DDX3X coordinates host defense against influenza virus by activating the NLRP3 inflammasome and type I interferon response

Viruses and hosts have coevolved for millions of years, leading to the development of complex host–pathogen interactions. Influenza A virus (IAV) causes severe pulmonary pathology and is a recurrent threat to human health. Innate immune sensing of IAV triggers a complex chain of host responses. IAV...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2021-01, Vol.296, p.100579-100579, Article 100579
Hauptverfasser: Kesavardhana, Sannula, Samir, Parimal, Zheng, Min, Malireddi, R.K. Subbarao, Karki, Rajendra, Sharma, Bhesh Raj, Place, David E., Briard, Benoit, Vogel, Peter, Kanneganti, Thirumala-Devi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 100579
container_issue
container_start_page 100579
container_title The Journal of biological chemistry
container_volume 296
creator Kesavardhana, Sannula
Samir, Parimal
Zheng, Min
Malireddi, R.K. Subbarao
Karki, Rajendra
Sharma, Bhesh Raj
Place, David E.
Briard, Benoit
Vogel, Peter
Kanneganti, Thirumala-Devi
description Viruses and hosts have coevolved for millions of years, leading to the development of complex host–pathogen interactions. Influenza A virus (IAV) causes severe pulmonary pathology and is a recurrent threat to human health. Innate immune sensing of IAV triggers a complex chain of host responses. IAV has adapted to evade host defense mechanisms, and the host has coevolved to counteract these evasion strategies. However, the molecular mechanisms governing the balance between host defense and viral immune evasion is poorly understood. Here, we show that the host protein DEAD-box helicase 3 X-linked (DDX3X) is critical to orchestrate a multifaceted antiviral innate response during IAV infection, coordinating the activation of the nucleotide-binding oligomerization domain-like receptor with a pyrin domain 3 (NLRP3) inflammasome, assembly of stress granules, and type I interferon (IFN) responses. DDX3X activated the NLRP3 inflammasome in response to WT IAV, which carries the immune evasive nonstructural protein 1 (NS1). However, in the absence of NS1, DDX3X promoted the formation of stress granules that facilitated efficient activation of type I IFN signaling. Moreover, induction of DDX3X-containing stress granules by external stimuli after IAV infection led to increased type I IFN signaling, suggesting that NS1 actively inhibits stress granule–mediated host responses and DDX3X-mediated NLRP3 activation counteracts this action. Furthermore, the loss of DDX3X expression in myeloid cells caused severe pulmonary pathogenesis and morbidity in IAV-infected mice. Together, our findings show that DDX3X orchestrates alternate modes of innate host defense which are critical to fight against NS1-mediated immune evasion strategies during IAV infection.
doi_str_mv 10.1016/j.jbc.2021.100579
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8081917</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925821003586</els_id><sourcerecordid>2506284901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-773180eb3a29838bc9f5d3ed0f7a887eedddb3dbb5a4436d51e58e8ea64fd1593</originalsourceid><addsrcrecordid>eNp9kUFr3DAQhUVISTZpf0AuQcdevJUsy5YJBEqSpoGlLaWFvQlZGu9qsaWtJC9sfn2VbhraS3QRo3nv0zAPoQtK5pTQ-sNmvun0vCQlzTXhTXuEZpQIVjBOl8doRnKnaEsuTtFZjBuST9XSE3TKWFPXvKYz9Hh7u2RLrL0PxjqVIOK1jwkb6MFFwGqlrMu1df0wgXtUeGfDFHG3x0onu1PJuhVOa8BfFt-_sT86NY4q-jGbncFpvwX8kN8ThB6CdzhA3PrMfove9GqI8O75Pkc_P939uPlcLL7eP9x8XBS64jQVTcOoINAxVbaCiU63PTcMDOkbJUQDYIzpmOk6rqqK1YZT4AIEqLrqDeUtO0fXB-526kYwGlwKapDbYEcV9tIrK__vOLuWK7-Tggja0iYD3j8Dgv81QUxytFHDMCgHfoqy5KQuRdUSmqX0INXBxxigf_mGEvmUmdzInJl8ykweMsuey3_ne3H8DSkLrg4CyFvaWQgyagtOg7EBdJLG21fwvwEdDKqD</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2506284901</pqid></control><display><type>article</type><title>DDX3X coordinates host defense against influenza virus by activating the NLRP3 inflammasome and type I interferon