Modulation of keratocyte phenotype by collagen fibril nanoarchitecture in membranes for corneal repair
Abstract Type I collagen membranes with tailored fibril nanoarchitectures were fabricated through a vitrification processing, which mimicked, to a degree, the collagen maturation process of corneal stromal extracellular matrix in vivo . Vitrification was performed at a controlled temperature of eith...
Gespeichert in:
Veröffentlicht in: | Biomaterials 2013-12, Vol.34 (37), p.9365-9372 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9372 |
---|---|
container_issue | 37 |
container_start_page | 9365 |
container_title | Biomaterials |
container_volume | 34 |
creator | Guo, Qiongyu Phillip, Jude M Majumdar, Shoumyo Wu, Pei-Hsun Chen, Jiansu Calderón-Colón, Xiomara Schein, Oliver Smith, Barbara J Trexler, Morgana M Wirtz, Denis Elisseeff, Jennifer H |
description | Abstract Type I collagen membranes with tailored fibril nanoarchitectures were fabricated through a vitrification processing, which mimicked, to a degree, the collagen maturation process of corneal stromal extracellular matrix in vivo . Vitrification was performed at a controlled temperature of either 5 °C or 39 °C at a constant relative humidity of 40% for various time periods from 0.5 wk up to 8 wk. During vitrification, the vitrified collagen membranes (collagen vitrigels, CVs) exhibited a rapid growth in fibrillar density through the evaporation of water and an increase in fibrillar stiffness due to the formation of new and/or more-stable interactions. On the other hand, the collagen fibrils in CVs maintained their D-periodicity and showed no significant difference in fibrillar diameter, indicating preservation of the native states of the collagen fibrils during vitrification. Keratocyte phenotype was maintained on CVs to varying degrees that were strongly influenced by the collagen fibril nanoarchitectures. Specifically, the vitrification time of CVs mainly governed the keratocyte morphology, showing significant increases in the cell protrusion number, protrusion length, and cell size along with CV vitrification time. The CV vitrification temperature affected the regulation of keratocyte fibroblasts' gene expressions, including keratocan and aldehyde dehydrogenase (ALDH), demonstrating a unique way to control the expression of specific genes in vitro. |
doi_str_mv | 10.1016/j.biomaterials.2013.08.061 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8086596</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0142961213010247</els_id><sourcerecordid>1437581353</sourcerecordid><originalsourceid>FETCH-LOGICAL-c542t-2084a46c05ca5a2f6eb2b41335a2aec0587b84e0c2d92e5163ad187235f327053</originalsourceid><addsrcrecordid>eNqNUstu1DAUtRCIDoVfQBYrNgl-Jh4WlVB5SkUsgLXlODcdTxM72E6l_D2OplSFFSvr-p5z7uNchF5RUlNCmzfHunNhMhmiM2OqGaG8JqomDX2EdlS1qpJ7Ih-jHaGCVfuGsjP0LKUjKTER7Ck6Y-UtuWaHhq-hX0aTXfA4DPgGosnBrhnwfAAf8joD7lZswziaa_B4cF10I_bGBxPtwWWweYmAnccTTF00HhIeQiyM6MGMOMJsXHyOngylV3hx956jnx8__Lj8XF19-_Tl8t1VZaVguWJECSMaS6Q10rChgY51gnJeAgPlW7WdEkAs6_cMJG246cvAjMuBs5ZIfo4uTrrz0k3QW_A5mlHP0U0mrjoYp__OeHfQ1-FWK6IauW-KwOs7gRh-LZCynlyyUKb3EJakqeCtVJRLXqBvT1AbQ0oRhvsylOjNKH3UD43Sm1GaKF2MKuSXDxu9p_5xpgDenwBQ1nXrIOpkHXgLvYtl57oP7v_qXPwjY0fnnTXjDayQjmGJfuNQnZgm-vt2MtvFUE4oYaLlvwFWasMY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1437581353</pqid></control><display><type>article</type><title>Modulation of keratocyte phenotype by collagen fibril nanoarchitecture in membranes for corneal repair</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Guo, Qiongyu ; Phillip, Jude M ; Majumdar, Shoumyo ; Wu, Pei-Hsun ; Chen, Jiansu ; Calderón-Colón, Xiomara ; Schein, Oliver ; Smith, Barbara J ; Trexler, Morgana M ; Wirtz, Denis ; Elisseeff, Jennifer H</creator><creatorcontrib>Guo, Qiongyu ; Phillip, Jude M ; Majumdar, Shoumyo ; Wu, Pei-Hsun ; Chen, Jiansu ; Calderón-Colón, Xiomara ; Schein, Oliver ; Smith, Barbara J ; Trexler, Morgana M ; Wirtz, Denis ; Elisseeff, Jennifer H</creatorcontrib><description>Abstract Type I collagen membranes with tailored fibril nanoarchitectures were fabricated through a vitrification processing, which mimicked, to a degree, the collagen maturation process of corneal stromal extracellular matrix in vivo . Vitrification was performed at a controlled temperature of either 5 °C or 39 °C at a constant relative humidity of 40% for various time periods from 0.5 wk up to 8 wk. During vitrification, the vitrified collagen membranes (collagen vitrigels, CVs) exhibited a rapid growth in fibrillar density through the evaporation of water and an increase in fibrillar stiffness due to the formation of new and/or more-stable interactions. On the other hand, the collagen fibrils in CVs maintained their D-periodicity and showed no significant difference in fibrillar diameter, indicating preservation of the native states of the collagen fibrils during vitrification. Keratocyte phenotype was maintained on CVs to varying degrees that were strongly influenced by the collagen fibril nanoarchitectures. Specifically, the vitrification time of CVs mainly governed the keratocyte morphology, showing significant increases in the cell protrusion number, protrusion length, and cell size along with CV vitrification time. The CV vitrification temperature affected the regulation of keratocyte fibroblasts' gene expressions, including keratocan and aldehyde dehydrogenase (ALDH), demonstrating a unique way to control the expression of specific genes in vitro.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2013.08.061</identifier><identifier>PMID: 24041426</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Advanced Basic Science ; Animals ; Biocompatible Materials - chemistry ; Cattle ; Cell Proliferation ; Cells, Cultured ; Collagen maturation ; Collagen Type I - chemistry ; Collagen Type I - ultrastructure ; Corneal Keratocytes - cytology ; Corneal Keratocytes - metabolism ; Corneal repair ; Dentistry ; Fibril nanoarchitecture ; Gene Expression ; Keratocyte phenotype ; Vitrification</subject><ispartof>Biomaterials, 2013-12, Vol.34 (37), p.9365-9372</ispartof><rights>Elsevier Ltd</rights><rights>2013 Elsevier Ltd</rights><rights>Copyright © 2013 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c542t-2084a46c05ca5a2f6eb2b41335a2aec0587b84e0c2d92e5163ad187235f327053</citedby><cites>FETCH-LOGICAL-c542t-2084a46c05ca5a2f6eb2b41335a2aec0587b84e0c2d92e5163ad187235f327053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0142961213010247$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24041426$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Qiongyu</creatorcontrib><creatorcontrib>Phillip, Jude M</creatorcontrib><creatorcontrib>Majumdar, Shoumyo</creatorcontrib><creatorcontrib>Wu, Pei-Hsun</creatorcontrib><creatorcontrib>Chen, Jiansu</creatorcontrib><creatorcontrib>Calderón-Colón, Xiomara</creatorcontrib><creatorcontrib>Schein, Oliver</creatorcontrib><creatorcontrib>Smith, Barbara J</creatorcontrib><creatorcontrib>Trexler, Morgana M</creatorcontrib><creatorcontrib>Wirtz, Denis</creatorcontrib><creatorcontrib>Elisseeff, Jennifer H</creatorcontrib><title>Modulation of keratocyte phenotype by collagen fibril nanoarchitecture in membranes for corneal repair</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Abstract Type I collagen membranes with tailored fibril nanoarchitectures were fabricated through a vitrification processing, which mimicked, to a degree, the collagen maturation process of corneal stromal extracellular matrix in vivo . Vitrification was performed at a controlled temperature of either 5 °C or 39 °C at a constant relative humidity of 40% for various time periods from 0.5 wk up to 8 wk. During vitrification, the vitrified collagen membranes (collagen vitrigels, CVs) exhibited a rapid growth in fibrillar density through the evaporation of water and an increase in fibrillar stiffness due to the formation