The simultaneous recognition of multiple words: A process analysis
In everyday life, recognition decisions often have to be made for multiple objects simultaneously. In contrast, research on recognition memory has predominantly relied on single-item recognition paradigms. We present a first systematic investigation into the cognitive processes that differ between s...
Gespeichert in:
Veröffentlicht in: | Memory & cognition 2021-05, Vol.49 (4), p.787-802 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In everyday life, recognition decisions often have to be made for multiple objects simultaneously. In contrast, research on recognition memory has predominantly relied on single-item recognition paradigms. We present a first systematic investigation into the cognitive processes that differ between single-word and paired-word tests of recognition memory. In a single-word test, participants categorize previously presented words and new words as having been studied before (old) or not (new). In a paired-word test, however, the test words are randomly paired, and participants provide joint old–new categorizations of both words for each pair. Across two experiments (
N
= 170), we found better memory performance for words tested singly rather than in pairs and, more importantly, dependencies between the two single-word decisions implied by the paired-word test. We extended two popular model classes of single-item recognition to paired-word recognition, a discrete-state model and a continuous model. Both models attribute performance differences between single-word and paired-word recognition to differences in memory-evidence strength. Discrete-state models account for the dependencies in paired-word decisions in terms of dependencies in guessing. In contrast, continuous models map the dependencies on mnemonic (Experiment
1
&
2
) as well as on decisional processes (Experiment
2
). However, in both experiments, model comparison favored the discrete-state model, indicating that memory decisions for word pairs seem to be mediated by discrete states. Our work suggests that individuals tackle multiple-item recognition fundamentally differently from single-item recognition, and it provides both a behavioral and model-based paradigm for studying multiple-item recognition. |
---|---|
ISSN: | 0090-502X 1532-5946 |
DOI: | 10.3758/s13421-020-01082-w |