodicity and showed no significant difference in fibrillar diameter, indicating preservation of the native states of the collagen fibrils during vitrification. Keratocyte phenotype was maintained on CVs to varying degrees that were strongly influenced by the collagen fibril nanoarchitectures. Specifically, the vitrification time of CVs mainly governed the keratocyte morphology, showing significant increases in the cell protrusion number, protrusion length, and cell size along with CV vitrification time. The CV vitrification temperature affected the regulation of keratocyte fibroblasts' gene expressions, including keratocan and aldehyde dehydrogenase (ALDH), demonstrating a unique way to control the expression of specific genes in vitro.</description><subject>Advanced Basic Science</subject><subject>Animals</subject><subject>Biocompatible Materials - chemistry</subject><subject>Cattle</subject><subject>Cell Proliferation</subject><subject>Cells, Cultured</subject><subject>Collagen maturation</subject><subject>Collagen Type I - chemistry</subject><subject>Collagen Type I - ultrastructure</subject><subject>Corneal Keratocytes - cytology</subject><subject>Corneal Keratocytes - metabolism</subject><subject>Corneal repair</subject><subject>Dentistry</subject><subject>Fibril nanoarchitecture</subject><subject>Gene Expression</subject><subject>Keratocyte phenotype</subject><subject>Vitrification</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNUstu1DAUtRCIDoVfQBYrNgl-Jh4WlVB5SkUsgLXlODcdTxM72E6l_D2OplSFFSvr-p5z7uNchF5RUlNCmzfHunNhMhmiM2OqGaG8JqomDX2EdlS1qpJ7Ih-jHaGCVfuGsjP0LKUjKTER7Ck6Y-UtuWaHhq-hX0aTXfA4DPgGosnBrhnwfAAf8joD7lZswziaa_B4cF10I_bGBxPtwWWweYmAnccTTF00HhIeQiyM6MGMOMJsXHyOngylV3hx956jnx8__Lj8XF19-_Tl8t1VZaVguWJECSMaS6Q10rChgY51gnJeAgPlW7WdEkAs6_cMJG246cvAjMuBs5ZIfo4uTrrz0k3QW_A5mlHP0U0mrjoYp__OeHfQ1-FWK6IauW-KwOs7gRh-LZCynlyyUKb3EJakqeCtVJRLXqBvT1AbQ0oRhvsylOjNKH3UD43Sm1GaKF2MKuSXDxu9p_5xpgDenwBQ1nXrIOpkHXgLvYtl57oP7v_qXPwjY0fnnTXjDayQjmGJfuNQnZgm-vt2MtvFUE4oYaLlvwFWasMY</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Guo, Qiongyu</creator><creator>Phillip, Jude M</creator><creator>Majumdar, Shoumyo</creator><creator>Wu, Pei-Hsun</creator><creator>Chen, Jiansu</creator><creator>Calderón-Colón, Xiomara</creator><creator>Schein, Oliver</creator><creator>Smith, Barbara J</creator><creator>Trexler, Morgana M</creator><creator>Wirtz, Denis</creator><creator>Elisseeff, Jennifer H</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20131201</creationdate><title>Modulation of keratocyte phenotype by collagen fibril nanoarchitecture in membranes for corneal repair</title><author>Guo, Qiongyu ; Phillip, Jude M ; Majumdar, Shoumyo ; Wu, Pei-Hsun ; Chen, Jiansu ; Calderón-Colón, Xiomara ; Schein, Oliver ; Smith, Barbara J ; Trexler, Morgana M ; Wirtz, Denis ; Elisseeff, Jennifer H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c542t-2084a46c05ca5a2f6eb2b41335a2aec0587b84e0c2d92e5163ad187235f327053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Advanced Basic Science</topic><topic>Animals</topic><topic>Biocompatible Materials - chemistry</topic><topic>Cattle</topic><topic>Cell Proliferation</topic><topic>Cells, Cultured</topic><topic>Collagen maturation</topic><topic>Collagen Type I - chemistry</topic><topic>Collagen Type I - ultrastructure</topic><topic>Corneal Keratocytes - cytology</topic><topic>Corneal Keratocytes - metabolism</topic><topic>Corneal repair</topic><topic>Dentistry</topic><topic>Fibril nanoarchitecture</topic><topic>Gene Expression</topic><topic>Keratocyte phenotype</topic><topic>Vitrification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Qiongyu</creatorcontrib><creatorcontrib>Phillip, Jude M</creatorcontrib><creatorcontrib>Majumdar, Shoumyo</creatorcontrib><creatorcontrib>Wu, Pei-Hsun</creatorcontrib><creatorcontrib>Chen, Jiansu</creatorcontrib><creatorcontrib>Calderón-Colón, Xiomara</creatorcontrib><creatorcontrib>Schein, Oliver</creatorcontrib><creatorcontrib>Smith, Barbara