Fine mapping of a thrips resistance QTL in Capsicum and the role of diterpene glycosides in the underlying mechanism
Key message A major thrips resistance QTL in Capsicum was fine-mapped to a region of 0.4 Mbp, and a multidisciplinary approach has been used to study putative underlying mechanisms. Resistance to thrips is an important trait for pepper growers. These insects can cause extensive damage to fruits, flo...
Gespeichert in:
Veröffentlicht in: | Theoretical and applied genetics 2021-05, Vol.134 (5), p.1557-1573 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1573 |
---|---|
container_issue | 5 |
container_start_page | 1557 |
container_title | Theoretical and applied genetics |
container_volume | 134 |
creator | van Haperen, Pauline Voorrips, Roeland E. van Kaauwen, Martijn van Eekelen, Henriëtte D. L. M. de Vos, Ric C. H. van Loon, Joop J. A. Vosman, Ben |
description | Key message
A major thrips resistance QTL in
Capsicum
was fine-mapped to a region of 0.4 Mbp, and a multidisciplinary approach has been used to study putative underlying mechanisms.
Resistance to thrips is an important trait for pepper growers. These insects can cause extensive damage to fruits, flowers and leaves on field and greenhouse grown plants worldwide. Two independent studies in
Capsicum
identified diterpene glycosides as metabolites that are correlated with thrips resistance. In this study, we fine-mapped a previously defined thrips resistance QTL on chromosome 6, to a region of 0.4 Mbp harbouring 15 genes. Two of these 15 candidate genes showed differences in gene expression upon thrips induction, when comparing plants carrying the resistance allele in homozygous state to plants with the susceptibility allele in homozygous state for the QTL region. Three genes, including the two genes that showed difference in gene expression, contained a SNP that was predicted to lead to changes in protein structure. Therefore, these three genes, i.e. an acid phosphatase 1 (APS1), an organic cation/carnitine transporter 7 (OCT7) and an uncharacterized locus LOC107874801, are the most likely candidates for playing a role in thrips resistance and are a first step in elucidating the genetic basis of thrips resistance in
Capsicum
. In addition, we show that the diterpene glycoside profiles did not differ between plants with the resistance and susceptibility allele for the chromosome 6 QTL, suggesting that these compounds do not play a role in the resistance conferred by the genes located in the major thrips resistance QTL studied. |
doi_str_mv | 10.1007/s00122-021-03790-6 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8081677</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A660083156</galeid><sourcerecordid>A660083156</sourcerecordid><originalsourceid>FETCH-LOGICAL-c575t-5411270c9ae582e90ce811d29154d7e0bd4d9ba0838823bb693fa670348489f33</originalsourceid><addsrcrecordid>eNp9kk9v1DAQxSMEokvhC3BAkbjQQ8r4XxJfkKoVhUorIaCcLa8zybpK7GAniP32ddjSsgghHyx5fu-NZ_Sy7CWBcwJQvY0AhNICKCmAVRKK8lG2IpzRglJOH2crAA6FqAQ9yZ7FeAMAVAB7mp0wVoIknKyy6dI6zAc9jtZ1uW9znU-7YMeYB4w2TtoZzD9fb3Lr8rUeozXzkGvXJArz4HtcNI2dMIyYjLp-b3y0DcZFsDCzazD0-8V9QLPTzsbhefak1X3EF3f3afbt8v31-mOx-fThan2xKUz69FQITgitwEiNoqYowWBNSEMlEbypELYNb-RWQ83qmrLttpSs1WUFjNe8li1jp9m7g-84bwdsDLop6F6NwQ467JXXVh1XnN2pzv9QNdSkrKpk8ObOIPjvM8ZJDTYa7Hvt0M9RUS6JFIQLmdDXf6E3fg4ujaeoIGnZnNTVA9XpHpV1rU99zWKqLsoS0ihElIk6_weVToODNd5ha9P7keDsSJCYCX9OnZ5jVFdfvxyz9MCa4GMM2N7vg4BacqUOuVIpV-pXrtQievXnJu8lv4OUAHYAYiq5DsPD-P-xvQW8kNYS</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2519144187</pqid></control><display><type>article</type><title>Fine mapping of a thrips resistance QTL in Capsicum and the role of diterpene glycosides in the underlying mechanism</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>van Haperen, Pauline ; Voorrips, Roeland E. ; van Kaauwen, Martijn ; van Eekelen, Henriëtte D. L. M. ; de Vos, Ric C. H. ; van Loon, Joop J. A. ; Vosman, Ben</creator><creatorcontrib>van Haperen, Pauline ; Voorrips, Roeland E. ; van Kaauwen, Martijn ; van Eekelen, Henriëtte D. L. M. ; de Vos, Ric C. H. ; van Loon, Joop J. A. ; Vosman, Ben</creatorcontrib><description>Key message
A major thrips resistance QTL in
Capsicum
was fine-mapped to a region of 0.4 Mbp, and a multidisciplinary approach has been used to study putative underlying mechanisms.