response</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Kesavardhana, Sannula ; Samir, Parimal ; Zheng, Min ; Malireddi, R.K. Subbarao ; Karki, Rajendra ; Sharma, Bhesh Raj ; Place, David E. ; Briard, Benoit ; Vogel, Peter ; Kanneganti, Thirumala-Devi</creator><creatorcontrib>Kesavardhana, Sannula ; Samir, Parimal ; Zheng, Min ; Malireddi, R.K. Subbarao ; Karki, Rajendra ; Sharma, Bhesh Raj ; Place, David E. ; Briard, Benoit ; Vogel, Peter ; Kanneganti, Thirumala-Devi</creatorcontrib><description>Viruses and hosts have coevolved for millions of years, leading to the development of complex host–pathogen interactions. Influenza A virus (IAV) causes severe pulmonary pathology and is a recurrent threat to human health. Innate immune sensing of IAV triggers a complex chain of host responses. IAV has adapted to evade host defense mechanisms, and the host has coevolved to counteract these evasion strategies. However, the molecular mechanisms governing the balance between host defense and viral immune evasion is poorly understood. Here, we show that the host protein DEAD-box helicase 3 X-linked (DDX3X) is critical to orchestrate a multifaceted antiviral innate response during IAV infection, coordinating the activation of the nucleotide-binding oligomerization domain-like receptor with a pyrin domain 3 (NLRP3) inflammasome, assembly of stress granules, and type I interferon (IFN) responses. DDX3X activated the NLRP3 inflammasome in response to WT IAV, which carries the immune evasive nonstructural protein 1 (NS1). However, in the absence of NS1, DDX3X promoted the formation of stress granules that facilitated efficient activation of type I IFN signaling. Moreover, induction of DDX3X-containing stress granules by external stimuli after IAV infection led to increased type I IFN signaling, suggesting that NS1 actively inhibits stress granule–mediated host responses and DDX3X-mediated NLRP3 activation counteracts this action. Furthermore, the loss of DDX3X expression in myeloid cells caused severe pulmonary pathogenesis and morbidity in IAV-infected mice. Together, our findings show that DDX3X orchestrates alternate modes of innate host defense which are critical to fight against NS1-mediated immune evasion strategies during IAV infection.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1016/j.jbc.2021.100579</identifier><identifier>PMID: 33766561</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>DDX3X ; host defense ; immune evasion ; inflammasome ; influenza A virus ; innate immunity ; NLRP3 ; NS1 ; stress granule ; type I IFN</subject><ispartof>The Journal of biological chemistry, 2021-01, Vol.296, p.100579-100579, Article 100579</ispartof><rights>2021 The Authors</rights><rights>Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>2021 The Authors 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-773180eb3a29838bc9f5d3ed0f7a887eedddb3dbb5a4436d51e58e8ea64fd1593</citedby><cites>FETCH-LOGICAL-c451t-773180eb3a29838bc9f5d3ed0f7a887eedddb3dbb5a4436d51e58e8ea64fd1593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8081917/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8081917/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33766561$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kesavardhana, Sannula</creatorcontrib><creatorcontrib>Samir, Parimal</creatorcontrib><creatorcontrib>Zheng, Min</creatorcontrib><creatorcontrib>Malireddi, R.K. Subbarao</creatorcontrib><creatorcontrib>Karki, Rajendra</creatorcontrib><creatorcontrib>Sharma, Bhesh Raj</creatorcontrib><creatorcontrib>Place, David E.