Trained Immunity-Promoting Nanobiologic Therapy Suppresses Tumor Growth and Potentiates Checkpoint Inhibition
Trained immunity, a functional state of myeloid cells, has been proposed as a compelling immune-oncological target. Its efficient induction requires direct engagement of myeloid progenitors in the bone marrow. For this purpose, we developed a bone marrow-avid nanobiologic platform designed specifica...
Gespeichert in:
Veröffentlicht in: | Cell 2020-10, Vol.183 (3), p.786-801.e19 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 801.e19 |
---|---|
container_issue | 3 |
container_start_page | 786 |
container_title | Cell |
container_volume | 183 |
creator | Priem, Bram van Leent, Mandy M.T. Teunissen, Abraham J.P. Sofias, Alexandros Marios Mourits, Vera P. Willemsen, Lisa Klein, Emma D. Oosterwijk, Roderick S. Meerwaldt, Anu E. Munitz, Jazz Prévot, Geoffrey Vera Verschuur, Anna Nauta, Sheqouia A. van Leeuwen, Esther M. Fisher, Elizabeth L. de Jong, Karen A.M. Zhao, Yiming Toner, Yohana C. Soultanidis, Georgios Calcagno, Claudia Bomans, Paul H.H. Friedrich, Heiner Sommerdijk, Nico Reiner, Thomas Duivenvoorden, Raphaël Zupančič, Eva Di Martino, Julie S. Kluza, Ewelina Rashidian, Mohammad Ploegh, Hidde L. Dijkhuizen, Rick M. Hak, Sjoerd Pérez-Medina, Carlos Bravo-Cordero, Jose Javier de Winther, Menno P.J. Joosten, Leo A.B. van Elsas, Andrea Fayad, Zahi A. Rialdi, Alexander Torre, Denis Guccione, Ernesto Ochando, Jordi Netea, Mihai G. Griffioen, Arjan W. Mulder, Willem J.M. |
description | Trained immunity, a functional state of myeloid cells, has been proposed as a compelling immune-oncological target. Its efficient induction requires direct engagement of myeloid progenitors in the bone marrow. For this purpose, we developed a bone marrow-avid nanobiologic platform designed specifically to induce trained immunity. We established the potent anti-tumor capabilities of our lead candidate MTP10-HDL in a B16F10 mouse melanoma model. These anti-tumor effects result from trained immunity-induced myelopoiesis caused by epigenetic rewiring of multipotent progenitors in the bone marrow, which overcomes the immunosuppressive tumor microenvironment. Furthermore, MTP10-HDL nanotherapy potentiates checkpoint inhibition in this melanoma model refractory to anti-PD-1 and anti-CTLA-4 therapy. Finally, we determined MTP10-HDL’s favorable biodistribution and safety profile in non-human primates. In conclusion, we show that rationally designed nanobiologics can promote trained immunity and elicit a durable anti-tumor response either as a monotherapy or in combination with checkpoint inhibitor drugs.
[Display omitted]
•We have developed a trained immunity-inducing nanobiologic therapeutic named MTP-HDL•MTP-HDL favorably accumulates in hematopoietic organs of mice and non-human primates•MTP-HDL nanotherapy induces trained immunity through bone marrow progenitors in vivo•MTP-HDL nanotherapy inhibits tumor growth and potentiates immune checkpoint inhibition
A bone marrow targeted nanobiologic platform that is designed to elicit trained immunity responses has the ability to reduce tumor growth and augment immune checkpoint blockade. |
doi_str_mv | 10.1016/j.cell.2020.09.059 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8074872</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0092867420313003</els_id><sourcerecordid>2456410785</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-36bffe3976cddb5701611651eb02642d4a60ba6cf8a99eec315fe76687a50a033</originalsourceid><addsrcrecordid>eNp9UU1v1DAQtRCILoU_wAHlyCXp2IntREJIaFXKShVUYjlbjjPZeNnYwXaK9t-T1ZaqXDjN4X3MzHuEvKVQUKDial8YPBwKBgwKaArgzTOyotDIvKKSPScrgIbltZDVBXkV4x4Aas75S3JRlpTxuilXZNwGbR122WYcZ2fTMb8LfvTJul32VTvfWn_wO2uy7YBBT8fs-zxNAWPEmG3n0YfsJvjfaci067I7n9Alq9MCrgc0PydvXco2brCtTda71-RFrw8R3zzMS_Lj8_V2_SW__XazWX-6zQ2HKuWlaPsey0YK03Utl8uzlApOsQUmKtZVWkCrhelr3TSIpqS8RylELTUHDWV5ST6efae5HbEzy1VBH9QU7KjDUXlt1b-Is4Pa-XtVg6xqyRaD9w8Gwf-aMSY12nhKWzv0c1Ss4qKiIGu-UNmZaoKPMWD_uIaCOvWk9uqkVKeeFDRq6WkRvXt64KPkbzEL4cOZgEtM9xaDisaiM9jZgCapztv_-f8B9Vmnxg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2456410785</pqid></control><display><type>article</type><title>Trained Immunity-Promoting Nanobiologic Therapy Suppresses Tumor Growth and Potentiates Checkpoint Inhibition</title><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Priem, Bram ; van Leent, Mandy M.T. ; Teunissen, Abraham J.P. ; Sofias, Alexandros Marios ; Mourits, Vera