J</creatorcontrib><creatorcontrib>Trexler, Morgana M</creatorcontrib><creatorcontrib>Wirtz, Denis</creatorcontrib><creatorcontrib>Elisseeff, Jennifer H</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Qiongyu</au><au>Phillip, Jude M</au><au>Majumdar, Shoumyo</au><au>Wu, Pei-Hsun</au><au>Chen, Jiansu</au><au>Calderón-Colón, Xiomara</au><au>Schein, Oliver</au><au>Smith, Barbara J</au><au>Trexler, Morgana M</au><au>Wirtz, Denis</au><au>Elisseeff, Jennifer H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modulation of keratocyte phenotype by collagen fibril nanoarchitecture in membranes for corneal repair</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2013-12-01</date><risdate>2013</risdate><volume>34</volume><issue>37</issue><spage>9365</spage><epage>9372</epage><pages>9365-9372</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Abstract Type I collagen membranes with tailored fibril nanoarchitectures were fabricated through a vitrification processing, which mimicked, to a degree, the collagen maturation process of corneal stromal extracellular matrix in vivo . Vitrification was performed at a controlled temperature of either 5 °C or 39 °C at a constant relative humidity of 40% for various time periods from 0.5 wk up to 8 wk. During vitrification, the vitrified collagen membranes (collagen vitrigels, CVs) exhibited a rapid growth in fibrillar density through the evaporation of water and an increase in fibrillar stiffness due to the formation of new and/or more-stable interactions. On the other hand, the collagen fibrils in CVs maintained their D-periodicity and showed no significant difference in fibrillar diameter, indicating preservation of the native states of the collagen fibrils during vitrification. Keratocyte phenotype was maintained on CVs to varying degrees that were strongly influenced by the collagen fibril nanoarchitectures. Specifically, the vitrification time of CVs mainly governed the keratocyte morphology, showing significant increases in the cell protrusion number, protrusion length, and cell size along with CV vitrification time. The CV vitrification temperature affected the regulation of keratocyte fibroblasts' gene expressions, including keratocan and aldehyde dehydrogenase (ALDH), demonstrating a unique way to control the expression of specific genes in vitro.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>24041426</pmid><doi>10.1016/j.biomaterials.2013.08.061</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0142-9612
ispartof Biomaterials, 2013-12, Vol.34 (37), p.9365-9372
issn 0142-9612
1878-5905
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8086596
source MEDLINE; Elsevier ScienceDirect Journals
subjects Advanced Basic Science
Animals
Biocompatible Materials - chemistry
Cattle
Cell Proliferation
Cells, Cultured
Collagen maturation
Collagen Type I - chemistry
Collagen Type I - ultrastructure
Corneal Keratocytes - cytology
Corneal Keratocytes - metabolism
Corneal repair
Dentistry
Fibril nanoarchitecture
Gene Expression
Keratocyte phenotype
Vitrification
title Modulation of keratocyte phenotype by collagen fibril nanoarchitecture in membranes for corneal repair
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T05%3A49%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modulation%20of%20keratocyte%20phenotype%20by%20collagen%20fibril%20nanoarchitecture%20in%20membranes%20for%20corneal%20repair&rft.jtitle=Biomaterials&rft.au=Guo,%20Qiongyu&rft.date=2013-12-01&rft.volume=34&rft.issue=37&rft.spage=9365&rft.epage=9372&rft.pages=9365-9372&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2013.08.061&rft_dat=%3Cproquest_pubme%3E1437581353%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1437581353&rft_id=info:pmid/24041426&rft_els_id=1_s2_0_S0142961213010247&rfr_iscdi=true