Resistance to thrips is an important trait for pepper growers. These insects can cause extensive damage to fruits, flowers and leaves on field and greenhouse grown plants worldwide. Two independent studies in
Capsicum
identified diterpene glycosides as metabolites that are correlated with thrips resistance. In this study, we fine-mapped a previously defined thrips resistance QTL on chromosome 6, to a region of 0.4 Mbp harbouring 15 genes. Two of these 15 candidate genes showed differences in gene expression upon thrips induction, when comparing plants carrying the resistance allele in homozygous state to plants with the susceptibility allele in homozygous state for the QTL region. Three genes, including the two genes that showed difference in gene expression, contained a SNP that was predicted to lead to changes in protein structure. Therefore, these three genes, i.e. an acid phosphatase 1 (APS1), an organic cation/carnitine transporter 7 (OCT7) and an uncharacterized locus LOC107874801, are the most likely candidates for playing a role in thrips resistance and are a first step in elucidating the genetic basis of thrips resistance in
Capsicum
. In addition, we show that the diterpene glycoside profiles did not differ between plants with the resistance and susceptibility allele for the chromosome 6 QTL, suggesting that these compounds do not play a role in the resistance conferred by the genes located in the major thrips resistance QTL studied.</description><identifier>ISSN: 0040-5752</identifier><identifier>EISSN: 1432-2242</identifier><identifier>DOI: 10.1007/s00122-021-03790-6</identifier><identifier>PMID: 33609141</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Acid phosphatase ; Agriculture ; Alleles ; Animals ; Biochemistry ; Biomedical and Life Sciences ; Biotechnology ; Capsicum ; Capsicum - genetics ; Capsicum - growth & development ; Capsicum - metabolism ; Capsicum - parasitology ; Carnitine ; Cation/carnitine transporter ; Chromosome 6 ; Chromosome Mapping - methods ; Chromosomes, Plant - genetics ; Disease Resistance - genetics ; Disease Resistance - immunology ; Diterpenes ; Flowers ; Gene expression ; Gene Expression Regulation, Plant ; Gene mapping ; Genes ; Genome, Plant ; Genome-Wide Association Study ; Glycosides ; Glycosides - metabolism ; Host-Parasite Interactions ; Life Sciences ; Metabolites ; Original ; Original Article ; Pest resistance ; Phenotype ; Plant Biochemistry ; Plant Breeding ; Plant Breeding/Biotechnology ; Plant Diseases - genetics ; Plant Diseases - parasitology ; Plant Genetics and Genomics ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Protein structure ; Quantitative genetics ; Quantitative Trait Loci ; Single nucleotide polymorphisms ; Single-nucleotide polymorphism ; Thrips ; Thysanoptera - physiology</subject><ispartof>Theoretical and applied genetics, 2021-05, Vol.134 (5), p.1557-1573</ispartof><rights>The Author(s) 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c575t-5411270c9ae582e90ce811d29154d7e0bd4d9ba0838823bb693fa670348489f33</citedby><cites>FETCH-LOGICAL-c575t-5411270c9ae582e90ce811d29154d7e0bd4d9ba0838823bb693fa670348489f33</cites><orcidid>0000-0003-4942-8342</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00122-021-03790-6$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00122-021-03790-6$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33609141$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>van Haperen, Pauline</creatorcontrib><creatorcontrib>Voorrips, Roeland E.</creatorcontrib><creatorcontrib>van Kaauwen, Martijn</creatorcontrib><creatorcontrib>van Eekelen, Henriëtte D. L. M.</creatorcontrib><creatorcontrib>de Vos, Ric C. H.</creatorcontrib><creatorcontrib>van Loon, Joop J. A.</creatorcontrib><creatorcontrib>Vosman, Ben</creatorcontrib><title>Fine mapping of a thrips resistance QTL in Capsicum and the role of diterpene glycosides in the underlying mechanism</title><title>Theoretical and applied genetics</title><addtitle>Theor Appl Genet</addtitle><addtitle>Theor Appl Genet</addtitle><description>Key message
A major thrips resistance QTL in
Capsicum
was fine-mapped to a region of 0.4 Mbp, and a multidisciplinary approach has been used to study putative underlying mechanisms.
