Based on biomedical index data: Risk prediction model for prostate cancer

To explore the influencing factors of prostate cancer occurrence, set up risk prediction model, require reference for the preliminary diagnosis of clinical doctors, this model searched database through the data of prostate cancer patients and prostate hyperplasia patients National Clinical Medical S...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medicine (Baltimore) 2021-04, Vol.100 (17), p.e25602-e25602
Hauptverfasser: Guo, Hanxu, Jia, Xianjie, Liu, Hao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e25602
container_issue 17
container_start_page e25602
container_title Medicine (Baltimore)
container_volume 100
creator Guo, Hanxu
Jia, Xianjie
Liu, Hao
description To explore the influencing factors of prostate cancer occurrence, set up risk prediction model, require reference for the preliminary diagnosis of clinical doctors, this model searched database through the data of prostate cancer patients and prostate hyperplasia patients National Clinical Medical Science Data Center.With the help of Stata SE 12.0 and SPSS 25.0 software, the biases between groups were balanced by propensity score matching. Based on the matched data, the relevant factors were further screened by stepwise logistic regression analysis, the key variable and artificial neural network model are established. The prediction accuracy of the model is evaluated by combining the probability of test set with the area under receiver operating characteristic curve (ROC).After 1:2 PSM, 339 pairs were matched successfully. There are 159 cases in testing groups and 407 cases in training groups. And the regression model was P = 1 / (1 + e (0.122 ∗ age + 0.083 ∗ Apo lipoprotein C3 + 0.371 ∗ total prostate specific antigen (tPSA) -0.227 ∗ Apo lipoprotein C2-6.093 ∗ free calcium (iCa) + 0.428 ∗ Apo lipoprotein E-1.246 ∗ triglyceride-1.919 ∗ HDL cholesterol + 0.083 ∗ creatine kinase isoenzyme [CKMB])). The logistic regression model performed very well (ROC, 0.963; 95% confidence interval, 0.951 to 0.978) and artificial neural network model (ROC, 0.983; 95% confidence interval, 0.964 to 0.997). High degree of Apo lipoprotein E (Apo E) (Odds Ratio, [OR], 1.535) in blood test is a risk factor and high triglyceride (TG) (OR, 0.288) is a protective factor.It takes the biochemical examination of the case as variables to establish a risk prediction model, which can initially reflect the risk of prostate cancer and bring some references for diagnosis and treatment.
doi_str_mv 10.1097/MD.0000000000025602
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8084031</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2519316277</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3556-d8c2177129f320f74bb95b16472972de4bb1ee67cb6e104eaaf76af9425e1f9e3</originalsourceid><addsrcrecordid>eNpdkd9PFDEQxxujgRP4C0zMPvqy2OnPqw8mCigkEBMDz023O-tVetuz3RP47-1xiEJfJp35zmd-EfIG6CFQo99fHB_Sf49JRdkLMgPJVSuNEi_JbONttdFil7wu5SelwDUTO2SXc0M1AMzI2WdXsG_S2HQhLbEP3sUmjD3eNr2b3IfmeyjXzSpvIlOosmXqMTZDytWZyuQmbLwbPeZ98mpwseDBg90jV19OLo9O2_NvX8-OPp23nkup2n7uGWgNzAyc0UGLrjOyAyU0M5r1WP-AqLTvFAIV6NyglRuMYBJhMMj3yMctd7XuasMexym7aFc5LF2-s8kF-zQyhoX9kX7bOZ0LyqEC3j0Acvq1xjLZZSgeY3QjpnWxTILhoJjWVcq3Ul9nLRmHxzJA7eYI9uLYPj9CzXr7f4ePOX-3XgViK7hJccJcruP6BrNdoIvT4p4ntWEto6xugFPabtCK_wFIZpIM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2519316277</pqid></control><display><type>article</type><title>Based on biomedical index data: Risk prediction model for prostate cancer</title><source>Wolters Kluwer Open Health</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>IngentaConnect Free/Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Guo, Hanxu ; Jia, Xianjie ; Liu, Hao</creator><creatorcontrib>Guo, Hanxu ; Jia, Xianjie ; Liu, Hao</creatorcontrib><description>To explore the influencing factors of prostate cancer occurrence, set up risk prediction model, require reference for the preliminary diagnosis of clinical doctors, this