A biosensor for the direct visualization of auxin

One of the most important regulatory small molecules in plants is indole-3-acetic acid, also known as auxin. Its dynamic redistribution has an essential role in almost every aspect of plant life, ranging from cell shape and division to organogenesis and responses to light and gravity 1 , 2 . So far,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2021-04, Vol.592 (7856), p.768-772
Hauptverfasser: Herud-Sikimić, Ole, Stiel, Andre C., Kolb, Martina, Shanmugaratnam, Sooruban, Berendzen, Kenneth W., Feldhaus, Christian, Höcker, Birte, Jürgens, Gerd
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 772
container_issue 7856
container_start_page 768
container_title Nature (London)
container_volume 592
creator Herud-Sikimić, Ole
Stiel, Andre C.
Kolb, Martina
Shanmugaratnam, Sooruban
Berendzen, Kenneth W.
Feldhaus, Christian
Höcker, Birte
Jürgens, Gerd
description One of the most important regulatory small molecules in plants is indole-3-acetic acid, also known as auxin. Its dynamic redistribution has an essential role in almost every aspect of plant life, ranging from cell shape and division to organogenesis and responses to light and gravity 1 , 2 . So far, it has not been possible to directly determine the spatial and temporal distribution of auxin at a cellular resolution. Instead it is inferred from the visualization of irreversible processes that involve the endogenous auxin-response machinery 3 – 7 ; however, such a system cannot detect transient changes. Here we report a genetically encoded biosensor for the quantitative in vivo visualization of auxin distribution. The sensor is based on the Escherichia coli tryptophan repressor 8 , the binding pocket of which is engineered to be specific to auxin. Coupling of the auxin-binding moiety with selected fluorescent proteins enables the use of a fluorescence resonance energy transfer signal as a readout. Unlike previous systems, this sensor enables direct monitoring of the rapid uptake and clearance of auxin by individual cells and within cell compartments in planta. By responding to the graded spatial distribution along the root axis and its perturbation by transport inhibitors—as well as the rapid and reversible redistribution of endogenous auxin in response to changes in gravity vectors—our sensor enables real-time monitoring of auxin concentrations at a (sub)cellular resolution and their spatial and temporal changes during the lifespan of a plant. A genetically encoded sensor for the quantitative visualization of auxin distribution in plants enables real-time monitoring of its uptake and clearance by individual cells and within cellular compartments.
doi_str_mv 10.1038/s41586-021-03425-2
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8081663</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A659998477</galeid><sourcerecordid>A659998477</sourcerecordid><originalsourceid>FETCH-LOGICAL-c779t-398d216f4abd01d3b242fc3aaba197b8a5039d8b7d7a130eee1424e58c1a19213</originalsourceid><addsrcrecordid>eNp9kl1LHDEUhoNYdGv7B7yQoV6VEpuvmWRuhGXphyAttJZehkzmzBjZTdZkRrS_vmnXqgNbCSGQ85z3HM55ETqk5IQSrt4nQUtVYcIoJlywErMdNKNCVlhUSu6iGSFMYaJ4tY9epnRFCCmpFHton3PFFKvVDNF50biQwKcQiy7f4RKK1kWwQ3Hj0miW7pcZXPBF6Aoz3jr_Cr3ozDLB6_v3AP34-OFi8Rmff_10tpifYytlPWBeq5bRqhOmaQltecME6yw3pjG0lo0yJeF1qxrZSkM5AQAqmIBSWZoBRvkBOt3orsdmBa0FP0Sz1OvoVibe6WCcnka8u9R9uNGKKFpVPAsc3wvEcD1CGvRVGKPPPWtW5tYkz2N6pHqzBO18F7KYXblk9bwq67pWQspM4S1UDx5y5eChc_l7wr_Zwtu1u9ZPoZMtUD4trJzdqvp2kpCZAW6H3owp6bPv36bsu_-z84ufiy9Tmm1oG0NKEbqHOVOi_5hNb8yms9n0X7NplpOOnm7oIeWfuzLAN0DKId9DfNzAM7K_AWc22uU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2521673468</pqid></control><display><type>article</type><title>A biosensor for the direct visualization of auxin</title><source>MEDLINE</source><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Herud-Sikimić, Ole ; Stiel, Andre C. ; Kolb, Martina ; Shanmugaratnam, Sooruban ; Berendzen, Kenneth W. ; Feldhaus, Christian ; Höcker, Birte ; Jürgens, Gerd</creator><creatorcontrib>Herud-Sikimić, Ole ; Stiel, Andre C. ; Kolb, Martina ; Shanmugaratnam, Sooruban ; Berendzen, Kenneth W. ; Feldhaus, Christian ; Höcker, Birte ; Jürgens, Gerd</creatorcontrib><description>One of the most important regulatory small molecules in plants is indole-3-acetic acid, also known as auxin. Its dynamic redistribution has an essential role in almost every aspect of plant life, ranging from cell shape and division to organogenesis and responses to light and gravity 1 , 2 . So far, it has not been possible to directly determine the spatial and temporal distribution of auxin at a cellular resolution. Instead it is inferred from the visualization of irreversible processes that involve the endogenous auxin-response machinery 3 – 7 ; however, such a system cannot detect transient changes. Here we report a genetically encoded biosensor for the quantitative in vivo visualization of auxin distribution. The sensor is based on the Escherichia coli tryptophan repressor 8 , the binding pocket of which is engineered to be specific to auxin. Coupling of the auxin-binding moiety with selected fluorescent proteins enables the use of a fluorescence resonance energy transfer signal as a readout. Unlike previous systems, this sensor enables direct monitoring of the rapid uptake and clearance of auxin by individual cells and within cell compartments in planta. By responding to the graded spatial distribution along the root axis and its perturbation by transport inhibitors—as well as the rapid and reversible redistribution of endogenous auxin in response to changes in gravity vectors—our sensor enables real-time monitoring of auxin concentrations at a (sub)cellular resolution and their spatial and temporal changes during the lifespan of a plant. A genetically encoded sensor for the quantitative visualization of auxin distribution in plants enables real-time monitoring of its uptake and clearance by individual cells and within cellular compartments.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-021-03425-2</identifier><identifier>PMID: 33828298</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>14 ; 14/10 ; 14/19 ; 14/33 ; 14/35 ; 14/63 ; 42 ; 42/35 ; 631/1647/245/2226 ; 631/449/1736 ; 631/449/1741/1576 ; 631/80/2373 ; 64 ; 82 ; 82/80 ; 82/83 ; Acetic acid ; Arabidopsis ; Auxin ; Binding ; Binding Sites ; Biological Transport ; Biosensing Techniques ; Biosensors ; Cell size ; Coupling (molecular) ; E coli ; Energy transfer ; Escherichia coli Proteins ; Fluorescence ; Fluorescence Resonance Energy Transfer ; Gene expression ; Genetic aspects ; Genetic code ; Gravitation ; Humanities and Social Sciences ; Indoleacetic acid ; Indoleacetic Acids - analysis ; Irreversible processes ; Life span ; Light effects ; Monitoring ; multidisciplinary ; Mutagenesis ; Mutation ; Organogenesis ; Perturbation ; Plant Roots - metabolism ; Plants, Genetically Modified ; Protein Engineering ; Protein Structure, Secondary ; Proteins ; Repressor Proteins ; Science ; Science (multidisciplinary) ; Sensors ; Signal Transduction ; Spatial distribution ; Temporal distribution ; Tryptophan ; Visualization</subject><ispartof>Nature (London), 2021-04, Vol.592 (7856), p.768-772</ispartof><rights>The Author(s) 2021</rights><rights>COPYRIGHT 2021 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Apr 29, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c779t-398d216f4abd01d3b242fc3aaba197b8a5039d8b7d7a130eee1424e58c1a19213</citedby><cites>FETCH-LOGICAL-c779t-398d216f4abd01d3b242fc3aaba197b8a5039d8b7d7a130eee1424e58c1a19213</cites><orcidid>0000-0003-4666-8308 ; 0000-0002-8250-9462 ; 0000-0001-9870-6164 ; 0000-0003-3791-9064 ; 0000-0001-8675-6797 ; 0000-0002-2614-6046</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-021-03425-2$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-021-03425-2$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33828298$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Herud-Sikimić, Ole</creatorcontrib><creatorcontrib>Stiel, Andre C.</creatorcontrib><creatorcontrib>Kolb, Martina</creatorcontrib><creatorcontrib>Shanmugaratnam, Sooruban</creatorcontrib><creatorcontrib>Berendzen, Kenneth W.