Resistance to thrips is an important trait for pepper growers. These insects can cause extensive damage to fruits, flowers and leaves on field and greenhouse grown plants worldwide. Two independent studies in
Capsicum
identified diterpene glycosides as metabolites that are correlated with thrips resistance. In this study, we fine-mapped a previously defined thrips resistance QTL on chromosome 6, to a region of 0.4 Mbp harbouring 15 genes. Two of these 15 candidate genes showed differences in gene expression upon thrips induction, when comparing plants carrying the resistance allele in homozygous state to plants with the susceptibility allele in homozygous state for the QTL region. Three genes, including the two genes that showed difference in gene expression, contained a SNP that was predicted to lead to changes in protein structure. Therefore, these three genes, i.e. an acid phosphatase 1 (APS1), an organic cation/carnitine transporter 7 (OCT7) and an uncharacterized locus LOC107874801, are the most likely candidates for playing a role in thrips resistance and are a first step in elucidating the genetic basis of thrips resistance in
Capsicum
. In addition, we show that the diterpene glycoside profiles did not differ between plants with the resistance and susceptibility allele for the chromosome 6 QTL, suggesting that these compounds do not play a role in the resistance conferred by the genes located in the major thrips resistance QTL studied.</description><subject>Acid phosphatase</subject><subject>Agriculture</subject><subject>Alleles</subject><subject>Animals</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Capsicum</subject><subject>Capsicum - genetics</subject><subject>Capsicum - growth & development</subject><subject>Capsicum - metabolism</subject><subject>Capsicum - parasitology</subject><subject>Carnitine</subject><subject>Cation/carnitine transporter</subject><subject>Chromosome 6</subject><subject>Chromosome Mapping - methods</subject><subject>Chromosomes, Plant - genetics</subject><subject>Disease Resistance - genetics</subject><subject>Disease Resistance - immunology</subject><subject>Diterpenes</subject><subject>Flowers</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Plant</subject><subject>Gene mapping</subject><subject>Genes</subject><subject>Genome, Plant</subject><subject>Genome-Wide Association Study</subject><subject>Glycosides</subject><subject>Glycosides - metabolism</subject><subject>Host-Parasite Interactions</subject><subject>Life Sciences</subject><subject>Metabolites</subject><subject>Original</subject><subject>Original Article</subject><subject>Pest resistance</subject><subject>Phenotype</subject><subject>Plant Biochemistry</subject><subject>Plant Breeding</subject><subject>Plant Breeding/Biotechnology</subject><subject>Plant Diseases - genetics</subject><subject>Plant Diseases - parasitology</subject><subject>Plant Genetics and Genomics</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Protein structure</subject><subject>Quantitative genetics</subject><subject>Quantitative Trait Loci</subject><subject>Single nucleotide polymorphisms</subject><subject>Single-nucleotide polymorphism</subject><subject>Thrips</subject><subject>Thysanoptera - physiology</subject><issn>0040-5752</issn><issn>1432-2242</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kk9v1DAQxSMEokvhC3BAkbjQQ8r4XxJfkKoVhUorIaCcLa8zybpK7GAniP32ddjSsgghHyx5fu-NZ_Sy7CWBcwJQvY0AhNICKCmAVRKK8lG2IpzRglJOH2crAA6FqAQ9yZ7FeAMAVAB7mp0wVoIknKyy6dI6zAc9jtZ1uW9znU-7YMeYB4w2TtoZzD9fb3Lr8rUeozXzkGvXJArz4HtcNI2dMIyYjLp-b3y0DcZFsDCzazD0-8V9QLPTzsbhefak1X3EF3f3afbt8v31-mOx-fThan2xKUz69FQITgitwEiNoqYowWBNSEMlEbypELYNb-RWQ83qmrLttpSs1WUFjNe8li1jp9m7g-84bwdsDLop6F6NwQ467JXXVh1XnN2pzv9QNdSkrKpk8ObOIPjvM8ZJDTYa7Hvt0M9RUS6JFIQLmdDXf6E3fg4ujaeoIGnZnNTVA9XpHpV1rU99zWKqLsoS0ihElIk6_weVToODNd5ha9P7keDsSJCYCX9OnZ5jVFdfvxyz9MCa4GMM2N7vg4BacqUOuVIpV-pXrtQievXnJu8lv4OUAHYAYiq5DsPD-P-xvQW8kNYS</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>van Haperen, Pauline</creator><creator>Voorrips, Roeland E.