model searched database through the data of prostate cancer patients and prostate hyperplasia patients National Clinical Medical Science Data Center.With the help of Stata SE 12.0 and SPSS 25.0 software, the biases between groups were balanced by propensity score matching. Based on the matched data, the relevant factors were further screened by stepwise logistic regression analysis, the key variable and artificial neural network model are established. The prediction accuracy of the model is evaluated by combining the probability of test set with the area under receiver operating characteristic curve (ROC).After 1:2 PSM, 339 pairs were matched successfully. There are 159 cases in testing groups and 407 cases in training groups. And the regression model was P = 1 / (1 + e (0.122 ∗ age + 0.083 ∗ Apo lipoprotein C3 + 0.371 ∗ total prostate specific antigen (tPSA) -0.227 ∗ Apo lipoprotein C2-6.093 ∗ free calcium (iCa) + 0.428 ∗ Apo lipoprotein E-1.246 ∗ triglyceride-1.919 ∗ HDL cholesterol + 0.083 ∗ creatine kinase isoenzyme [CKMB])). The logistic regression model performed very well (ROC, 0.963; 95% confidence interval, 0.951 to 0.978) and artificial neural network model (ROC, 0.983; 95% confidence interval, 0.964 to 0.997). High degree of Apo lipoprotein E (Apo E) (Odds Ratio, [OR], 1.535) in blood test is a risk factor and high triglyceride (TG) (OR, 0.288) is a protective factor.It takes the biochemical examination of the case as variables to establish a risk prediction model, which can initially reflect the risk of prostate cancer and bring some references for diagnosis and treatment.</description><identifier>ISSN: 0025-7974</identifier><identifier>EISSN: 1536-5964</identifier><identifier>DOI: 10.1097/MD.0000000000025602</identifier><identifier>PMID: 33907111</identifier><language>eng</language><publisher>United States: Lippincott Williams &amp; Wilkins</publisher><subject>Adult ; Aged ; Apolipoproteins - blood ; Biomarkers - blood ; Calcium - blood ; Cholesterol, HDL - blood ; Creatine Kinase - blood ; Humans ; Kallikreins - blood ; Male ; Middle Aged ; Models, Biological ; Neural Networks, Computer ; Observational Study ; Predictive Value of Tests ; Propensity Score ; Prostate-Specific Antigen - blood ; Prostatic Neoplasms - etiology ; Regression Analysis ; Risk Assessment - methods ; ROC Curve ; Triglycerides - blood</subject><ispartof>Medicine (Baltimore), 2021-04, Vol.100 (17), p.e25602-e25602</ispartof><rights>Lippincott Williams &amp; Wilkins</rights><rights>Copyright © 2021 the Author(s). Published by Wolters Kluwer Health, Inc.</rights><rights>Copyright © 2021 the Author(s). Published by Wolters Kluwer Health, Inc. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3556-d8c2177129f320f74bb95b16472972de4bb1ee67cb6e104eaaf76af9425e1f9e3</cites><orcidid>0000-0001-8004-7965</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8084031/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8084031/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33907111$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Hanxu</creatorcontrib><creatorcontrib>Jia, Xianjie</creatorcontrib><creatorcontrib>Liu, Hao</creatorcontrib><title>Based on biomedical index data: Risk prediction model for prostate cancer</title><title>Medicine (Baltimore)</title><addtitle>Medicine (Baltimore)</addtitle><description>To explore the influencing factors of prostate cancer occurrence, set up risk prediction model, require reference for the preliminary diagnosis of clinical doctors, this model searched database through the data of prostate cancer patients and prostate hyperplasia patients National Clinical Medical Science Data Center.With the help of Stata SE 12.0 and SPSS 25.0 software, the biases between groups were balanced by propensity score matching. Based on the matched data, the relevant factors were further screened by stepwise logistic regression analysis, the key variable and artificial neural network model are established. The