</creatorcontrib><creatorcontrib>Feldhaus, Christian</creatorcontrib><creatorcontrib>Höcker, Birte</creatorcontrib><creatorcontrib>Jürgens, Gerd</creatorcontrib><title>A biosensor for the direct visualization of auxin</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>One of the most important regulatory small molecules in plants is indole-3-acetic acid, also known as auxin. Its dynamic redistribution has an essential role in almost every aspect of plant life, ranging from cell shape and division to organogenesis and responses to light and gravity 1 , 2 . So far, it has not been possible to directly determine the spatial and temporal distribution of auxin at a cellular resolution. Instead it is inferred from the visualization of irreversible processes that involve the endogenous auxin-response machinery 3 – 7 ; however, such a system cannot detect transient changes. Here we report a genetically encoded biosensor for the quantitative in vivo visualization of auxin distribution. The sensor is based on the Escherichia coli tryptophan repressor 8 , the binding pocket of which is engineered to be specific to auxin. Coupling of the auxin-binding moiety with selected fluorescent proteins enables the use of a fluorescence resonance energy transfer signal as a readout. Unlike previous systems, this sensor enables direct monitoring of the rapid uptake and clearance of auxin by individual cells and within cell compartments in planta. By responding to the graded spatial distribution along the root axis and its perturbation by transport inhibitors—as well as the rapid and reversible redistribution of endogenous auxin in response to changes in gravity vectors—our sensor enables real-time monitoring of auxin concentrations at a (sub)cellular resolution and their spatial and temporal changes during the lifespan of a plant. A genetically encoded sensor for the quantitative visualization of auxin distribution in plants enables real-time monitoring of its uptake and clearance by individual cells and within cellular compartments.</description><subject>14</subject><subject>14/10</subject><subject>14/19</subject><subject>14/33</subject><subject>14/35</subject><subject>14/63</subject><subject>42</subject><subject>42/35</subject><subject>631/1647/245/2226</subject><subject>631/449/1736</subject><subject>631/449/1741/1576</subject><subject>631/80/2373</subject><subject>64</subject><subject>82</subject><subject>82/80</subject><subject>82/83</subject><subject>Acetic acid</subject><subject>Arabidopsis</subject><subject>Auxin</subject><subject>Binding</subject><subject>Binding Sites</subject><subject>Biological Transport</subject><subject>Biosensing Techniques</subject><subject>Biosensors</subject><subject>Cell size</subject><subject>Coupling (molecular)</subject><subject>E coli</subject><subject>Energy transfer</subject><subject>Escherichia coli Proteins</subject><subject>Fluorescence</subject><subject>Fluorescence Resonance Energy Transfer</subject><subject>Gene expression</subject><subject>Genetic aspects</subject><subject>Genetic code</subject><subject>Gravitation</subject><subject>Humanities and Social Sciences</subject><subject>Indoleacetic acid</subject><subject>Indoleacetic Acids - analysis</subject><subject>Irreversible processes</subject><subject>Life span</subject><subject>Light effects</subject><subject>Monitoring</subject><subject>multidisciplinary</subject><subject>Mutagenesis</subject><subject>Mutation</subject><subject>Organogenesis</subject><subject>Perturbation</subject><subject>Plant Roots - metabolism</subject><subject>Plants, Genetically Modified</subject><subject>Protein Engineering</subject><subject>Protein Structure, Secondary</subject><subject>Proteins</subject><subject>Repressor Proteins</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sensors</subject><subject>Signal Transduction</subject><subject>Spatial distribution</subject><subject>Temporal distribution</subject><subject>Tryptophan</subject><subject>Visualization</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kl1LHDEUhoNYdGv7B7yQoV6VEpuvmWRuhGXphyAttJZehkzmzBjZTdZkRrS_vmnXqgNbCSGQ85z3HM55ETqk5IQSrt4nQUtVYcIoJlywErMdNKNCVlhUSu6iGSFMYaJ4tY9epnRFCCmpFHton3PFFKvVDNF50biQwKcQiy7f4RKK1kWwQ3Hj0miW7pcZXPBF6Aoz3jr_Cr3ozDLB6_v3AP34-OFi8Rmff_10tpifYytlPWBeq5bRqhOmaQltecME6yw3pjG0lo0yJeF1qxrZSkM5AQAqmIBSWZoBRvkBOt3orsdmBa0FP0Sz1OvoVibe6WCcnka8u9R9uNGKKFpVPAsc3wvEcD1CGvRVGKPPPWtW5tYkz2N6pHqzBO18F7KYXblk9bwq67pWQspM4S1UDx5y5eChc_l7wr_Zwtu1u9ZPoZMtUD4trJzdqvp2kpCZAW6H3owp6bPv36bsu_-z84ufiy9Tmm1oG0NKEbqHOVOi_5hNb8yms9n0X7NplpOOnm7oIeWfuzLAN0DKId9DfNzAM7K_AWc22uU</recordid><startdate>20210429</startdate><enddate>20210429</enddate><creator>Herud-Sikimić, Ole</creator><creator>Stiel, Andre C.