The weakly electric fish, Apteronotus albifrons, actively avoids experimentally induced hypoxia

Anthropogenic environmental degradation has led to an increase in the frequency and prevalence of aquatic hypoxia (low dissolved oxygen concentration, DO), which may affect habitat quality for water-breathing fishes. The weakly electric black ghost knifefish, Apteronotus albifrons , is typically fou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Comparative Physiology 2021-05, Vol.207 (3), p.369-379
Hauptverfasser: Mucha, Stefan, Chapman, Lauren J., Krahe, Rüdiger
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 379
container_issue 3
container_start_page 369
container_title Journal of Comparative Physiology
container_volume 207
creator Mucha, Stefan
Chapman, Lauren J.
Krahe, Rüdiger
description Anthropogenic environmental degradation has led to an increase in the frequency and prevalence of aquatic hypoxia (low dissolved oxygen concentration, DO), which may affect habitat quality for water-breathing fishes. The weakly electric black ghost knifefish, Apteronotus albifrons , is typically found in well-oxygenated freshwater habitats in South America. Using a shuttle-box design, we exposed juvenile A. albifrons to a stepwise decline in DO from normoxia (> 95% air saturation) to extreme hypoxia (10% air saturation) in one compartment and chronic normoxia in the other. On average, A. albifrons actively avoided the hypoxic compartment below 22% air saturation. Hypoxia avoidance was correlated with upregulated swimming activity. Following avoidance, fish regularly ventured back briefly into deep hypoxia. Hypoxia did not affect the frequency of their electric organ discharges. Our results show that A. albifrons is able to sense hypoxia at non-lethal levels and uses active avoidance to mitigate its adverse effects.
doi_str_mv 10.1007/s00359-021-01470-w
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8079295</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2504348707</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-d7d8e85d2259269badb87d5c33a21146a72a2f4b45446e425245121ffb85b4673</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxS0EokvhC3BAkbj00JTxv7VzQaoqoJUqcSlny7EnXZdsHOxkt_vtcbultBw4WeP5zZs3eoS8p3BCAdSnDMBlUwOjNVChoN6-IAsqOKspl_QlWQAXUCvZiAPyJucbgIIy-poccK4kpZotiLlaYbVF-7PfVdijm1JwVRfy6rg6HSdMcYjTnCvbt6ErRT6urJvCBgtuNzH4XOHtiCmscZhsX37D4GeHvlrtxngb7FvyqrN9xncP7yH58fXL1dl5ffn928XZ6WXtBJNT7ZXXqKVnTDZs2bTWt1p56Ti3jFKxtIpZ1olWSCGWWEaYkOWUrmu1bMVS8UPyea87zu0avSt2ku3NWJzZtDPRBvO8M4SVuY4bo0E1rJFF4OhBIMVfM-bJrEN22Pd2wDhnwyQILrSCu10f_0Fv4pyGcl6hqNZSc6CFYnvKpZhzwu7RDAVzl5_Z52dKKOY-P7MtQx-envE48iewAvA9kEtruMb0d_d_ZH8DWlGnuQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2518858301</pqid></control><display><type>article</type><title>The weakly electric fish, Apteronotus albifrons, actively avoids experimentally induced hypoxia</title><source>MEDLINE</source><source>SpringerLink (Online service)</source><creator>Mucha, Stefan ; Chapman, Lauren J. ; Krahe, Rüdiger</creator><creatorcontrib>Mucha, Stefan ; Chapman, Lauren J. ; Krahe, Rüdiger</creatorcontrib><description>Anthropogenic environmental degradation has led to an increase in the frequency and prevalence of aquatic hypoxia (low dissolved oxygen concentration, DO), which may affect habitat quality for water-breathing fishes. The weakly electric black ghost knifefish, Apteronotus albifrons , is typically found in well-oxygenated freshwater habitats in South America. Using a shuttle-box design, we exposed juvenile A. albifrons to a stepwise decline in DO from normoxia (&gt; 95% air saturation) to extreme hypoxia (10% air saturation) in one compartment and chronic normoxia in the other. On average, A. albifrons actively avoided the hypoxic compartment below 22% air saturation. Hypoxia avoidance was correlated with upregulated swimming activity. Following avoidance, fish regularly ventured back briefly into deep hypoxia. Hypoxia did not affect the frequency of their electric organ discharges. Our results show that A. albifrons is able to sense hypoxia at non-lethal levels and uses active avoidance to mitigate its adverse effects.