A Data Driven Approach for Prioritizing COVID-19 Vaccinations in the Midwestern United States

Considering the potential for widespread adoption of social vulnerability indices (SVI) to prioritize COVID-19 vaccinations, there is a need to carefully assess them, particularly for correspondence with outcomes (such as loss of life) in the context of the COVID-19 pandemic. The University of Illin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Online journal of public health informatics 2021, Vol.13 (1), p.e5-e5
Hauptverfasser: Arling, Greg, Blaser, Matthew, Cailas, Michael D, Canar, John R, Cooper, Brian, Flax-Hatch, Joel, Geraci, Peter J, Osiecki, Kristin M, Sambanis, Apostolis
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e5
container_issue 1
container_start_page e5
container_title Online journal of public health informatics
container_volume 13
creator Arling, Greg
Blaser, Matthew
Cailas, Michael D
Canar, John R
Cooper, Brian
Flax-Hatch, Joel
Geraci, Peter J
Osiecki, Kristin M
Sambanis, Apostolis
description Considering the potential for widespread adoption of social vulnerability indices (SVI) to prioritize COVID-19 vaccinations, there is a need to carefully assess them, particularly for correspondence with outcomes (such as loss of life) in the context of the COVID-19 pandemic. The University of Illinois at Chicago School of Public Health Public Health GIS team developed a methodology for assessing and deriving vulnerability indices based on the premise that these indices are, in the final analysis, classifiers. Application of this methodology to several Midwestern states with a commonly used SVI indicates that by using only the SVI rankings there is a risk of assigning a high priority to locations with the lowest mortality rates and low priority to locations with the highest mortality rates. Based on the findings, we propose using a two-dimensional approach to rationalize the distribution of vaccinations. This approach has the potential to account for areas with high vulnerability characteristics as well as to incorporate the areas that were hard hit by the pandemic.
doi_str_mv 10.5210/ojphi.v13i1.11621
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8075414</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2521497393</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2441-42959ab5e6e224d048d1ff1549859b378a534ef445a3a858aff9e45a0b5bccad3</originalsourceid><addsrcrecordid>eNpVkU1PGzEQhq2qqEGQH9BL5WMvm-74I7u-VIoSSpFAIAG5Vdas10uMEntrO6ng17NNKKK-jEcz887HQ8hnKCeSQfktPPYrN9kBdzABmDL4QI5BiapgslIf3_1HZJzSYzk8XkkQ8ImMOFd8Ktn0mPya0QVmpIvodtbTWd_HgGZFuxDpTXQhuuyenX-g8-vlxaIARZdojPOYXfCJOk_zytIr1_6xKdvo6b132bb0NmO26ZQcdbhOdvxqT8j9j7O7-c_i8vr8Yj67LAwTAgrBlFTYSDu1jIm2FHULXQdSqFqqhlc1Si5sJ4REjrWsseuUHZyykY0x2PIT8v2g22-bjW2N9TniWvfRbTA-6YBO_x_xbqUfwk7XZSUFiEHg66tADL-3wyp645Kx6zV6G7ZJs-HkQlXD2YZUOKSaGFKKtntrA6X-S0bvyeg9Gb0nM9R8eT_fW8U_DvwFR5WL1A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2521497393</pqid></control><display><type>article</type><title>A Data Driven Approach for Prioritizing COVID-19 Vaccinations in the Midwestern United States</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Arling, Greg ; Blaser, Matthew ; Cailas, Michael D ; Canar, John R ; Cooper, Brian ; Flax-Hatch, Joel ; Geraci, Peter J ; Osiecki, Kristin M ; Sambanis, Apostolis</creator><creatorcontrib>Arling, Greg ; Blaser, Matthew ; Cailas, Michael D ; Canar, John R ; Cooper, Brian ; Flax-Hatch, Joel ; Geraci, Peter J ; Osiecki, Kristin M ; Sambanis, Apostolis</creatorcontrib><description>Considering the potential for widespread adoption of social vulnerability indices (SVI) to prioritize COVID-19 vaccinations, there is a need to carefully assess them, particularly for correspondence with outcomes (such as loss of life) in the context of the COVID-19 pandemic. The University of Illinois at Chicago School of Public Health Public Health GIS team developed a methodology for assessing and deriving vulnerability indices based on the premise that these indices are, in the final analysis, classifiers. Application of this methodology to several Midwestern states with a commonly used SVI indicates that by using only the SVI rankings there is a risk of assigning a high priority to locations with the lowest mortality rates and low priority to locations with the highest mortality rates. Based on the findings, we propose using a two-dimensional approach to rationalize the distribution of vaccinations. This approach has the potential to account for areas with high vulnerability characteristics as well as to incorporate the areas that were hard hit by the pandemic.