The weakly electric fish, Apteronotus albifrons, actively avoids experimentally induced hypoxia
Anthropogenic environmental degradation has led to an increase in the frequency and prevalence of aquatic hypoxia (low dissolved oxygen concentration, DO), which may affect habitat quality for water-breathing fishes. The weakly electric black ghost knifefish, Apteronotus albifrons , is typically fou...
Gespeichert in:
Veröffentlicht in: | Journal of Comparative Physiology 2021-05, Vol.207 (3), p.369-379 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 379 |
---|---|
container_issue | 3 |
container_start_page | 369 |
container_title | Journal of Comparative Physiology |
container_volume | 207 |
creator | Mucha, Stefan Chapman, Lauren J. Krahe, Rüdiger |
description | Anthropogenic environmental degradation has led to an increase in the frequency and prevalence of aquatic hypoxia (low dissolved oxygen concentration, DO), which may affect habitat quality for water-breathing fishes. The weakly electric black ghost knifefish,
Apteronotus albifrons
, is typically found in well-oxygenated freshwater habitats in South America. Using a shuttle-box design, we exposed juvenile
A. albifrons
to a stepwise decline in DO from normoxia (> 95% air saturation) to extreme hypoxia (10% air saturation) in one compartment and chronic normoxia in the other. On average,
A. albifrons
actively avoided the hypoxic compartment below 22% air saturation. Hypoxia avoidance was correlated with upregulated swimming activity. Following avoidance, fish regularly ventured back briefly into deep hypoxia. Hypoxia did not affect the frequency of their electric organ discharges. Our results show that
A. albifrons
is able to sense hypoxia at non-lethal levels and uses active avoidance to mitigate its adverse effects. |
doi_str_mv | 10.1007/s00359-021-01470-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8079295</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2504348707</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-d7d8e85d2259269badb87d5c33a21146a72a2f4b45446e425245121ffb85b4673</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxS0EokvhC3BAkbj00JTxv7VzQaoqoJUqcSlny7EnXZdsHOxkt_vtcbultBw4WeP5zZs3eoS8p3BCAdSnDMBlUwOjNVChoN6-IAsqOKspl_QlWQAXUCvZiAPyJucbgIIy-poccK4kpZotiLlaYbVF-7PfVdijm1JwVRfy6rg6HSdMcYjTnCvbt6ErRT6urJvCBgtuNzH4XOHtiCmscZhsX37D4GeHvlrtxngb7FvyqrN9xncP7yH58fXL1dl5ffn928XZ6WXtBJNT7ZXXqKVnTDZs2bTWt1p56Ti3jFKxtIpZ1olWSCGWWEaYkOWUrmu1bMVS8UPyea87zu0avSt2ku3NWJzZtDPRBvO8M4SVuY4bo0E1rJFF4OhBIMVfM-bJrEN22Pd2wDhnwyQILrSCu10f_0Fv4pyGcl6hqNZSc6CFYnvKpZhzwu7RDAVzl5_Z52dKKOY-P7MtQx-envE48iewAvA9kEtruMb0d_d_ZH8DWlGnuQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2518858301</pqid></control><display><type>article</type><title>The weakly electric fish, Apteronotus albifrons, actively avoids experimentally induced hypoxia</title><source>MEDLINE</source><source>SpringerLink (Online service)</source><creator>Mucha, Stefan ; Chapman, Lauren J. ; Krahe, Rüdiger</creator><creatorcontrib>Mucha, Stefan ; Chapman, Lauren J. ; Krahe, Rüdiger</creatorcontrib><description>Anthropogenic environmental degradation has led to an increase in the frequency and prevalence of aquatic hypoxia (low dissolved oxygen concentration, DO), which may affect habitat quality for water-breathing fishes. The weakly electric black ghost knifefish,
Apteronotus albifrons
, is typically found in well-oxygenated freshwater habitats in South America. Using a shuttle-box design, we exposed juvenile
A. albifrons
to a stepwise decline in DO from normoxia (> 95% air saturation) to extreme hypoxia (10% air saturation) in one compartment and chronic normoxia in the other. On average,
A. albifrons
actively avoided the hypoxic compartment below 22% air saturation. Hypoxia avoidance was correlated with upregulated swimming activity. Following avoidance, fish regularly ventured back briefly into deep hypoxia. Hypoxia did not affect the frequency of their electric organ discharges. Our results show that
A. albifrons
