Based on biomedical index data: Risk prediction model for prostate cancer
To explore the influencing factors of prostate cancer occurrence, set up risk prediction model, require reference for the preliminary diagnosis of clinical doctors, this model searched database through the data of prostate cancer patients and prostate hyperplasia patients National Clinical Medical S...
Gespeichert in:
Veröffentlicht in: | Medicine (Baltimore) 2021-04, Vol.100 (17), p.e25602-e25602 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e25602 |
---|---|
container_issue | 17 |
container_start_page | e25602 |
container_title | Medicine (Baltimore) |
container_volume | 100 |
creator | Guo, Hanxu Jia, Xianjie Liu, Hao |
description | To explore the influencing factors of prostate cancer occurrence, set up risk prediction model, require reference for the preliminary diagnosis of clinical doctors, this model searched database through the data of prostate cancer patients and prostate hyperplasia patients National Clinical Medical Science Data Center.With the help of Stata SE 12.0 and SPSS 25.0 software, the biases between groups were balanced by propensity score matching. Based on the matched data, the relevant factors were further screened by stepwise logistic regression analysis, the key variable and artificial neural network model are established. The prediction accuracy of the model is evaluated by combining the probability of test set with the area under receiver operating characteristic curve (ROC).After 1:2 PSM, 339 pairs were matched successfully. There are 159 cases in testing groups and 407 cases in training groups. And the regression model was P = 1 / (1 + e (0.122 ∗ age + 0.083 ∗ Apo lipoprotein C3 + 0.371 ∗ total prostate specific antigen (tPSA) -0.227 ∗ Apo lipoprotein C2-6.093 ∗ free calcium (iCa) + 0.428 ∗ Apo lipoprotein E-1.246 ∗ triglyceride-1.919 ∗ HDL cholesterol + 0.083 ∗ creatine kinase isoenzyme [CKMB])). The logistic regression model performed very well (ROC, 0.963; 95% confidence interval, 0.951 to 0.978) and artificial neural network model (ROC, 0.983; 95% confidence interval, 0.964 to 0.997). High degree of Apo lipoprotein E (Apo E) (Odds Ratio, [OR], 1.535) in blood test is a risk factor and high triglyceride (TG) (OR, 0.288) is a protective factor.It takes the biochemical examination of the case as variables to establish a risk prediction model, which can initially reflect the risk of prostate cancer and bring some references for diagnosis and treatment. |
doi_str_mv | 10.1097/MD.0000000000025602 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8084031</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2519316277</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3556-d8c2177129f320f74bb95b16472972de4bb1ee67cb6e104eaaf76af9425e1f9e3</originalsourceid><addsrcrecordid>eNpdkd9PFDEQxxujgRP4C0zMPvqy2OnPqw8mCigkEBMDz023O-tVetuz3RP47-1xiEJfJp35zmd-EfIG6CFQo99fHB_Sf49JRdkLMgPJVSuNEi_JbONttdFil7wu5SelwDUTO2SXc0M1AMzI2WdXsG_S2HQhLbEP3sUmjD3eNr2b3IfmeyjXzSpvIlOosmXqMTZDytWZyuQmbLwbPeZ98mpwseDBg90jV19OLo9O2_NvX8-OPp23nkup2n7uGWgNzAyc0UGLrjOyAyU0M5r1WP-AqLTvFAIV6NyglRuMYBJhMMj3yMctd7XuasMexym7aFc5LF2-s8kF-zQyhoX9kX7bOZ0LyqEC3j0Acvq1xjLZZSgeY3QjpnWxTILhoJjWVcq3Ul9nLRmHxzJA7eYI9uLYPj9CzXr7f4ePOX-3XgViK7hJccJcruP6BrNdoIvT4p4ntWEto6xugFPabtCK_wFIZpIM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2519316277</pqid></control><display><type>article</type><title>Based on biomedical index data: Risk prediction model for prostate cancer</title><source>Wolters Kluwer Open Health</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>IngentaConnect Free/Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Guo, Hanxu ; Jia, Xianjie ; Liu, Hao</creator><creatorcontrib>Guo, Hanxu ; Jia, Xianjie ; Liu, Hao</creatorcontrib><description>To explore the influencing factors of prostate cancer occurrence, set up risk prediction model, require reference for the preliminary diagnosis of clinical doctors, this model searched