A biosensor for the direct visualization of auxin
One of the most important regulatory small molecules in plants is indole-3-acetic acid, also known as auxin. Its dynamic redistribution has an essential role in almost every aspect of plant life, ranging from cell shape and division to organogenesis and responses to light and gravity 1 , 2 . So far,...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2021-04, Vol.592 (7856), p.768-772 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 772 |
---|---|
container_issue | 7856 |
container_start_page | 768 |
container_title | Nature (London) |
container_volume | 592 |
creator | Herud-Sikimić, Ole Stiel, Andre C. Kolb, Martina Shanmugaratnam, Sooruban Berendzen, Kenneth W. Feldhaus, Christian Höcker, Birte Jürgens, Gerd |
description | One of the most important regulatory small molecules in plants is indole-3-acetic acid, also known as auxin. Its dynamic redistribution has an essential role in almost every aspect of plant life, ranging from cell shape and division to organogenesis and responses to light and gravity
1
,
2
. So far, it has not been possible to directly determine the spatial and temporal distribution of auxin at a cellular resolution. Instead it is inferred from the visualization of irreversible processes that involve the endogenous auxin-response machinery
3
–
7
; however, such a system cannot detect transient changes. Here we report a genetically encoded biosensor for the quantitative in vivo visualization of auxin distribution. The sensor is based on the
Escherichia coli
tryptophan repressor
8
, the binding pocket of which is engineered to be specific to auxin. Coupling of the auxin-binding moiety with selected fluorescent proteins enables the use of a fluorescence resonance energy transfer signal as a readout. Unlike previous systems, this sensor enables direct monitoring of the rapid uptake and clearance of auxin by individual cells and within cell compartments in planta. By responding to the graded spatial distribution along the root axis and its perturbation by transport inhibitors—as well as the rapid and reversible redistribution of endogenous auxin in response to changes in gravity vectors—our sensor enables real-time monitoring of auxin concentrations at a (sub)cellular resolution and their spatial and temporal changes during the lifespan of a plant.
A genetically encoded sensor for the quantitative visualization of auxin distribution in plants enables real-time monitoring of its uptake and clearance by individual cells and within cellular compartments. |
doi_str_mv | 10.1038/s41586-021-03425-2 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8081663</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A659998477</galeid><sourcerecordid>A659998477</sourcerecordid><originalsourceid>FETCH-LOGICAL-c779t-398d216f4abd01d3b242fc3aaba197b8a5039d8b7d7a130eee1424e58c1a19213</originalsourceid><addsrcrecordid>eNp9kl1LHDEUhoNYdGv7B7yQoV6VEpuvmWRuhGXphyAttJZehkzmzBjZTdZkRrS_vmnXqgNbCSGQ85z3HM55ETqk5IQSrt4nQUtVYcIoJlywErMdNKNCVlhUSu6iGSFMYaJ4tY9epnRFCCmpFHton3PFFKvVDNF50biQwKcQiy7f4RKK1kWwQ3Hj0miW7pcZXPBF6Aoz3jr_Cr3ozDLB6_v3AP34-OFi8Rmff_10tpifYytlPWBeq5bRqhOmaQltecME6yw3pjG0lo0yJeF1qxrZSkM5AQAqmIBSWZoBRvkBOt3orsdmBa0FP0Sz1OvoVibe6WCcnka8u9R9uNGKKFpVPAsc3wvEcD1CGvRVGKPPPWtW5tYkz2N6pHqzBO18F7KYXblk9bwq67pWQspM4S1UDx5y5eChc_l7wr_Zwtu1u9ZPoZMtUD4trJzdqvp2kpCZAW6H3owp6bPv36bsu_-z84ufiy9Tmm1oG0NKEbqHOVOi_5hNb8yms9n0X7NplpOOnm7oIeWfuzLAN0DKId9DfNzAM7K_AWc22uU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2521673468</pqid></control><display><type>article</type><title>A biosensor for the direct visualization of auxin</title><source>MEDLINE</source><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Herud-Sikimić, Ole ; Stiel, Andre C. ; Kolb, Martina ; Shanmugaratnam, Sooruban ; Berendzen, Kenneth W. ; Feldhaus, Christian ; Höcker, Birte ; Jürgens, Gerd</creator><creatorcontrib>Herud-Sikimić, Ole ; Stiel, Andre C. ; Kolb, Martina ; Shanmugaratnam, Sooruban ; Berendzen, Kenneth W. ; Feldhaus, Christian ; Höcker, Birte ; Jürgens, Gerd</creatorcontrib><description>One of the most important regulatory small molecules in plants is indole-3-acetic acid, also known as auxin. Its dynamic redistribution has an essential role in almost every aspect of plant life, ranging from cell shape and division to organogenesis and responses to light and gravity