is able to sense hypoxia at non-lethal levels and uses active avoidance to mitigate its adverse effects.</description><identifier>ISSN: 0340-7594</identifier><identifier>EISSN: 1432-1351</identifier><identifier>DOI: 10.1007/s00359-021-01470-w</identifier><identifier>PMID: 33751182</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Anaerobiosis ; Animal Physiology ; Animals ; Anthropogenic factors ; Apteronotus albifrons ; Aquatic habitats ; Avoidance ; Avoidance Learning ; Behavior, Animal ; Biomedical and Life Sciences ; Dissolved oxygen ; Ecosystem ; Electric Organ - metabolism ; Electric organs ; Environmental degradation ; Environmental quality ; Fish ; Fresh Water - chemistry ; Freshwater environments ; Gymnotiformes - metabolism ; Hypoxia ; Lethal levels ; Life Sciences ; Neurosciences ; Original Paper ; Oxygen - metabolism ; Saturation ; Swimming ; Water quality ; Zoology</subject><ispartof>Journal of Comparative Physiology, 2021-05, Vol.207 (3), p.369-379</ispartof><rights>The Author(s) 2021. corrected publication 2021</rights><rights>The Author(s) 2021. corrected publication 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2021, corrected publication 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c425t-d7d8e85d2259269badb87d5c33a21146a72a2f4b45446e425245121ffb85b4673</cites><orcidid>0000-0002-2802-5889 ; 0000-0003-1669-6121 ; 0000-0001-9862-2497</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00359-021-01470-w$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00359-021-01470-w$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33751182$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mucha, Stefan</creatorcontrib><creatorcontrib>Chapman, Lauren J.</creatorcontrib><creatorcontrib>Krahe, Rüdiger</creatorcontrib><title>The weakly electric fish, Apteronotus albifrons, actively avoids experimentally induced hypoxia</title><title>Journal of Comparative Physiology</title><addtitle>J Comp Physiol A</addtitle><addtitle>J Comp Physiol A Neuroethol Sens Neural Behav Physiol</addtitle><description>Anthropogenic environmental degradation has led to an increase in the frequency and prevalence of aquatic hypoxia (low dissolved oxygen concentration, DO), which may affect habitat quality for water-breathing fishes. The weakly electric black ghost knifefish,
Apteronotus albifrons
, is typically found in well-oxygenated freshwater habitats in South America. Using a shuttle-box design, we exposed juvenile
A. albifrons
to a stepwise decline in DO from normoxia (> 95% air saturation) to extreme hypoxia (10% air saturation) in one compartment and chronic normoxia in the other. On average,
A. albifrons
actively avoided the hypoxic compartment below 22% air saturation. Hypoxia avoidance was correlated with upregulated swimming activity. Following avoidance, fish regularly ventured back briefly into deep hypoxia. Hypoxia did not affect the frequency of their electric organ discharges. Our results show that
A. albifrons
is able to sense hypoxia at non-lethal levels and uses active avoidance to mitigate its adverse effects.</description><subject>Anaerobiosis</subject><subject>Animal Physiology</subject><subject>Animals</subject><subject>Anthropogenic factors</subject><subject>Apteronotus albifrons</subject><subject>Aquatic habitats</subject><subject>Avoidance</subject><subject>Avoidance Learning</subject><subject>Behavior, Animal</subject><subject>Biomedical and Life Sciences</subject><subject>Dissolved oxygen</subject><subject>Ecosystem</subject><subject>Electric Organ - metabolism</subject><subject>Electric organs</subject><subject>Environmental degradation</subject><subject>Environmental quality</subject><subject>Fish</subject><subject>Fresh Water - chemistry</subject><subject>Freshwater environments</subject><subject>Gymnotiformes - metabolism</subject><subject>Hypoxia</subject><subject>Lethal levels</subject><subject>Life Sciences</subject><subject>Neurosciences</subject><subject>Original Paper</subject><subject>Oxygen - metabolism</subject><subject>Saturation</subject><subject>Swimming</subject><subject>Water quality</subject><subject>Zoology</subject><issn>0340-7594</issn><issn>1432-1351</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kU9v1DAQxS0EokvhC3BAkbj00JTxv7VzQaoqoJUqcSlny7EnXZdsHOxkt_vtcbultBw4WeP5zZs3eoS8p3BCAdSnDMBlUwOjNVChoN6-IAsqOKspl_QlWQAXUCvZiAPyJucbgIIy-poccK4kpZotiLlaYbVF-7PfVdijm1JwVRfy6rg6HSdMcYjTnCvbt6ErRT6urJvCBgtuNzH4XOHtiCmscZhsX37D4GeHvlrtxngb7FvyqrN9xncP7yH58fXL1dl5ffn928XZ6WXtBJNT7ZXXqKVnTDZs2bTWt1p56Ti3jFKxtIpZ1olWSCGWWEaYkOWUrmu1bMVS8UPyea87zu0avSt2ku3NWJzZtDPRBvO8M4SVuY4bo0E1rJFF4OhBIMVfM-bJrEN22Pd2wDhnwyQILrSCu10f_0Fv4pyGcl6hqNZSc6CFYnvKpZhzwu7RDAVzl5_Z52dKKOY-P7MtQx-envE48iewAvA9kEtruMb0d_d_ZH8DWlGnuQ</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Mucha, Stefan</creator><creator>Chapman, Lauren J.