</creator><creator>Kolb, Martina</creator><creator>Shanmugaratnam, Sooruban</creator><creator>Berendzen, Kenneth W.</creator><creator>Feldhaus, Christian</creator><creator>Höcker, Birte</creator><creator>Jürgens, Gerd</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4666-8308</orcidid><orcidid>https://orcid.org/0000-0002-8250-9462</orcidid><orcidid>https://orcid.org/0000-0001-9870-6164</orcidid><orcidid>https://orcid.org/0000-0003-3791-9064</orcidid><orcidid>https://orcid.org/0000-0001-8675-6797</orcidid><orcidid>https://orcid.org/0000-0002-2614-6046</orcidid></search><sort><creationdate>20210429</creationdate><title>A biosensor for the direct visualization of auxin</title><author>Herud-Sikimić, Ole ; Stiel, Andre C. ; Kolb, Martina ; Shanmugaratnam, Sooruban ; Berendzen, Kenneth W. ; Feldhaus, Christian ; Höcker, Birte ; Jürgens, Gerd</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c779t-398d216f4abd01d3b242fc3aaba197b8a5039d8b7d7a130eee1424e58c1a19213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>14</topic><topic>14/10</topic><topic>14/19</topic><topic>14/33</topic><topic>14/35</topic><topic>14/63</topic><topic>42</topic><topic>42/35</topic><topic>631/1647/245/2226</topic><topic>631/449/1736</topic><topic>631/449/1741/1576</topic><topic>631/80/2373</topic><topic>64</topic><topic>82</topic><topic>82/80</topic><topic>82/83</topic><topic>Acetic acid</topic><topic>Arabidopsis</topic><topic>Auxin</topic><topic>Binding</topic><topic>Binding Sites</topic><topic>Biological Transport</topic><topic>Biosensing Techniques</topic><topic>Biosensors</topic><topic>Cell size</topic><topic>Coupling (molecular)</topic><topic>E coli</topic><topic>Energy transfer</topic><topic>Escherichia coli Proteins</topic><topic>Fluorescence</topic><topic>Fluorescence Resonance Energy Transfer</topic><topic>Gene expression</topic><topic>Genetic aspects</topic><topic>Genetic code</topic><topic>Gravitation</topic><topic>Humanities and Social Sciences</topic><topic>Indoleacetic acid</topic><topic>Indoleacetic Acids - analysis</topic><topic>Irreversible processes</topic><topic>Life span</topic><topic>Light effects</topic><topic>Monitoring</topic><topic>multidisciplinary</topic><topic>Mutagenesis</topic><topic>Mutation</topic><topic>Organogenesis</topic><topic>Perturbation</topic><topic>Plant Roots - metabolism</topic><topic>Plants, Genetically Modified</topic><topic>Protein Engineering</topic><topic>Protein Structure, Secondary</topic><topic>Proteins</topic><topic>Repressor Proteins</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sensors</topic><topic>Signal Transduction</topic><topic>Spatial distribution</topic><topic>Temporal distribution</topic><topic>Tryptophan</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Herud-Sikimić, Ole</creatorcontrib><creatorcontrib>Stiel, Andre C.</creatorcontrib><creatorcontrib>Kolb, Martina</creatorcontrib><creatorcontrib>Shanmugaratnam, Sooruban</creatorcontrib><creatorcontrib>Berendzen, Kenneth W.</creatorcontrib><creatorcontrib>Feldhaus, Christian</creatorcontrib><creatorcontrib>Höcker, Birte</creatorcontrib><creatorcontrib>Jürgens, Gerd</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Herud-Sikimić, Ole</au><au>Stiel, Andre C.</au><au>Kolb, Martina</au><au>Shanmugaratnam, Sooruban</au><au>Berendzen, Kenneth W.