1
,
2
. So far, it has not been possible to directly determine the spatial and temporal distribution of auxin at a cellular resolution. Instead it is inferred from the visualization of irreversible processes that involve the endogenous auxin-response machinery
3
–
7
; however, such a system cannot detect transient changes. Here we report a genetically encoded biosensor for the quantitative in vivo visualization of auxin distribution. The sensor is based on the
Escherichia coli
tryptophan repressor
8
, the binding pocket of which is engineered to be specific to auxin. Coupling of the auxin-binding moiety with selected fluorescent proteins enables the use of a fluorescence resonance energy transfer signal as a readout. Unlike previous systems, this sensor enables direct monitoring of the rapid uptake and clearance of auxin by individual cells and within cell compartments in planta. By responding to the graded spatial distribution along the root axis and its perturbation by transport inhibitors—as well as the rapid and reversible redistribution of endogenous auxin in response to changes in gravity vectors—our sensor enables real-time monitoring of auxin concentrations at a (sub)cellular resolution and their spatial and temporal changes during the lifespan of a plant.
A genetically encoded sensor for the quantitative visualization of auxin distribution in plants enables real-time monitoring of its uptake and clearance by individual cells and within cellular compartments.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-021-03425-2</identifier><identifier>PMID: 33828298</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>14 ; 14/10 ; 14/19 ; 14/33 ; 14/35 ; 14/63 ; 42 ; 42/35 ; 631/1647/245/2226 ; 631/449/1736 ; 631/449/1741/1576 ; 631/80/2373 ; 64 ; 82 ; 82/80 ; 82/83 ; Acetic acid ; Arabidopsis ; Auxin ; Binding ; Binding Sites ; Biological Transport ; Biosensing Techniques ; Biosensors ; Cell size ; Coupling (molecular) ; E coli ; Energy transfer ; Escherichia coli Proteins ; Fluorescence ; Fluorescence Resonance Energy Transfer ; Gene expression ; Genetic aspects ; Genetic code ; Gravitation ; Humanities and Social Sciences ; Indoleacetic acid ; Indoleacetic Acids - analysis ; Irreversible processes ; Life span ; Light effects ; Monitoring ; multidisciplinary ; Mutagenesis ; Mutation ; Organogenesis ; Perturbation ; Plant Roots - metabolism ; Plants, Genetically Modified ; Protein Engineering ; Protein Structure, Secondary ; Proteins ; Repressor Proteins ; Science ; Science (multidisciplinary) ; Sensors ; Signal Transduction ; Spatial distribution ; Temporal distribution ; Tryptophan ; Visualization</subject><ispartof>Nature (London), 2021-04, Vol.592 (7856), p.768-772</ispartof><rights>The Author(s) 2021</rights><rights>COPYRIGHT 2021 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Apr 29, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c779t-398d216f4abd01d3b242fc3aaba197b8a5039d8b7d7a130eee1424e58c1a19213</citedby><cites>FETCH-LOGICAL-c779t-398d216f4abd01d3b242fc3aaba197b8a5039d8b7d7a130eee1424e58c1a19213</cites><orcidid>0000-0003-4666-8308 ; 0000-0002-8250-9462 ; 0000-0001-9870-6164 ; 0000-0003-3791-9064 ; 0000-0001-8675-6797 ; 0000-0002-2614-6046</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-021-03425-2$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-021-03425-2$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33828298$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Herud-Sikimić, Ole</creatorcontrib><creatorcontrib>Stiel, Andre C.</creatorcontrib><creatorcontrib>Kolb, Martina</creatorcontrib><creatorcontrib>Shanmugaratnam, Sooruban</creatorcontrib><creatorcontrib>Berendzen, Kenneth W.</creatorcontrib><creatorcontrib>Feldhaus, Christian</creatorcontrib><creatorcontrib>Höcker, Birte</creatorcontrib><creatorcontrib>Jürgens, Gerd</creatorcontrib><title>A biosensor for the direct visualization of auxin</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>One of the most important regulatory small molecules in plants is indole-3-acetic acid, also known as auxin. Its dynamic redistribution has an essential role in almost every aspect of plant life, ranging from cell shape and division to organogenesis and responses to light and gravity