</creator><creator>van Kaauwen, Martijn</creator><creator>van Eekelen, Henriëtte D. L. M.</creator><creator>de Vos, Ric C. H.</creator><creator>van Loon, Joop J. A.</creator><creator>Vosman, Ben</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7SS</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4942-8342</orcidid></search><sort><creationdate>20210501</creationdate><title>Fine mapping of a thrips resistance QTL in Capsicum and the role of diterpene glycosides in the underlying mechanism</title><author>van Haperen, Pauline ; Voorrips, Roeland E. ; van Kaauwen, Martijn ; van Eekelen, Henriëtte D. L. M. ; de Vos, Ric C. H. ; van Loon, Joop J. A. ; Vosman, Ben</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c575t-5411270c9ae582e90ce811d29154d7e0bd4d9ba0838823bb693fa670348489f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acid phosphatase</topic><topic>Agriculture</topic><topic>Alleles</topic><topic>Animals</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Capsicum</topic><topic>Capsicum - genetics</topic><topic>Capsicum - growth & development</topic><topic>Capsicum - metabolism</topic><topic>Capsicum - parasitology</topic><topic>Carnitine</topic><topic>Cation/carnitine transporter</topic><topic>Chromosome 6</topic><topic>Chromosome Mapping - methods</topic><topic>Chromosomes, Plant - genetics</topic><topic>Disease Resistance - genetics</topic><topic>Disease Resistance - immunology</topic><topic>Diterpenes</topic><topic>Flowers</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Plant</topic><topic>Gene mapping</topic><topic>Genes</topic><topic>Genome, Plant</topic><topic>Genome-Wide Association Study</topic><topic>Glycosides</topic><topic>Glycosides - metabolism</topic><topic>Host-Parasite Interactions</topic><topic>Life Sciences</topic><topic>Metabolites</topic><topic>Original</topic><topic>Original Article</topic><topic>Pest resistance</topic><topic>Phenotype</topic><topic>Plant Biochemistry</topic><topic>Plant Breeding</topic><topic>Plant Breeding/Biotechnology</topic><topic>Plant Diseases - genetics</topic><topic>Plant Diseases - parasitology</topic><topic>Plant Genetics and Genomics</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Protein structure</topic><topic>Quantitative genetics</topic><topic>Quantitative Trait Loci</topic><topic>Single nucleotide polymorphisms</topic><topic>Single-nucleotide polymorphism</topic><topic>Thrips</topic><topic>Thysanoptera - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van Haperen, Pauline</creatorcontrib><creatorcontrib>Voorrips, Roeland E.</creatorcontrib><creatorcontrib>van Kaauwen, Martijn</creatorcontrib><creatorcontrib>van Eekelen, Henriëtte D. L. M.</creatorcontrib><creatorcontrib>de Vos, Ric C. H.</creatorcontrib><creatorcontrib>van Loon, Joop J. A.</creatorcontrib><creatorcontrib>Vosman, Ben</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Theoretical and applied genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van Haperen, Pauline</au><au>Voorrips, Roeland E.</au><au>van Kaauwen, Martijn</au><au>van Eekelen, Henriëtte D. L. M.</au><au>de Vos, Ric C. H.</au><au>van Loon, Joop J. A.</au><au>Vosman, Ben</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fine mapping of a thrips resistance QTL in Capsicum and the role of diterpene glycosides in the underlying mechanism</atitle><jtitle>Theoretical and applied genetics</jtitle><stitle>Theor Appl Genet</stitle><addtitle>Theor Appl Genet</addtitle><date>2021-05-01</date><risdate>2021</risdate><volume>134</volume><issue>5</issue><spage>1557</spage><epage>1573</epage><pages>1557-1573</pages><issn>0040-5752</issn><eissn>1432-2242</eissn><abstract>Key message
A major thrips resistance QTL in
Capsicum
was fine-mapped to a region of 0.4 Mbp, and a multidisciplinary approach has been used to study putative underlying mechanisms.