</description><identifier>ISSN: 1947-2579</identifier><identifier>EISSN: 1947-2579</identifier><identifier>DOI: 10.5210/ojphi.v13i1.11621</identifier><identifier>PMID: 33936526</identifier><language>eng</language><publisher>United States: University of Illinois at Chicago Library</publisher><ispartof>Online journal of public health informatics, 2021, Vol.13 (1), p.e5-e5</ispartof><rights>This is an Open Access article. Authors own copyright of their articles appearing in the Journal of Public Health Informatics. Readers may copy articles without permission of the copyright owner(s), as long as the author and OJPHI are acknowledged in the copy and the copy is used for educational, not-for-profit purposes.</rights><rights>This is an Open Access article. Authors own copyright of their articles appearing in the Journal of Public Health Informatics. Readers may copy articles without permission of the copyright owner(s), as long as the author and OJPHI are acknowledged in the copy and the copy is used for educational, not-for-profit purposes. 2021 2021 the author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2441-42959ab5e6e224d048d1ff1549859b378a534ef445a3a858aff9e45a0b5bccad3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8075414/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8075414/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,860,881,4010,27900,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33936526$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Arling, Greg</creatorcontrib><creatorcontrib>Blaser, Matthew</creatorcontrib><creatorcontrib>Cailas, Michael D</creatorcontrib><creatorcontrib>Canar, John R</creatorcontrib><creatorcontrib>Cooper, Brian</creatorcontrib><creatorcontrib>Flax-Hatch, Joel</creatorcontrib><creatorcontrib>Geraci, Peter J</creatorcontrib><creatorcontrib>Osiecki, Kristin M</creatorcontrib><creatorcontrib>Sambanis, Apostolis</creatorcontrib><title>A Data Driven Approach for Prioritizing COVID-19 Vaccinations in the Midwestern United States</title><title>Online journal of public health informatics</title><addtitle>Online J Public Health Inform</addtitle><description>Considering the potential for widespread adoption of social vulnerability indices (SVI) to prioritize COVID-19 vaccinations, there is a need to carefully assess them, particularly for correspondence with outcomes (such as loss of life) in the context of the COVID-19 pandemic. The University of Illinois at Chicago School of Public Health Public Health GIS team developed a methodology for assessing and deriving vulnerability indices based on the premise that these indices are, in the final analysis, classifiers. Application of this methodology to several Midwestern states with a commonly used SVI indicates that by using only the SVI rankings there is a risk of assigning a high priority to locations with the lowest mortality rates and low priority to locations with the highest mortality rates. Based on the findings, we propose using a two-dimensional approach to rationalize the distribution of vaccinations. This approach has the potential to account for areas with high vulnerability characteristics as well as to incorporate the areas that were hard hit by the pandemic.</description><issn>1947-2579</issn><issn>1947-2579</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpVkU1PGzEQhq2qqEGQH9BL5WMvm-74I7u-VIoSSpFAIAG5Vdas10uMEntrO6ng17NNKKK-jEcz887HQ8hnKCeSQfktPPYrN9kBdzABmDL4QI5BiapgslIf3_1HZJzSYzk8XkkQ8ImMOFd8Ktn0mPya0QVmpIvodtbTWd_HgGZFuxDpTXQhuuyenX-g8-vlxaIARZdojPOYXfCJOk_zytIr1_6xKdvo6b132bb0NmO26ZQcdbhOdvxqT8j9j7O7-c_i8vr8Yj67LAwTAgrBlFTYSDu1jIm2FHULXQdSqFqqhlc1Si5sJ4REjrWsseuUHZyykY0x2PIT8v2g22-bjW2N9TniWvfRbTA-6YBO_x_xbqUfwk7XZSUFiEHg66tADL-3wyp645Kx6zV6G7ZJs-HkQlXD2YZUOKSaGFKKtntrA6X-S0bvyeg9Gb0nM9R8eT_fW8U_DvwFR5WL1A</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Arling, Greg</creator><creator>Blaser, Matthew</creator><creator>Cailas, Michael