1
,
2
. So far, it has not been possible to directly determine the spatial and temporal distribution of auxin at a cellular resolution. Instead it is inferred from the visualization of irreversible processes that involve the endogenous auxin-response machinery
3
–
7
; however, such a system cannot detect transient changes. Here we report a genetically encoded biosensor for the quantitative in vivo visualization of auxin distribution. The sensor is based on the
Escherichia coli
tryptophan repressor
8
, the binding pocket of which is engineered to be specific to auxin. Coupling of the auxin-binding moiety with selected fluorescent proteins enables the use of a fluorescence resonance energy transfer signal as a readout. Unlike previous systems, this sensor enables direct monitoring of the rapid uptake and clearance of auxin by individual cells and within cell compartments in planta. By responding to the graded spatial distribution along the root axis and its perturbation by transport inhibitors—as well as the rapid and reversible redistribution of endogenous auxin in response to changes in gravity vectors—our sensor enables real-time monitoring of auxin concentrations at a (sub)cellular resolution and their spatial and temporal changes during the lifespan of a plant.
A genetically encoded sensor for the quantitative visualization of auxin distribution in plants enables real-time monitoring of its uptake and clearance by individual cells and within cellular compartments.</description><subject>14</subject><subject>14/10</subject><subject>14/19</subject><subject>14/33</subject><subject>14/35</subject><subject>14/63</subject><subject>42</subject><subject>42/35</subject><subject>631/1647/245/2226</subject><subject>631/449/1736</subject><subject>631/449/1741/1576</subject><subject>631/80/2373</subject><subject>64</subject><subject>82</subject><subject>82/80</subject><subject>82/83</subject><subject>Acetic acid</subject><subject>Arabidopsis</subject><subject>Auxin</subject><subject>Binding</subject><subject>Binding Sites</subject><subject>Biological Transport</subject><subject>Biosensing Techniques</subject><subject>Biosensors</subject><subject>Cell size</subject><subject>Coupling (molecular)</subject><subject>E coli</subject><subject>Energy transfer</subject><subject>Escherichia coli Proteins</subject><subject>Fluorescence</subject><subject>Fluorescence Resonance Energy Transfer</subject><subject>Gene expression</subject><subject>Genetic aspects</subject><subject>Genetic code</subject><subject>Gravitation</subject><subject>Humanities and Social Sciences</subject><subject>Indoleacetic acid</subject><subject>Indoleacetic Acids - analysis</subject><subject>Irreversible processes</subject><subject>Life span</subject><subject>Light effects</subject><subject>Monitoring</subject><subject>multidisciplinary</subject><subject>Mutagenesis</subject><subject>Mutation</subject><subject>Organogenesis</subject><subject>Perturbation</subject><subject>Plant Roots - metabolism</subject><subject>Plants, Genetically Modified</subject><subject>Protein Engineering</subject><subject>Protein Structure, Secondary</subject><subject>Proteins</subject><subject>Repressor Proteins</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sensors</subject><subject>Signal Transduction</subject><subject>Spatial distribution</subject><subject>Temporal distribution</subject><subject>Tryptophan</subject><subject>Visualization</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kl1LHDEUhoNYdGv7B7yQoV6VEpuvmWRuhGXphyAttJZehkzmzBjZTdZkRrS_vmnXqgNbCSGQ85z3HM55ETqk5IQSrt4nQUtVYcIoJlywErMdNKNCVlhUSu6iGSFMYaJ4tY9epnRFCCmpFHton3PFFKvVDNF50biQwKcQiy7f4RKK1kWwQ3Hj0miW7pcZXPBF6Aoz3jr_Cr3ozDLB6_v3AP34-OFi8Rmff_10tpifYytlPWBeq5bRqhOmaQltecME6yw3pjG0lo0yJeF1qxrZSkM5AQAqmIBSWZoBRvkBOt3orsdmBa0FP0Sz1OvoVibe6WCcnka8u9R9uNGKKFpVPAsc3wvEcD1CGvRVGKPPPWtW5tYkz2N6pHqzBO18F7KYXblk9bwq67pWQspM4S1UDx5y5eChc_l7wr_Zwtu1u9ZPoZMtUD4trJzdqvp2kpCZAW6H3owp6bPv36bsu_-z84ufiy9Tmm1oG0NKEbqHOVOi_5hNb8yms9n0X7NplpOOnm7oIeWfuzLAN0DKId9DfNzAM7K_AWc22uU</recordid><startdate>20210429</startdate><enddate>20210429</enddate><creator>Herud-Sikimić, Ole</creator><creator>Stiel, Andre C.