</au><au>Feldhaus, Christian</au><au>Höcker, Birte</au><au>Jürgens, Gerd</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A biosensor for the direct visualization of auxin</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2021-04-29</date><risdate>2021</risdate><volume>592</volume><issue>7856</issue><spage>768</spage><epage>772</epage><pages>768-772</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>One of the most important regulatory small molecules in plants is indole-3-acetic acid, also known as auxin. Its dynamic redistribution has an essential role in almost every aspect of plant life, ranging from cell shape and division to organogenesis and responses to light and gravity 1 , 2 . So far, it has not been possible to directly determine the spatial and temporal distribution of auxin at a cellular resolution. Instead it is inferred from the visualization of irreversible processes that involve the endogenous auxin-response machinery 3 – 7 ; however, such a system cannot detect transient changes. Here we report a genetically encoded biosensor for the quantitative in vivo visualization of auxin distribution. The sensor is based on the Escherichia coli tryptophan repressor 8 , the binding pocket of which is engineered to be specific to auxin. Coupling of the auxin-binding moiety with selected fluorescent proteins enables the use of a fluorescence resonance energy transfer signal as a readout. Unlike previous systems, this sensor enables direct monitoring of the rapid uptake and clearance of auxin by individual cells and within cell compartments in planta. By responding to the graded spatial distribution along the root axis and its perturbation by transport inhibitors—as well as the rapid and reversible redistribution of endogenous auxin in response to changes in gravity vectors—our sensor enables real-time monitoring of auxin concentrations at a (sub)cellular resolution and their spatial and temporal changes during the lifespan of a plant. A genetically encoded sensor for the quantitative visualization of auxin distribution in plants enables real-time monitoring of its uptake and clearance by individual cells and within cellular compartments.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33828298</pmid><doi>10.1038/s41586-021-03425-2</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-4666-8308</orcidid><orcidid>https://orcid.org/0000-0002-8250-9462</orcidid><orcidid>https://orcid.org/0000-0001-9870-6164</orcidid><orcidid>https://orcid.org/0000-0003-3791-9064</orcidid><orcidid>https://orcid.org/0000-0001-8675-6797</orcidid><orcidid>https://orcid.org/0000-0002-2614-6046</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2021-04, Vol.592 (7856), p.768-772
issn 0028-0836
1476-4687
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8081663
source MEDLINE; Nature; SpringerLink Journals - AutoHoldings
subjects 14
14/10
14/19
14/33
14/35
14/63
42
42/35
631/1647/245/2226
631/449/1736
631/449/1741/1576
631/80/2373
64
82
82/80
82/83
Acetic acid
Arabidopsis
Auxin
Binding
Binding Sites
Biological Transport
Biosensing Techniques
Biosensors
Cell size
Coupling (molecular)
E coli
Energy transfer
Escherichia coli Proteins
Fluorescence
Fluorescence Resonance Energy Transfer
Gene expression
Genetic aspects
Genetic code
Gravitation
Humanities and Social Sciences
Indoleacetic acid
Indoleacetic Acids - analysis
Irreversible processes
Life span
Light effects
Monitoring
multidisciplinary
Mutagenesis
Mutation
Organogenesis
Perturbation
Plant Roots - metabolism
Plants, Genetically Modified
Protein Engineering
Protein Structure, Secondary
Proteins
Repressor Proteins
Science
Science (multidisciplinary)
Sensors
Signal Transduction
Spatial distribution
Temporal distribution
Tryptophan
Visualization
title A biosensor for the direct visualization of auxin
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A08%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20biosensor%20for%20the%20direct%20visualization%20of%20auxin&rft.jtitle=Nature%20(London)&rft.au=Herud-Sikimi%C4%87,%20Ole&rft.date=2021-04-29&rft.volume=592&rft.issue=7856&rft.spage=768&rft.epage=772&rft.pages=768-772&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-021-03425-2&rft_dat=%3Cgale_pubme%3EA659998477%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2521673468&rft_id=info:pmid/33828298&rft_galeid=A659998477&rfr_iscdi=true