</description><identifier>ISSN: 0340-7594</identifier><identifier>EISSN: 1432-1351</identifier><identifier>DOI: 10.1007/s00359-021-01470-w</identifier><identifier>PMID: 33751182</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Anaerobiosis ; Animal Physiology ; Animals ; Anthropogenic factors ; Apteronotus albifrons ; Aquatic habitats ; Avoidance ; Avoidance Learning ; Behavior, Animal ; Biomedical and Life Sciences ; Dissolved oxygen ; Ecosystem ; Electric Organ - metabolism ; Electric organs ; Environmental degradation ; Environmental quality ; Fish ; Fresh Water - chemistry ; Freshwater environments ; Gymnotiformes - metabolism ; Hypoxia ; Lethal levels ; Life Sciences ; Neurosciences ; Original Paper ; Oxygen - metabolism ; Saturation ; Swimming ; Water quality ; Zoology</subject><ispartof>Journal of Comparative Physiology, 2021-05, Vol.207 (3), p.369-379</ispartof><rights>The Author(s) 2021. corrected publication 2021</rights><rights>The Author(s) 2021. corrected publication 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2021, corrected publication 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c425t-d7d8e85d2259269badb87d5c33a21146a72a2f4b45446e425245121ffb85b4673</cites><orcidid>0000-0002-2802-5889 ; 0000-0003-1669-6121 ; 0000-0001-9862-2497</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00359-021-01470-w$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00359-021-01470-w$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33751182$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mucha, Stefan</creatorcontrib><creatorcontrib>Chapman, Lauren J.</creatorcontrib><creatorcontrib>Krahe, Rüdiger</creatorcontrib><title>The weakly electric fish, Apteronotus albifrons, actively avoids experimentally induced hypoxia</title><title>Journal of Comparative Physiology</title><addtitle>J Comp Physiol A</addtitle><addtitle>J Comp Physiol A Neuroethol Sens Neural Behav Physiol</addtitle><description>Anthropogenic environmental degradation has led to an increase in the frequency and prevalence of aquatic hypoxia (low dissolved oxygen concentration, DO), which may affect habitat quality for water-breathing fishes. The weakly electric black ghost knifefish, Apteronotus albifrons , is typically found in well-oxygenated freshwater habitats in South America. Using a shuttle-box design, we exposed juvenile A. albifrons to a stepwise decline in DO from normoxia (&gt; 95% air saturation) to extreme hypoxia (10% air saturation) in one compartment and chronic normoxia in the other. On average, A. albifrons actively avoided the hypoxic compartment below 22% air saturation. Hypoxia avoidance was correlated with upregulated swimming activity. Following avoidance, fish regularly ventured back briefly into deep hypoxia. Hypoxia did not affect the frequency of their electric organ discharges. Our results show that A. albifrons is able to sense hypoxia at non-lethal levels and uses active avoidance to mitigate its adverse effects.</description><subject>Anaerobiosis</subject><subject>Animal Physiology</subject><subject>Animals</subject><subject>Anthropogenic factors</subject><subject>Apteronotus albifrons</subject><subject>Aquatic habitats</subject><subject>Avoidance</subject><subject>Avoidance Learning</subject><subject>Behavior, Animal</subject><subject>Biomedical and Life Sciences</subject><subject>Dissolved oxygen</subject><subject>Ecosystem</subject><subject>Electric Organ - metabolism</subject><subject>Electric organs</subject><subject>Environmental degradation</subject><subject>Environmental quality</subject><subject>Fish</subject><subject>Fresh Water - chemistry</subject><subject>Freshwater environments</subject><subject>Gymnotiformes - metabolism</subject><subject>Hypoxia</subject><subject>Lethal levels</subject><subject>Life Sciences</subject><subject>Neurosciences</subject><subject>Original Paper</subject><subject>Oxygen - metabolism</subject><subject>Saturation</subject><subject>Swimming</subject><subject>Water quality</subject><subject>Zoology</subject><issn>0340-7594</issn><issn>1432-1351</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kU9v1DAQxS0EokvhC3BAkbj00JTxv7VzQaoqoJUqcSlny7EnXZdsHOxkt_vtcbultBw4WeP5zZs3eoS8p3BCAdSnDMBlUwOjNVChoN6-IAsqOKspl_QlWQAXUCvZiAPyJucbgIIy-poccK4kpZotiLlaYbVF-7PfVdijm1JwVRfy6rg6HSdMcYjTnCvbt6ErRT6urJvCBgtuNzH4XOHtiCmscZhsX37D4GeHvlrtxngb7FvyqrN9xncP7yH58fXL1dl5ffn928XZ6WXtBJNT7ZXXqKVnTDZs2bTWt1p56Ti3jFKxtIpZ1olWSCGWWEaYkOWUrmu1bMVS8UPyea87zu0avSt2ku3NWJzZtDPRBvO8M4SVuY4bo0E1rJFF4OhBIMVfM-bJrEN22Pd2wDhnwyQILrSCu10f_0Fv4pyGcl6hqNZSc6CFYnvKpZhzwu7RDAVzl5_Z52dKKOY-P7MtQx-envE48iewAvA9kEtruMb0d_d_ZH8DWlGnuQ</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Mucha, Stefan</creator><creator>Chapman, Lauren J.