</creatorcontrib><creatorcontrib>Briard, Benoit</creatorcontrib><creatorcontrib>Vogel, Peter</creatorcontrib><creatorcontrib>Kanneganti, Thirumala-Devi</creatorcontrib><title>DDX3X coordinates host defense against influenza virus by activating the NLRP3 inflammasome and type I interferon response</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Viruses and hosts have coevolved for millions of years, leading to the development of complex host–pathogen interactions. Influenza A virus (IAV) causes severe pulmonary pathology and is a recurrent threat to human health. Innate immune sensing of IAV triggers a complex chain of host responses. IAV has adapted to evade host defense mechanisms, and the host has coevolved to counteract these evasion strategies. However, the molecular mechanisms governing the balance between host defense and viral immune evasion is poorly understood. Here, we show that the host protein DEAD-box helicase 3 X-linked (DDX3X) is critical to orchestrate a multifaceted antiviral innate response during IAV infection, coordinating the activation of the nucleotide-binding oligomerization domain-like receptor with a pyrin domain 3 (NLRP3) inflammasome, assembly of stress granules, and type I interferon (IFN) responses. DDX3X activated the NLRP3 inflammasome in response to WT IAV, which carries the immune evasive nonstructural protein 1 (NS1). However, in the absence of NS1, DDX3X promoted the formation of stress granules that facilitated efficient activation of type I IFN signaling. Moreover, induction of DDX3X-containing stress granules by external stimuli after IAV infection led to increased type I IFN signaling, suggesting that NS1 actively inhibits stress granule–mediated host responses and DDX3X-mediated NLRP3 activation counteracts this action. Furthermore, the loss of DDX3X expression in myeloid cells caused severe pulmonary pathogenesis and morbidity in IAV-infected mice. Together, our findings show that DDX3X orchestrates alternate modes of innate host defense which are critical to fight against NS1-mediated immune evasion strategies during IAV infection.</description><subject>DDX3X</subject><subject>host defense</subject><subject>immune evasion</subject><subject>inflammasome</subject><subject>influenza A virus</subject><subject>innate immunity</subject><subject>NLRP3</subject><subject>NS1</subject><subject>stress granule</subject><subject>type I IFN</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kUFr3DAQhUVISTZpf0AuQcdevJUsy5YJBEqSpoGlLaWFvQlZGu9qsaWtJC9sfn2VbhraS3QRo3nv0zAPoQtK5pTQ-sNmvun0vCQlzTXhTXuEZpQIVjBOl8doRnKnaEsuTtFZjBuST9XSE3TKWFPXvKYz9Hh7u2RLrL0PxjqVIOK1jwkb6MFFwGqlrMu1df0wgXtUeGfDFHG3x0onu1PJuhVOa8BfFt-_sT86NY4q-jGbncFpvwX8kN8ThB6CdzhA3PrMfove9GqI8O75Pkc_P939uPlcLL7eP9x8XBS64jQVTcOoINAxVbaCiU63PTcMDOkbJUQDYIzpmOk6rqqK1YZT4AIEqLrqDeUtO0fXB-526kYwGlwKapDbYEcV9tIrK__vOLuWK7-Tggja0iYD3j8Dgv81QUxytFHDMCgHfoqy5KQuRdUSmqX0INXBxxigf_mGEvmUmdzInJl8ykweMsuey3_ne3H8DSkLrg4CyFvaWQgyagtOg7EBdJLG21fwvwEdDKqD</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Kesavardhana, Sannula</creator><creator>Samir, Parimal</creator><creator>Zheng, Min</creator><creator>Malireddi, R.K. Subbarao</creator><creator>Karki, Rajendra</creator><creator>Sharma, Bhesh Raj</creator><creator>Place, David E.</creator><creator>Briard, Benoit</creator><creator>Vogel, Peter</creator><creator>Kanneganti, Thirumala-Devi</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20210101</creationdate><title>DDX3X coordinates host defense against influenza virus by activating the NLRP3 inflammasome and type I interferon response</title><author>Kesavardhana, Sannula ; Samir, Parimal ; Zheng, Min ; Malireddi, R.K. Subbarao ; Karki, Rajendra ; Sharma, Bhesh Raj ; Place, David E. ; Briard, Benoit ; Vogel, Peter ; Kanneganti, Thirumala-Devi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-773180eb3a29838bc9f5d3ed0f7a887eedddb3dbb5a4436d51e58e8ea64fd1593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>DDX3X</topic><topic>host defense</topic><topic>immune evasion</topic><topic>inflammasome</topic><topic>influenza A virus</topic><topic>innate immunity</topic><topic>NLRP3</topic><topic>NS1</topic><topic>stress granule</topic><topic>type I IFN</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kesavardhana, Sannula</creatorcontrib><creatorcontrib>Samir, Parimal</creatorcontrib><creatorcontrib>Zheng, Min</creatorcontrib><creatorcontrib>Malireddi, R.K. Subbarao</creatorcontrib><creatorcontrib>Karki, Rajendra</creatorcontrib><creatorcontrib>Sharma, Bhesh Raj</creatorcontrib><creatorcontrib>Place, David E.