</creator><creator>Kolb, Martina</creator><creator>Shanmugaratnam, Sooruban</creator><creator>Berendzen, Kenneth W.</creator><creator>Feldhaus, Christian</creator><creator>Höcker, Birte</creator><creator>Jürgens, Gerd</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4666-8308</orcidid><orcidid>https://orcid.org/0000-0002-8250-9462</orcidid><orcidid>https://orcid.org/0000-0001-9870-6164</orcidid><orcidid>https://orcid.org/0000-0003-3791-9064</orcidid><orcidid>https://orcid.org/0000-0001-8675-6797</orcidid><orcidid>https://orcid.org/0000-0002-2614-6046</orcidid></search><sort><creationdate>20210429</creationdate><title>A biosensor for the direct visualization of auxin</title><author>Herud-Sikimić, Ole ; Stiel, Andre C. ; Kolb, Martina ; Shanmugaratnam, Sooruban ; Berendzen, Kenneth W. ; Feldhaus, Christian ; Höcker, Birte ; Jürgens, Gerd</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c779t-398d216f4abd01d3b242fc3aaba197b8a5039d8b7d7a130eee1424e58c1a19213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>14</topic><topic>14/10</topic><topic>14/19</topic><topic>14/33</topic><topic>14/35</topic><topic>14/63</topic><topic>42</topic><topic>42/35</topic><topic>631/1647/245/2226</topic><topic>631/449/1736</topic><topic>631/449/1741/1576</topic><topic>631/80/2373</topic><topic>64</topic><topic>82</topic><topic>82/80</topic><topic>82/83</topic><topic>Acetic acid</topic><topic>Arabidopsis</topic><topic>Auxin</topic><topic>Binding</topic><topic>Binding Sites</topic><topic>Biological Transport</topic><topic>Biosensing Techniques</topic><topic>Biosensors</topic><topic>Cell size</topic><topic>Coupling (molecular)</topic><topic>E coli</topic><topic>Energy transfer</topic><topic>Escherichia coli Proteins</topic><topic>Fluorescence</topic><topic>Fluorescence Resonance Energy Transfer</topic><topic>Gene expression</topic><topic>Genetic aspects</topic><topic>Genetic code</topic><topic>Gravitation</topic><topic>Humanities and Social Sciences</topic><topic>Indoleacetic acid</topic><topic>Indoleacetic Acids - analysis</topic><topic>Irreversible processes</topic><topic>Life span</topic><topic>Light effects</topic><topic>Monitoring</topic><topic>multidisciplinary</topic><topic>Mutagenesis</topic><topic>Mutation</topic><topic>Organogenesis</topic><topic>Perturbation</topic><topic>Plant Roots - metabolism</topic><topic>Plants, Genetically Modified</topic><topic>Protein Engineering</topic><topic>Protein Structure, Secondary</topic><topic>Proteins</topic><topic>Repressor Proteins</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sensors</topic><topic>Signal Transduction</topic><topic>Spatial distribution</topic><topic>Temporal distribution</topic><topic>Tryptophan</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Herud-Sikimić, Ole</creatorcontrib><creatorcontrib>Stiel, Andre C.</creatorcontrib><creatorcontrib>Kolb, Martina</creatorcontrib><creatorcontrib>Shanmugaratnam, Sooruban</creatorcontrib><creatorcontrib>Berendzen, Kenneth W.</creatorcontrib><creatorcontrib>Feldhaus, Christian</creatorcontrib><creatorcontrib>Höcker, Birte</creatorcontrib><creatorcontrib>Jürgens, Gerd</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Herud-Sikimić, Ole</au><au>Stiel, Andre C.</au><au>Kolb, Martina</au><au>Shanmugaratnam, Sooruban</au><au>Berendzen, Kenneth W.</au><au>Feldhaus, Christian</au><au>Höcker, Birte</au><au>Jürgens, Gerd</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A biosensor for the direct visualization of auxin</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2021-04-29</date><risdate>2021</risdate><volume>592</volume><issue>7856</issue><spage>768</spage><epage>772</epage><pages>768-772</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>One of the most important regulatory small molecules in plants is indole-3-acetic acid, also known as auxin. Its dynamic redistribution has an essential role in almost every aspect of plant life, ranging from cell shape and division to organogenesis and responses to light and gravity