D</creator><creator>Canar, John R</creator><creator>Cooper, Brian</creator><creator>Flax-Hatch, Joel</creator><creator>Geraci, Peter J</creator><creator>Osiecki, Kristin M</creator><creator>Sambanis, Apostolis</creator><general>University of Illinois at Chicago Library</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>2021</creationdate><title>A Data Driven Approach for Prioritizing COVID-19 Vaccinations in the Midwestern United States</title><author>Arling, Greg ; Blaser, Matthew ; Cailas, Michael D ; Canar, John R ; Cooper, Brian ; Flax-Hatch, Joel ; Geraci, Peter J ; Osiecki, Kristin M ; Sambanis, Apostolis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2441-42959ab5e6e224d048d1ff1549859b378a534ef445a3a858aff9e45a0b5bccad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arling, Greg</creatorcontrib><creatorcontrib>Blaser, Matthew</creatorcontrib><creatorcontrib>Cailas, Michael D</creatorcontrib><creatorcontrib>Canar, John R</creatorcontrib><creatorcontrib>Cooper, Brian</creatorcontrib><creatorcontrib>Flax-Hatch, Joel</creatorcontrib><creatorcontrib>Geraci, Peter J</creatorcontrib><creatorcontrib>Osiecki, Kristin M</creatorcontrib><creatorcontrib>Sambanis, Apostolis</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Online journal of public health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arling, Greg</au><au>Blaser, Matthew</au><au>Cailas, Michael D</au><au>Canar, John R</au><au>Cooper, Brian</au><au>Flax-Hatch, Joel</au><au>Geraci, Peter J</au><au>Osiecki, Kristin M</au><au>Sambanis, Apostolis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Data Driven Approach for Prioritizing COVID-19 Vaccinations in the Midwestern United States</atitle><jtitle>Online journal of public health informatics</jtitle><addtitle>Online J Public Health Inform</addtitle><date>2021</date><risdate>2021</risdate><volume>13</volume><issue>1</issue><spage>e5</spage><epage>e5</epage><pages>e5-e5</pages><issn>1947-2579</issn><eissn>1947-2579</eissn><abstract>Considering the potential for widespread adoption of social vulnerability indices (SVI) to prioritize COVID-19 vaccinations, there is a need to carefully assess them, particularly for correspondence with outcomes (such as loss of life) in the context of the COVID-19 pandemic. The University of Illinois at Chicago School of Public Health Public Health GIS team developed a methodology for assessing and deriving vulnerability indices based on the premise that these indices are, in the final analysis, classifiers. Application of this methodology to several Midwestern states with a commonly used SVI indicates that by using only the SVI rankings there is a risk of assigning a high priority to locations with the lowest mortality rates and low priority to locations with the highest mortality rates. Based on the findings, we propose using a two-dimensional approach to rationalize the distribution of vaccinations. This approach has the potential to account for areas with high vulnerability characteristics as well as to incorporate the areas that were hard hit by the pandemic.</abstract><cop>United States</cop><pub>University of Illinois at Chicago Library</pub><pmid>33936526</pmid><doi>10.5210/ojphi.v13i1.11621</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1947-2579
ispartof Online journal of public health informatics, 2021, Vol.13 (1), p.e5-e5
issn 1947-2579
1947-2579
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8075414
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
title A Data Driven Approach for Prioritizing COVID-19 Vaccinations in the Midwestern United States
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T01%3A30%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Data%20Driven%20Approach%20for%20Prioritizing%20COVID-19%20Vaccinations%20in%20the%20Midwestern%20United%20States&rft.jtitle=Online%20journal%20of%20public%20health%20informatics&rft.au=Arling,%20Greg&rft.date=2021&rft.volume=13&rft.issue=1&rft.spage=e5&rft.epage=e5&rft.pages=e5-e5&rft.issn=1947-2579&rft.eissn=1947-2579&rft_id=info:doi/10.5210/ojphi.v13i1.11621&rft_dat=%3Cproquest_pubme%3E2521497393%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2521497393&rft_id=info:pmid/33936526&rfr_iscdi=true