database through the data of prostate cancer patients and prostate hyperplasia patients National Clinical Medical Science Data Center.With the help of Stata SE 12.0 and SPSS 25.0 software, the biases between groups were balanced by propensity score matching. Based on the matched data, the relevant factors were further screened by stepwise logistic regression analysis, the key variable and artificial neural network model are established. The prediction accuracy of the model is evaluated by combining the probability of test set with the area under receiver operating characteristic curve (ROC).After 1:2 PSM, 339 pairs were matched successfully. There are 159 cases in testing groups and 407 cases in training groups. And the regression model was P = 1 / (1 + e (0.122 ∗ age + 0.083 ∗ Apo lipoprotein C3 + 0.371 ∗ total prostate specific antigen (tPSA) -0.227 ∗ Apo lipoprotein C2-6.093 ∗ free calcium (iCa) + 0.428 ∗ Apo lipoprotein E-1.246 ∗ triglyceride-1.919 ∗ HDL cholesterol + 0.083 ∗ creatine kinase isoenzyme [CKMB])). The logistic regression model performed very well (ROC, 0.963; 95% confidence interval, 0.951 to 0.978) and artificial neural network model (ROC, 0.983; 95% confidence interval, 0.964 to 0.997). High degree of Apo lipoprotein E (Apo E) (Odds Ratio, [OR], 1.535) in blood test is a risk factor and high triglyceride (TG) (OR, 0.288) is a protective factor.It takes the biochemical examination of the case as variables to establish a risk prediction model, which can initially reflect the risk of prostate cancer and bring some references for diagnosis and treatment.</description><identifier>ISSN: 0025-7974</identifier><identifier>EISSN: 1536-5964</identifier><identifier>DOI: 10.1097/MD.0000000000025602</identifier><identifier>PMID: 33907111</identifier><language>eng</language><publisher>United States: Lippincott Williams & Wilkins</publisher><subject>Adult ; Aged ; Apolipoproteins - blood ; Biomarkers - blood ; Calcium - blood ; Cholesterol, HDL - blood ; Creatine Kinase - blood ; Humans ; Kallikreins - blood ; Male ; Middle Aged ; Models, Biological ; Neural Networks, Computer ; Observational Study ; Predictive Value of Tests ; Propensity Score ; Prostate-Specific Antigen - blood ; Prostatic Neoplasms - etiology ; Regression Analysis ; Risk Assessment - methods ; ROC Curve ; Triglycerides - blood</subject><ispartof>Medicine (Baltimore), 2021-04, Vol.100 (17), p.e25602-e25602</ispartof><rights>Lippincott Williams & Wilkins</rights><rights>Copyright © 2021 the Author(s). Published by Wolters Kluwer Health, Inc.</rights><rights>Copyright © 2021 the Author(s). Published by Wolters Kluwer Health, Inc. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3556-d8c2177129f320f74bb95b16472972de4bb1ee67cb6e104eaaf76af9425e1f9e3</cites><orcidid>0000-0001-8004-7965</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8084031/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8084031/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33907111$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Hanxu</creatorcontrib><creatorcontrib>Jia, Xianjie</creatorcontrib><creatorcontrib>Liu, Hao</creatorcontrib><title>Based on biomedical index data: Risk prediction model for prostate cancer</title><title>Medicine (Baltimore)</title><addtitle>Medicine (Baltimore)</addtitle><description>To explore the influencing factors of prostate cancer occurrence, set up risk prediction model, require reference for the preliminary diagnosis of clinical doctors, this model searched database through the data of prostate cancer patients and prostate hyperplasia patients National Clinical Medical Science Data Center.With the help of Stata SE 12.0 and SPSS 25.0 software, the biases between groups were balanced by propensity score matching. Based on the matched data, the relevant factors were further screened by stepwise logistic regression analysis, the key variable and artificial neural network model are established. The prediction accuracy of the model