</creator><creator>Krahe, Rüdiger</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2802-5889</orcidid><orcidid>https://orcid.org/0000-0003-1669-6121</orcidid><orcidid>https://orcid.org/0000-0001-9862-2497</orcidid></search><sort><creationdate>20210501</creationdate><title>The weakly electric fish, Apteronotus albifrons, actively avoids experimentally induced hypoxia</title><author>Mucha, Stefan ; Chapman, Lauren J. ; Krahe, Rüdiger</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-d7d8e85d2259269badb87d5c33a21146a72a2f4b45446e425245121ffb85b4673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anaerobiosis</topic><topic>Animal Physiology</topic><topic>Animals</topic><topic>Anthropogenic factors</topic><topic>Apteronotus albifrons</topic><topic>Aquatic habitats</topic><topic>Avoidance</topic><topic>Avoidance Learning</topic><topic>Behavior, Animal</topic><topic>Biomedical and Life Sciences</topic><topic>Dissolved oxygen</topic><topic>Ecosystem</topic><topic>Electric Organ - metabolism</topic><topic>Electric organs</topic><topic>Environmental degradation</topic><topic>Environmental quality</topic><topic>Fish</topic><topic>Fresh Water - chemistry</topic><topic>Freshwater environments</topic><topic>Gymnotiformes - metabolism</topic><topic>Hypoxia</topic><topic>Lethal levels</topic><topic>Life Sciences</topic><topic>Neurosciences</topic><topic>Original Paper</topic><topic>Oxygen - metabolism</topic><topic>Saturation</topic><topic>Swimming</topic><topic>Water quality</topic><topic>Zoology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mucha, Stefan</creatorcontrib><creatorcontrib>Chapman, Lauren J.</creatorcontrib><creatorcontrib>Krahe, Rüdiger</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health Medical collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of Comparative Physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mucha, Stefan</au><au>Chapman, Lauren J.</au><au>Krahe, Rüdiger</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The weakly electric fish, Apteronotus albifrons, actively avoids experimentally induced hypoxia</atitle><jtitle>Journal of Comparative Physiology</jtitle><stitle>J Comp Physiol A</stitle><addtitle>J Comp Physiol A Neuroethol Sens Neural Behav Physiol</addtitle><date>2021-05-01</date><risdate>2021</risdate><volume>207</volume><issue>3</issue><spage>369</spage><epage>379</epage><pages>369-379</pages><issn>0340-7594</issn><eissn>1432-1351</eissn><abstract>Anthropogenic environmental degradation has led to an increase in the frequency and prevalence of aquatic hypoxia (low dissolved oxygen concentration, DO), which may affect habitat quality for water-breathing fishes. The weakly electric black ghost knifefish,
Apteronotus albifrons
, is typically found in well-oxygenated freshwater habitats in South America. Using a shuttle-box design, we exposed juvenile
A. albifrons
to a stepwise decline in DO from normoxia (> 95% air saturation) to extreme hypoxia (10% air saturation) in one compartment and chronic normoxia in the other. On average,
A. albifrons
actively avoided the hypoxic compartment below 22% air saturation. Hypoxia avoidance was correlated with upregulated swimming activity. Following avoidance, fish regularly ventured back briefly into deep hypoxia. Hypoxia did not affect the frequency of their electric organ discharges. Our results show that
A. albifrons
is able to sense hypoxia at non-lethal levels and uses active avoidance to mitigate its adverse effects.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>33751182</pmid><doi>10.1007/s00359-021-01470-w</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2802-5889</orcidid><orcidid>https://orcid.org/0000-0003-1669-6121</orcidid><orcidid>https://orcid.org/0000-0001-9862-2497</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0340-7594 |
ispartof | Journal of Comparative Physiology, 2021-05, Vol.207 (3), p.369-379 |
issn | 0340-7594 1432-1351 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8079295 |
source | MEDLINE; SpringerLink (Online service) |
subjects | Anaerobiosis Animal Physiology Animals Anthropogenic factors Apteronotus albifrons Aquatic habitats Avoidance Avoidance Learning Behavior, Animal Biomedical and Life Sciences Dissolved oxygen Ecosystem Electric Organ - metabolism Electric organs Environmental degradation Environmental quality Fish Fresh Water - chemistry Freshwater environments Gymnotiformes - metabolism Hypoxia Lethal levels Life Sciences Neurosciences Original Paper Oxygen - metabolism Saturation Swimming Water quality Zoology |
title | The weakly electric fish, Apteronotus albifrons, actively avoids experimentally induced hypoxia |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T19%3A31%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20weakly%20electric%20fish,%20Apteronotus%20albifrons,%20actively%20avoids%20experimentally%20induced%20hypoxia&rft.jtitle=Journal%20of%20Comparative%20Physiology&rft.au=Mucha,%20Stefan&rft.date=2021-05-01&rft.volume=207&rft.issue=3&rft.spage=369&rft.epage=379&rft.pages=369-379&rft.issn=0340-7594&rft.eissn=1432-1351&rft_id=info:doi/10.1007/s00359-021-01470-w&rft_dat=%3Cproquest_pubme%3E2504348707%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2518858301&rft_id=info:pmid/33751182&rfr_iscdi=true |