of new and/or more-stable interactions. On the other hand, the collagen fibrils in CVs maintained their D-periodicity and showed no significant difference in fibrillar diameter, indicating preservation of the native states of the collagen fibrils during vitrification. Keratocyte phenotype was maintained on CVs to varying degrees that were strongly influenced by the collagen fibril nanoarchitectures. Specifically, the vitrification time of CVs mainly governed the keratocyte morphology, showing significant increases in the cell protrusion number, protrusion length, and cell size along with CV vitrification time. The CV vitrification temperature affected the regulation of keratocyte fibroblasts' gene expressions, including keratocan and aldehyde dehydrogenase (ALDH), demonstrating a unique way to control the expression of specific genes in vitro.</description><subject>Advanced Basic Science</subject><subject>Animals</subject><subject>Biocompatible Materials - chemistry</subject><subject>Cattle</subject><subject>Cell Proliferation</subject><subject>Cells, Cultured</subject><subject>Collagen maturation</subject><subject>Collagen Type I - chemistry</subject><subject>Collagen Type I - ultrastructure</subject><subject>Corneal Keratocytes - cytology</subject><subject>Corneal Keratocytes - metabolism</subject><subject>Corneal repair</subject><subject>Dentistry</subject><subject>Fibril nanoarchitecture</subject><subject>Gene Expression</subject><subject>Keratocyte phenotype</subject><subject>Vitrification</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNUstu1DAUtRCIDoVfQBYrNgl-Jh4WlVB5SkUsgLXlODcdTxM72E6l_D2OplSFFSvr-p5z7uNchF5RUlNCmzfHunNhMhmiM2OqGaG8JqomDX2EdlS1qpJ7Ih-jHaGCVfuGsjP0LKUjKTER7Ck6Y-UtuWaHhq-hX0aTXfA4DPgGosnBrhnwfAAf8joD7lZswziaa_B4cF10I_bGBxPtwWWweYmAnccTTF00HhIeQiyM6MGMOMJsXHyOngylV3hx956jnx8__Lj8XF19-_Tl8t1VZaVguWJECSMaS6Q10rChgY51gnJeAgPlW7WdEkAs6_cMJG246cvAjMuBs5ZIfo4uTrrz0k3QW_A5mlHP0U0mrjoYp__OeHfQ1-FWK6IauW-KwOs7gRh-LZCynlyyUKb3EJakqeCtVJRLXqBvT1AbQ0oRhvsylOjNKH3UD43Sm1GaKF2MKuSXDxu9p_5xpgDenwBQ1nXrIOpkHXgLvYtl57oP7v_qXPwjY0fnnTXjDayQjmGJfuNQnZgm-vt2MtvFUE4oYaLlvwFWasMY</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Guo, Qiongyu</creator><creator>Phillip, Jude M</creator><creator>Majumdar, Shoumyo</creator><creator>Wu, Pei-Hsun</creator><creator>Chen, Jiansu</creator><creator>Calderón-Colón, Xiomara</creator><creator>Schein, Oliver</creator><creator>Smith, Barbara J</creator><creator>Trexler, Morgana M</creator><creator>Wirtz, Denis</creator><creator>Elisseeff, Jennifer H</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20131201</creationdate><title>Modulation of keratocyte phenotype by collagen fibril nanoarchitecture in membranes for corneal repair</title><author>Guo, Qiongyu ; Phillip, Jude M ; Majumdar, Shoumyo ; Wu, Pei-Hsun ; Chen, Jiansu ; Calderón-Colón, Xiomara ; Schein, Oliver ; Smith, Barbara J ; Trexler, Morgana M ; Wirtz, Denis ; Elisseeff, Jennifer H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c542t-2084a46c05ca5a2f6eb2b41335a2aec0587b84e0c2d92e5163ad187235f327053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Advanced Basic Science</topic><topic>Animals</topic><topic>Biocompatible Materials - chemistry</topic><topic>Cattle</topic><topic>Cell Proliferation</topic><topic>Cells, Cultured</topic><topic>Collagen maturation</topic><topic>Collagen Type I - chemistry</topic><topic>Collagen Type I - ultrastructure</topic><topic>Corneal Keratocytes - cytology</topic><topic>Corneal Keratocytes - metabolism</topic><topic>Corneal repair</topic><topic>Dentistry</topic><topic>Fibril nanoarchitecture</topic><topic>Gene Expression</topic><topic>Keratocyte phenotype</topic><topic>Vitrification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Qiongyu</creatorcontrib><creatorcontrib>Phillip, Jude M</creatorcontrib><creatorcontrib>Majumdar, Shoumyo</creatorcontrib><creatorcontrib>Wu, Pei-Hsun</creatorcontrib><creatorcontrib>Chen, Jiansu</creatorcontrib><creatorcontrib>Calderón-Colón, Xiomara</creatorcontrib><creatorcontrib>Schein, Oliver</creatorcontrib><creatorcontrib>Smith, Barbara