1
,
2
. So far, it has not been possible to directly determine the spatial and temporal distribution of auxin at a cellular resolution. Instead it is inferred from the visualization of irreversible processes that involve the endogenous auxin-response machinery
3
–
7
; however, such a system cannot detect transient changes. Here we report a genetically encoded biosensor for the quantitative in vivo visualization of auxin distribution. The sensor is based on the
Escherichia coli
tryptophan repressor
8
, the binding pocket of which is engineered to be specific to auxin. Coupling of the auxin-binding moiety with selected fluorescent proteins enables the use of a fluorescence resonance energy transfer signal as a readout. Unlike previous systems, this sensor enables direct monitoring of the rapid uptake and clearance of auxin by individual cells and within cell compartments in planta. By responding to the graded spatial distribution along the root axis and its perturbation by transport inhibitors—as well as the rapid and reversible redistribution of endogenous auxin in response to changes in gravity vectors—our sensor enables real-time monitoring of auxin concentrations at a (sub)cellular resolution and their spatial and temporal changes during the lifespan of a plant.
A genetically encoded sensor for the quantitative visualization of auxin distribution in plants enables real-time monitoring of its uptake and clearance by individual cells and within cellular compartments.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33828298</pmid><doi>10.1038/s41586-021-03425-2</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-4666-8308</orcidid><orcidid>https://orcid.org/0000-0002-8250-9462</orcidid><orcidid>https://orcid.org/0000-0001-9870-6164</orcidid><orcidid>https://orcid.org/0000-0003-3791-9064</orcidid><orcidid>https://orcid.org/0000-0001-8675-6797</orcidid><orcidid>https://orcid.org/0000-0002-2614-6046</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2021-04, Vol.592 (7856), p.768-772 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8081663 |
source | MEDLINE; Nature; SpringerLink Journals - AutoHoldings |
subjects | 14 14/10 14/19 14/33 14/35 14/63 42 42/35 631/1647/245/2226 631/449/1736 631/449/1741/1576 631/80/2373 64 82 82/80 82/83 Acetic acid Arabidopsis Auxin Binding Binding Sites Biological Transport Biosensing Techniques Biosensors Cell size Coupling (molecular) E coli Energy transfer Escherichia coli Proteins Fluorescence Fluorescence Resonance Energy Transfer Gene expression Genetic aspects Genetic code Gravitation Humanities and Social Sciences Indoleacetic acid Indoleacetic Acids - analysis Irreversible processes Life span Light effects Monitoring multidisciplinary Mutagenesis Mutation Organogenesis Perturbation Plant Roots - metabolism Plants, Genetically Modified Protein Engineering Protein Structure, Secondary Proteins Repressor Proteins Science Science (multidisciplinary) Sensors Signal Transduction Spatial distribution Temporal distribution Tryptophan Visualization |
title | A biosensor for the direct visualization of auxin |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A08%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20biosensor%20for%20the%20direct%20visualization%20of%20auxin&rft.jtitle=Nature%20(London)&rft.au=Herud-Sikimi%C4%87,%20Ole&rft.date=2021-04-29&rft.volume=592&rft.issue=7856&rft.spage=768&rft.epage=772&rft.pages=768-772&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-021-03425-2&rft_dat=%3Cgale_pubme%3EA659998477%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2521673468&rft_id=info:pmid/33828298&rft_galeid=A659998477&rfr_iscdi=true |