</creatorcontrib><creatorcontrib>Briard, Benoit</creatorcontrib><creatorcontrib>Vogel, Peter</creatorcontrib><creatorcontrib>Kanneganti, Thirumala-Devi</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kesavardhana, Sannula</au><au>Samir, Parimal</au><au>Zheng, Min</au><au>Malireddi, R.K. Subbarao</au><au>Karki, Rajendra</au><au>Sharma, Bhesh Raj</au><au>Place, David E.</au><au>Briard, Benoit</au><au>Vogel, Peter</au><au>Kanneganti, Thirumala-Devi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DDX3X coordinates host defense against influenza virus by activating the NLRP3 inflammasome and type I interferon response</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>296</volume><spage>100579</spage><epage>100579</epage><pages>100579-100579</pages><artnum>100579</artnum><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Viruses and hosts have coevolved for millions of years, leading to the development of complex host–pathogen interactions. Influenza A virus (IAV) causes severe pulmonary pathology and is a recurrent threat to human health. Innate immune sensing of IAV triggers a complex chain of host responses. IAV has adapted to evade host defense mechanisms, and the host has coevolved to counteract these evasion strategies. However, the molecular mechanisms governing the balance between host defense and viral immune evasion is poorly understood. Here, we show that the host protein DEAD-box helicase 3 X-linked (DDX3X) is critical to orchestrate a multifaceted antiviral innate response during IAV infection, coordinating the activation of the nucleotide-binding oligomerization domain-like receptor with a pyrin domain 3 (NLRP3) inflammasome, assembly of stress granules, and type I interferon (IFN) responses. DDX3X activated the NLRP3 inflammasome in response to WT IAV, which carries the immune evasive nonstructural protein 1 (NS1). However, in the absence of NS1, DDX3X promoted the formation of stress granules that facilitated efficient activation of type I IFN signaling. Moreover, induction of DDX3X-containing stress granules by external stimuli after IAV infection led to increased type I IFN signaling, suggesting that NS1 actively inhibits stress granule–mediated host responses and DDX3X-mediated NLRP3 activation counteracts this action. Furthermore, the loss of DDX3X expression in myeloid cells caused severe pulmonary pathogenesis and morbidity in IAV-infected mice. Together, our findings show that DDX3X orchestrates alternate modes of innate host defense which are critical to fight against NS1-mediated immune evasion strategies during IAV infection.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>33766561</pmid><doi>10.1016/j.jbc.2021.100579</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2021-01, Vol.296, p.100579-100579, Article 100579
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8081917
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects DDX3X
host defense
immune evasion
inflammasome
influenza A virus
innate immunity
NLRP3
NS1
stress granule
type I IFN
title DDX3X coordinates host defense against influenza virus by activating the NLRP3 inflammasome and type I interferon response
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T20%3A30%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DDX3X%20coordinates%20host%20defense%20against%20influenza%20virus%20by%20activating%20the%20NLRP3%20inflammasome%20and%20type%20I%20interferon%20response&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Kesavardhana,%20Sannula&rft.date=2021-01-01&rft.volume=296&rft.spage=100579&rft.epage=100579&rft.pages=100579-100579&rft.artnum=100579&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1016/j.jbc.2021.100579&rft_dat=%3Cproquest_pubme%3E2506284901%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2506284901&rft_id=info:pmid/33766561&rft_els_id=S0021925821003586&rfr_iscdi=true