</creator><creator>Krahe, Rüdiger</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2802-5889</orcidid><orcidid>https://orcid.org/0000-0003-1669-6121</orcidid><orcidid>https://orcid.org/0000-0001-9862-2497</orcidid></search><sort><creationdate>20210501</creationdate><title>The weakly electric fish, Apteronotus albifrons, actively avoids experimentally induced hypoxia</title><author>Mucha, Stefan ; Chapman, Lauren J. ; Krahe, Rüdiger</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-d7d8e85d2259269badb87d5c33a21146a72a2f4b45446e425245121ffb85b4673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anaerobiosis</topic><topic>Animal Physiology</topic><topic>Animals</topic><topic>Anthropogenic factors</topic><topic>Apteronotus albifrons</topic><topic>Aquatic habitats</topic><topic>Avoidance</topic><topic>Avoidance Learning</topic><topic>Behavior, Animal</topic><topic>Biomedical and Life Sciences</topic><topic>Dissolved oxygen</topic><topic>Ecosystem</topic><topic>Electric Organ - metabolism</topic><topic>Electric organs</topic><topic>Environmental degradation</topic><topic>Environmental quality</topic><topic>Fish</topic><topic>Fresh Water - chemistry</topic><topic>Freshwater environments</topic><topic>Gymnotiformes - metabolism</topic><topic>Hypoxia</topic><topic>Lethal levels</topic><topic>Life Sciences</topic><topic>Neurosciences</topic><topic>Original Paper</topic><topic>Oxygen - metabolism</topic><topic>Saturation</topic><topic>Swimming</topic><topic>Water quality</topic><topic>Zoology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mucha, Stefan</creatorcontrib><creatorcontrib>Chapman, Lauren J.</creatorcontrib><creatorcontrib>Krahe, Rüdiger</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health Medical collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of Comparative Physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mucha, Stefan</au><au>Chapman, Lauren J.</au><au>Krahe, Rüdiger</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The weakly electric fish, Apteronotus albifrons, actively avoids experimentally induced hypoxia</atitle><jtitle>Journal of Comparative Physiology</jtitle><stitle>J Comp Physiol A</stitle><addtitle>J Comp Physiol A Neuroethol Sens Neural Behav Physiol</addtitle><date>2021-05-01</date><risdate>2021</risdate><volume>207</volume><issue>3</issue><spage>369</spage><epage>379</epage><pages>369-379</pages><issn>0340-7594</issn><eissn>1432-1351</eissn><abstract>Anthropogenic environmental degradation has led to an increase in the frequency and prevalence of aquatic hypoxia (low dissolved oxygen concentration, DO), which may affect habitat quality for water-breathing fishes. The weakly electric black ghost knifefish, Apteronotus albifrons , is typically found in well-oxygenated freshwater habitats in South America. Using a shuttle-box design, we exposed juvenile A. albifrons to a stepwise decline in DO from normoxia (&gt; 95% air saturation) to extreme hypoxia (10% air saturation) in one compartment and chronic normoxia in the other. On average, A. albifrons actively avoided the hypoxic compartment below 22% air saturation. Hypoxia avoidance was correlated with upregulated swimming activity. Following avoidance, fish regularly ventured back briefly into deep hypoxia. Hypoxia did not affect the frequency of their electric organ discharges. Our results show that A. albifrons is able to sense hypoxia at non-lethal levels and uses active avoidance to mitigate its adverse effects.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>33751182</pmid><doi>10.1007/s00359-021-01470-w</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2802-5889</orcidid><orcidid>https://orcid.org/0000-0003-1669-6121</orcidid><orcidid>https://orcid.org/0000-0001-9862-2497</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0340-7594
ispartof Journal of Comparative Physiology, 2021-05, Vol.207 (3), p.369-379
issn 0340-7594
1432-1351
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8079295
source MEDLINE; SpringerLink (Online service)
subjects Anaerobiosis
Animal Physiology
Animals
Anthropogenic factors
Apteronotus albifrons
Aquatic habitats
Avoidance
Avoidance Learning
Behavior, Animal
Biomedical and Life Sciences
Dissolved oxygen
Ecosystem
Electric Organ - metabolism
Electric organs
Environmental degradation
Environmental quality
Fish
Fresh Water - chemistry
Freshwater environments
Gymnotiformes - metabolism
Hypoxia
Lethal levels
Life Sciences
Neurosciences
Original Paper
Oxygen - metabolism
Saturation
Swimming
Water quality
Zoology
title The weakly electric fish, Apteronotus albifrons, actively avoids experimentally induced hypoxia
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T19%3A31%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20weakly%20electric%20fish,%20Apteronotus%20albifrons,%20actively%20avoids%20experimentally%20induced%20hypoxia&rft.jtitle=Journal%20of%20Comparative%20Physiology&rft.au=Mucha,%20Stefan&rft.date=2021-05-01&rft.volume=207&rft.issue=3&rft.spage=369&rft.epage=379&rft.pages=369-379&rft.issn=0340-7594&rft.eissn=1432-1351&rft_id=info:doi/10.1007/s00359-021-01470-w&rft_dat=%3Cproquest_pubme%3E2504348707%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2518858301&rft_id=info:pmid/33751182&rfr_iscdi=true