prediction accuracy of the model is evaluated by combining the probability of test set with the area under receiver operating characteristic curve (ROC).After 1:2 PSM, 339 pairs were matched successfully. There are 159 cases in testing groups and 407 cases in training groups. And the regression model was P = 1 / (1 + e (0.122 ∗ age + 0.083 ∗ Apo lipoprotein C3 + 0.371 ∗ total prostate specific antigen (tPSA) -0.227 ∗ Apo lipoprotein C2-6.093 ∗ free calcium (iCa) + 0.428 ∗ Apo lipoprotein E-1.246 ∗ triglyceride-1.919 ∗ HDL cholesterol + 0.083 ∗ creatine kinase isoenzyme [CKMB])). The logistic regression model performed very well (ROC, 0.963; 95% confidence interval, 0.951 to 0.978) and artificial neural network model (ROC, 0.983; 95% confidence interval, 0.964 to 0.997). High degree of Apo lipoprotein E (Apo E) (Odds Ratio, [OR], 1.535) in blood test is a risk factor and high triglyceride (TG) (OR, 0.288) is a protective factor.It takes the biochemical examination of the case as variables to establish a risk prediction model, which can initially reflect the risk of prostate cancer and bring some references for diagnosis and treatment.</description><subject>Adult</subject><subject>Aged</subject><subject>Apolipoproteins - blood</subject><subject>Biomarkers - blood</subject><subject>Calcium - blood</subject><subject>Cholesterol, HDL - blood</subject><subject>Creatine Kinase - blood</subject><subject>Humans</subject><subject>Kallikreins - blood</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Models, Biological</subject><subject>Neural Networks, Computer</subject><subject>Observational Study</subject><subject>Predictive Value of Tests</subject><subject>Propensity Score</subject><subject>Prostate-Specific Antigen - blood</subject><subject>Prostatic Neoplasms - etiology</subject><subject>Regression Analysis</subject><subject>Risk Assessment - methods</subject><subject>ROC Curve</subject><subject>Triglycerides - blood</subject><issn>0025-7974</issn><issn>1536-5964</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkd9PFDEQxxujgRP4C0zMPvqy2OnPqw8mCigkEBMDz023O-tVetuz3RP47-1xiEJfJp35zmd-EfIG6CFQo99fHB_Sf49JRdkLMgPJVSuNEi_JbONttdFil7wu5SelwDUTO2SXc0M1AMzI2WdXsG_S2HQhLbEP3sUmjD3eNr2b3IfmeyjXzSpvIlOosmXqMTZDytWZyuQmbLwbPeZ98mpwseDBg90jV19OLo9O2_NvX8-OPp23nkup2n7uGWgNzAyc0UGLrjOyAyU0M5r1WP-AqLTvFAIV6NyglRuMYBJhMMj3yMctd7XuasMexym7aFc5LF2-s8kF-zQyhoX9kX7bOZ0LyqEC3j0Acvq1xjLZZSgeY3QjpnWxTILhoJjWVcq3Ul9nLRmHxzJA7eYI9uLYPj9CzXr7f4ePOX-3XgViK7hJccJcruP6BrNdoIvT4p4ntWEto6xugFPabtCK_wFIZpIM</recordid><startdate>20210430</startdate><enddate>20210430</enddate><creator>Guo, Hanxu</creator><creator>Jia, Xianjie</creator><creator>Liu, Hao</creator><general>Lippincott Williams &amp; Wilkins</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8004-7965</orcidid></search><sort><creationdate>20210430</creationdate><title>Based on biomedical index data: Risk prediction model for prostate cancer</title><author>Guo, Hanxu ; Jia, Xianjie ; Liu, Hao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3556-d8c2177129f320f74bb95b16472972de4bb1ee67cb6e104eaaf76af9425e1f9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Apolipoproteins - blood</topic><topic>Biomarkers - blood</topic><topic>Calcium - blood</topic><topic>Cholesterol, HDL - blood</topic><topic>Creatine Kinase - blood</topic><topic>Humans</topic><topic>Kallikreins - blood</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Models, Biological</topic><topic>Neural Networks, Computer</topic><topic>Observational Study</topic><topic>Predictive Value of Tests</topic><topic>Propensity Score</topic><topic>Prostate-Specific Antigen - blood</topic><topic>Prostatic Neoplasms - etiology</topic><topic>Regression Analysis</topic><topic>Risk Assessment - methods</topic><topic>ROC Curve</topic><topic>Triglycerides - blood</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Hanxu</creatorcontrib><creatorcontrib>Jia, Xianjie</creatorcontrib><creatorcontrib>Liu, Hao</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Medicine (Baltimore)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Hanxu</au><au>Jia, Xianjie</au><au>Liu, Hao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Based on biomedical index data: Risk prediction model for prostate cancer</atitle><jtitle>Medicine (Baltimore)</jtitle><addtitle>Medicine (Baltimore)</addtitle><date>2021-04-30</date><risdate>2021</risdate><volume>100</volume><issue>17</issue><spage>e25602</spage><epage>e25602</epage><pages>e25602-e25602</pages><issn>0025-7974</issn><eissn>1536-5964</eissn><abstract>To explore the influencing factors of prostate cancer occurrence, set up risk prediction model, require reference for the preliminary diagnosis of clinical doctors, this model searched database through the data of prostate cancer patients and prostate hyperplasia patients National Clinical Medical Science Data Center.With the help of Stata SE 12.0 and SPSS 25.0 software, the biases between groups were balanced by propensity score matching. Based on the matched data, the relevant factors were further screened by stepwise logistic regression analysis, the key variable and artificial neural network model are established. The prediction accuracy of the model is evaluated by combining the probability of test set with the area under receiver operating characteristic curve (ROC).After 1:2 PSM, 339 pairs were matched successfully. There are 159 cases in testing groups and 407 cases in training groups. And the regression model was P = 1 / (1 + e (0.122 ∗ age + 0.083 ∗ Apo lipoprotein C3 + 0.371 ∗ total prostate specific antigen (tPSA) -0.227 ∗ Apo lipoprotein C2-6.093 ∗ free calcium (iCa) + 0.428 ∗ Apo lipoprotein E-1.246 ∗ triglyceride-1.919 ∗ HDL cholesterol + 0.083 ∗ creatine kinase isoenzyme [CKMB])). The logistic regression model performed very well (ROC, 0.963; 95% confidence interval, 0.951 to 0.978) and artificial neural network model (ROC, 0.983; 95% confidence interval, 0.964 to 0.997). High degree of Apo lipoprotein E (Apo E) (Odds Ratio, [OR], 1.535) in blood test is a risk factor and high triglyceride (TG) (OR, 0.288) is a protective factor.It takes the biochemical examination of the case as variables to establish a risk prediction model, which can initially reflect the risk of prostate cancer and bring some references for diagnosis and treatment.</abstract><cop>United States</cop><pub>Lippincott Williams &amp; Wilkins</pub><pmid>33907111</pmid><doi>10.1097/MD.0000000000025602</doi><orcidid>https://orcid.org/0000-0001-8004-7965</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0025-7974
ispartof Medicine (Baltimore), 2021-04, Vol.100 (17), p.e25602-e25602
issn 0025-7974
1536-5964
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8084031
source Wolters Kluwer Open Health; MEDLINE; DOAJ Directory of Open Access Journals; IngentaConnect Free/Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects Adult
Aged
Apolipoproteins - blood
Biomarkers - blood
Calcium - blood
Cholesterol, HDL - blood
Creatine Kinase - blood
Humans
Kallikreins - blood
Male
Middle Aged
Models, Biological
Neural Networks, Computer
Observational Study
Predictive Value of Tests
Propensity Score
Prostate-Specific Antigen - blood
Prostatic Neoplasms - etiology
Regression Analysis
Risk Assessment - methods
ROC Curve
Triglycerides - blood
title Based on biomedical index data: Risk prediction model for prostate cancer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T03%3A23%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Based%20on%20biomedical%20index%20data:%20Risk%20prediction%20model%20for%20prostate%20cancer&rft.jtitle=Medicine%20(Baltimore)&rft.au=Guo,%20Hanxu&rft.date=2021-04-30&rft.volume=100&rft.issue=17&rft.spage=e25602&rft.epage=e25602&rft.pages=e25602-e25602&rft.issn=0025-7974&rft.eissn=1536-5964&rft_id=info:doi/10.1097/MD.0000000000025602&rft_dat=%3Cproquest_pubme%3E2519316277%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2519316277&rft_id=info:pmid/33907111&rfr_iscdi=true