is evaluated by combining the probability of test set with the area under receiver operating characteristic curve (ROC).After 1:2 PSM, 339 pairs were matched successfully. There are 159 cases in testing groups and 407 cases in training groups. And the regression model was P = 1 / (1 + e (0.122 ∗ age + 0.083 ∗ Apo lipoprotein C3 + 0.371 ∗ total prostate specific antigen (tPSA) -0.227 ∗ Apo lipoprotein C2-6.093 ∗ free calcium (iCa) + 0.428 ∗ Apo lipoprotein E-1.246 ∗ triglyceride-1.919 ∗ HDL cholesterol + 0.083 ∗ creatine kinase isoenzyme [CKMB])). The logistic regression model performed very well (ROC, 0.963; 95% confidence interval, 0.951 to 0.978) and artificial neural network model (ROC, 0.983; 95% confidence interval, 0.964 to 0.997). High degree of Apo lipoprotein E (Apo E) (Odds Ratio, [OR], 1.535) in blood test is a risk factor and high triglyceride (TG) (OR, 0.288) is a protective factor.It takes the biochemical examination of the case as variables to establish a risk prediction model, which can initially reflect the risk of prostate cancer and bring some references for diagnosis and treatment.</description><subject>Adult</subject><subject>Aged</subject><subject>Apolipoproteins - blood</subject><subject>Biomarkers - blood</subject><subject>Calcium - blood</subject><subject>Cholesterol, HDL - blood</subject><subject>Creatine Kinase - blood</subject><subject>Humans</subject><subject>Kallikreins - blood</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Models, Biological</subject><subject>Neural Networks, Computer</subject><subject>Observational Study</subject><subject>Predictive Value of Tests</subject><subject>Propensity Score</subject><subject>Prostate-Specific Antigen - blood</subject><subject>Prostatic Neoplasms - etiology</subject><subject>Regression Analysis</subject><subject>Risk Assessment - methods</subject><subject>ROC Curve</subject><subject>Triglycerides - blood</subject><issn>0025-7974</issn><issn>1536-5964</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkd9PFDEQxxujgRP4C0zMPvqy2OnPqw8mCigkEBMDz023O-tVetuz3RP47-1xiEJfJp35zmd-EfIG6CFQo99fHB_Sf49JRdkLMgPJVSuNEi_JbONttdFil7wu5SelwDUTO2SXc0M1AMzI2WdXsG_S2HQhLbEP3sUmjD3eNr2b3IfmeyjXzSpvIlOosmXqMTZDytWZyuQmbLwbPeZ98mpwseDBg90jV19OLo9O2_NvX8-OPp23nkup2n7uGWgNzAyc0UGLrjOyAyU0M5r1WP-AqLTvFAIV6NyglRuMYBJhMMj3yMctd7XuasMexym7aFc5LF2-s8kF-zQyhoX9kX7bOZ0LyqEC3j0Acvq1xjLZZSgeY3QjpnWxTILhoJjWVcq3Ul9nLRmHxzJA7eYI9uLYPj9CzXr7f4ePOX-3XgViK7hJccJcruP6BrNdoIvT4p4ntWEto6xugFPabtCK_wFIZpIM</recordid><startdate>20210430</startdate><enddate>20210430</enddate><creator>Guo, Hanxu</creator><creator>Jia, Xianjie</creator><creator>Liu, Hao</creator><general>Lippincott Williams & Wilkins</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8004-7965</orcidid></search><sort><creationdate>20210430</creationdate><title>Based on biomedical index data: Risk prediction model for prostate cancer</title><author>Guo, Hanxu ; Jia, Xianjie ; Liu, Hao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3556-d8c2177129f320f74bb95b16472972de4bb1ee67cb6e104eaaf76af9425e1f9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Apolipoproteins - blood</topic><topic>Biomarkers - blood</topic><topic>Calcium - blood</topic><topic>Cholesterol, HDL - blood</topic><topic>Creatine Kinase - blood</topic><topic>Humans</topic><topic>Kallikreins - blood</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Models, Biological</topic><topic>Neural Networks, Computer</topic><topic>Observational Study</topic><topic>Predictive Value of Tests</topic><topic>Propensity Score</topic><topic>Prostate-Specific Antigen - blood</topic><topic>Prostatic Neoplasms - etiology</topic><topic>Regression Analysis</topic><topic>Risk Assessment - methods</topic><topic>ROC Curve</topic><topic>Triglycerides - blood</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Hanxu</creatorcontrib><creatorcontrib>Jia, Xianjie</creatorcontrib><creatorcontrib>Liu, Hao</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Medicine (Baltimore)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Hanxu</au><au>Jia, Xianjie</au><au>Liu, Hao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Based on biomedical index data: Risk prediction model for prostate cancer</atitle><jtitle>Medicine (Baltimore)</jtitle><addtitle>Medicine (Baltimore)</addtitle><date>2021-04-30</date><risdate>2021</risdate><volume>100</volume><issue>17</issue><spage>e25602</spage><epage>e25602</epage><pages>e25602-e25602</pages><issn>0025-7974</issn><eissn>1536-5964</eissn><abstract>To explore the influencing factors of prostate cancer occurrence, set up risk prediction model, require reference for the preliminary diagnosis of clinical doctors, this model searched database through the data of prostate cancer patients and prostate hyperplasia patients National Clinical Medical Science Data Center.With the help of Stata SE 12.0 and SPSS 25.0 software, the biases between groups were balanced by propensity score matching. Based on the matched data, the relevant factors were further screened by stepwise logistic regression analysis, the key variable and artificial neural network model are established. The prediction accuracy of the model is evaluated by combining the probability of test set with the area under receiver operating characteristic curve (ROC).After 1:2 PSM, 339 pairs were matched successfully. There are 159 cases in testing groups and 407 cases in training groups. And the regression model was P = 1 / (1 + e (0.122 ∗ age + 0.083 ∗ Apo lipoprotein C3 + 0.371 ∗ total prostate specific antigen (tPSA) -0.227 ∗ Apo lipoprotein C2-6.093 ∗ free calcium (iCa) + 0.428 ∗ Apo lipoprotein E-1.246 ∗ triglyceride-1.919 ∗ HDL cholesterol + 0.083 ∗ creatine kinase isoenzyme [CKMB])). The logistic regression model performed very well (ROC, 0.963; 95% confidence interval, 0.951 to 0.978) and artificial neural network model (ROC, 0.983; 95% confidence interval, 0.964 to 0.997). High degree of Apo lipoprotein E (Apo E) (Odds Ratio, [OR], 1.535) in blood test is a risk factor and high triglyceride (TG) (OR, 0.288) is a protective factor.It takes the biochemical examination of the case as variables to establish a risk prediction model, which can initially reflect the risk of prostate cancer and bring some references for diagnosis and treatment.</abstract><cop>United States</cop><pub>Lippincott Williams & Wilkins</pub><pmid>33907111</pmid><doi>10.1097/MD.0000000000025602</doi><orcidid>https://orcid.org/0000-0001-8004-7965</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-7974 |
ispartof | Medicine (Baltimore), 2021-04, Vol.100 (17), p.e25602-e25602 |
issn | 0025-7974 1536-5964 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8084031 |
source | Wolters Kluwer Open Health; MEDLINE; DOAJ Directory of Open Access Journals; IngentaConnect Free/Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection |
subjects | Adult Aged Apolipoproteins - blood Biomarkers - blood Calcium - blood Cholesterol, HDL - blood Creatine Kinase - blood Humans Kallikreins - blood Male Middle Aged Models, Biological Neural Networks, Computer Observational Study Predictive Value of Tests Propensity Score Prostate-Specific Antigen - blood Prostatic Neoplasms - etiology Regression Analysis Risk Assessment - methods ROC Curve Triglycerides - blood |
title | Based on biomedical index data: Risk prediction model for prostate cancer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T03%3A23%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Based%20on%20biomedical%20index%20data:%20Risk%20prediction%20model%20for%20prostate%20cancer&rft.jtitle=Medicine%20(Baltimore)&rft.au=Guo,%20Hanxu&rft.date=2021-04-30&rft.volume=100&rft.issue=17&rft.spage=e25602&rft.epage=e25602&rft.pages=e25602-e25602&rft.issn=0025-7974&rft.eissn=1536-5964&rft_id=info:doi/10.1097/MD.0000000000025602&rft_dat=%3Cproquest_pubme%3E2519316277%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2519316277&rft_id=info:pmid/33907111&rfr_iscdi=true |