J</creatorcontrib><creatorcontrib>Trexler, Morgana M</creatorcontrib><creatorcontrib>Wirtz, Denis</creatorcontrib><creatorcontrib>Elisseeff, Jennifer H</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Qiongyu</au><au>Phillip, Jude M</au><au>Majumdar, Shoumyo</au><au>Wu, Pei-Hsun</au><au>Chen, Jiansu</au><au>Calderón-Colón, Xiomara</au><au>Schein, Oliver</au><au>Smith, Barbara J</au><au>Trexler, Morgana M</au><au>Wirtz, Denis</au><au>Elisseeff, Jennifer H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modulation of keratocyte phenotype by collagen fibril nanoarchitecture in membranes for corneal repair</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2013-12-01</date><risdate>2013</risdate><volume>34</volume><issue>37</issue><spage>9365</spage><epage>9372</epage><pages>9365-9372</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Abstract Type I collagen membranes with tailored fibril nanoarchitectures were fabricated through a vitrification processing, which mimicked, to a degree, the collagen maturation process of corneal stromal extracellular matrix in vivo . Vitrification was performed at a controlled temperature of either 5 °C or 39 °C at a constant relative humidity of 40% for various time periods from 0.5 wk up to 8 wk. During vitrification, the vitrified collagen membranes (collagen vitrigels, CVs) exhibited a rapid growth in fibrillar density through the evaporation of water and an increase in fibrillar stiffness due to the formation of new and/or more-stable interactions. On the other hand, the collagen fibrils in CVs maintained their D-periodicity and showed no significant difference in fibrillar diameter, indicating preservation of the native states of the collagen fibrils during vitrification. Keratocyte phenotype was maintained on CVs to varying degrees that were strongly influenced by the collagen fibril nanoarchitectures. Specifically, the vitrification time of CVs mainly governed the keratocyte morphology, showing significant increases in the cell protrusion number, protrusion length, and cell size along with CV vitrification time. The CV vitrification temperature affected the regulation of keratocyte fibroblasts' gene expressions, including keratocan and aldehyde dehydrogenase (ALDH), demonstrating a unique way to control the expression of specific genes in vitro.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>24041426</pmid><doi>10.1016/j.biomaterials.2013.08.061</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0142-9612 |
ispartof | Biomaterials, 2013-12, Vol.34 (37), p.9365-9372 |
issn | 0142-9612 1878-5905 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8086596 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Advanced Basic Science Animals Biocompatible Materials - chemistry Cattle Cell Proliferation Cells, Cultured Collagen maturation Collagen Type I - chemistry Collagen Type I - ultrastructure Corneal Keratocytes - cytology Corneal Keratocytes - metabolism Corneal repair Dentistry Fibril nanoarchitecture Gene Expression Keratocyte phenotype Vitrification |
title | Modulation of keratocyte phenotype by collagen fibril nanoarchitecture in membranes for corneal repair |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T05%3A49%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modulation%20of%20keratocyte%20phenotype%20by%20collagen%20fibril%20nanoarchitecture%20in%20membranes%20for%20corneal%20repair&rft.jtitle=Biomaterials&rft.au=Guo,%20Qiongyu&rft.date=2013-12-01&rft.volume=34&rft.issue=37&rft.spage=9365&rft.epage=9372&rft.pages=9365-9372&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2013.08.061&rft_dat=%3Cproquest_pubme%3E1437581353%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1437581353&rft_id=info:pmid/24041426&rft_els_id=1_s2_0_S0142961213010247&rfr_iscdi=true |