Resistance to thrips is an important trait for pepper growers. These insects can cause extensive damage to fruits, flowers and leaves on field and greenhouse grown plants worldwide. Two independent studies in
Capsicum
identified diterpene glycosides as metabolites that are correlated with thrips resistance. In this study, we fine-mapped a previously defined thrips resistance QTL on chromosome 6, to a region of 0.4 Mbp harbouring 15 genes. Two of these 15 candidate genes showed differences in gene expression upon thrips induction, when comparing plants carrying the resistance allele in homozygous state to plants with the susceptibility allele in homozygous state for the QTL region. Three genes, including the two genes that showed difference in gene expression, contained a SNP that was predicted to lead to changes in protein structure. Therefore, these three genes, i.e. an acid phosphatase 1 (APS1), an organic cation/carnitine transporter 7 (OCT7) and an uncharacterized locus LOC107874801, are the most likely candidates for playing a role in thrips resistance and are a first step in elucidating the genetic basis of thrips resistance in
Capsicum
. In addition, we show that the diterpene glycoside profiles did not differ between plants with the resistance and susceptibility allele for the chromosome 6 QTL, suggesting that these compounds do not play a role in the resistance conferred by the genes located in the major thrips resistance QTL studied.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>33609141</pmid><doi>10.1007/s00122-021-03790-6</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-4942-8342</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0040-5752 |
ispartof | Theoretical and applied genetics, 2021-05, Vol.134 (5), p.1557-1573 |
issn | 0040-5752 1432-2242 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8081677 |
source | MEDLINE; SpringerLink Journals |
subjects | Acid phosphatase Agriculture Alleles Animals Biochemistry Biomedical and Life Sciences Biotechnology Capsicum Capsicum - genetics Capsicum - growth & development Capsicum - metabolism Capsicum - parasitology Carnitine Cation/carnitine transporter Chromosome 6 Chromosome Mapping - methods Chromosomes, Plant - genetics Disease Resistance - genetics Disease Resistance - immunology Diterpenes Flowers Gene expression Gene Expression Regulation, Plant Gene mapping Genes Genome, Plant Genome-Wide Association Study Glycosides Glycosides - metabolism Host-Parasite Interactions Life Sciences Metabolites Original Original Article Pest resistance Phenotype Plant Biochemistry Plant Breeding Plant Breeding/Biotechnology Plant Diseases - genetics Plant Diseases - parasitology Plant Genetics and Genomics Plant Proteins - genetics Plant Proteins - metabolism Protein structure Quantitative genetics Quantitative Trait Loci Single nucleotide polymorphisms Single-nucleotide polymorphism Thrips Thysanoptera - physiology |
title | Fine mapping of a thrips resistance QTL in Capsicum and the role of diterpene glycosides in the underlying mechanism |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T18%3A50%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fine%20mapping%20of%20a%20thrips%20resistance%20QTL%20in%20Capsicum%20and%20the%20role%20of%20diterpene%20glycosides%20in%20the%20underlying%20mechanism&rft.jtitle=Theoretical%20and%20applied%20genetics&rft.au=van%20Haperen,%20Pauline&rft.date=2021-05-01&rft.volume=134&rft.issue=5&rft.spage=1557&rft.epage=1573&rft.pages=1557-1573&rft.issn=0040-5752&rft.eissn=1432-2242&rft_id=info:doi/10.1007/s00122-021-03790-6&rft_dat=%3Cgale_pubme%3EA660083156%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2519144187&rft_id=info:pmid/33609141&rft_galeid=A660083156&rfr_iscdi=true |