P. ; Willemsen, Lisa ; Klein, Emma D. ; Oosterwijk, Roderick S. ; Meerwaldt, Anu E. ; Munitz, Jazz ; Prévot, Geoffrey ; Vera Verschuur, Anna ; Nauta, Sheqouia A. ; van Leeuwen, Esther M. ; Fisher, Elizabeth L. ; de Jong, Karen A.M. ; Zhao, Yiming ; Toner, Yohana C. ; Soultanidis, Georgios ; Calcagno, Claudia ; Bomans, Paul H.H. ; Friedrich, Heiner ; Sommerdijk, Nico ; Reiner, Thomas ; Duivenvoorden, Raphaël ; Zupančič, Eva ; Di Martino, Julie S. ; Kluza, Ewelina ; Rashidian, Mohammad ; Ploegh, Hidde L. ; Dijkhuizen, Rick M. ; Hak, Sjoerd ; Pérez-Medina, Carlos ; Bravo-Cordero, Jose Javier ; de Winther, Menno P.J. ; Joosten, Leo A.B. ; van Elsas, Andrea ; Fayad, Zahi A. ; Rialdi, Alexander ; Torre, Denis ; Guccione, Ernesto ; Ochando, Jordi ; Netea, Mihai G. ; Griffioen, Arjan W. ; Mulder, Willem J.M.</creator><creatorcontrib>Priem, Bram ; van Leent, Mandy M.T. ; Teunissen, Abraham J.P. ; Sofias, Alexandros Marios ; Mourits, Vera P. ; Willemsen, Lisa ; Klein, Emma D. ; Oosterwijk, Roderick S. ; Meerwaldt, Anu E. ; Munitz, Jazz ; Prévot, Geoffrey ; Vera Verschuur, Anna ; Nauta, Sheqouia A. ; van Leeuwen, Esther M. ; Fisher, Elizabeth L. ; de Jong, Karen A.M. ; Zhao, Yiming ; Toner, Yohana C. ; Soultanidis, Georgios ; Calcagno, Claudia ; Bomans, Paul H.H. ; Friedrich, Heiner ; Sommerdijk, Nico ; Reiner, Thomas ; Duivenvoorden, Raphaël ; Zupančič, Eva ; Di Martino, Julie S. ; Kluza, Ewelina ; Rashidian, Mohammad ; Ploegh, Hidde L. ; Dijkhuizen, Rick M. ; Hak, Sjoerd ; Pérez-Medina, Carlos ; Bravo-Cordero, Jose Javier ; de Winther, Menno P.J. ; Joosten, Leo A.B. ; van Elsas, Andrea ; Fayad, Zahi A. ; Rialdi, Alexander ; Torre, Denis ; Guccione, Ernesto ; Ochando, Jordi ; Netea, Mihai G. ; Griffioen, Arjan W. ; Mulder, Willem J.M.</creatorcontrib><description>Trained immunity, a functional state of myeloid cells, has been proposed as a compelling immune-oncological target. Its efficient induction requires direct engagement of myeloid progenitors in the bone marrow. For this purpose, we developed a bone marrow-avid nanobiologic platform designed specifically to induce trained immunity. We established the potent anti-tumor capabilities of our lead candidate MTP10-HDL in a B16F10 mouse melanoma model. These anti-tumor effects result from trained immunity-induced myelopoiesis caused by epigenetic rewiring of multipotent progenitors in the bone marrow, which overcomes the immunosuppressive tumor microenvironment. Furthermore, MTP10-HDL nanotherapy potentiates checkpoint inhibition in this melanoma model refractory to anti-PD-1 and anti-CTLA-4 therapy. Finally, we determined MTP10-HDL’s favorable biodistribution and safety profile in non-human primates. In conclusion, we show that rationally designed nanobiologics can promote trained immunity and elicit a durable anti-tumor response either as a monotherapy or in combination with checkpoint inhibitor drugs.
[Display omitted]
•We have developed a trained immunity-inducing nanobiologic therapeutic named MTP-HDL•MTP-HDL favorably accumulates in hematopoietic organs of mice and non-human primates•MTP-HDL nanotherapy induces trained immunity through bone marrow progenitors in vivo•MTP-HDL nanotherapy inhibits tumor growth and potentiates immune checkpoint inhibition
A bone marrow targeted nanobiologic platform that is designed to elicit trained immunity responses has the ability to reduce tumor growth and augment immune checkpoint blockade.</description><identifier>ISSN: 0092-8674</identifier><identifier>EISSN: 1097-4172</identifier><identifier>DOI: 10.1016/j.cell.2020.09.059</identifier><identifier>PMID: 33125893</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>cancer ; checkpoint inhibitors ; immunotherapy ; innate immunity ; melanoma ; myeloid cells ; nanobiologics ; nanomedicine ; nanotechnology ; trained immunity</subject><ispartof>Cell, 2020-10, Vol.183 (3), p.786-801.e19</ispartof><rights>2020 Elsevier Inc.</rights><rights>Copyright © 2020 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-36bffe3976cddb5701611651eb02642d4a60ba6cf8a99eec315fe76687a50a033</citedby><cites>FETCH-LOGICAL-c504t-36bffe3976cddb5701611651eb02642d4a60ba6cf8a99eec315fe76687a50a033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0092867420313003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33125893$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Priem, Bram</creatorcontrib><creatorcontrib>van Leent, Mandy M.T.</creatorcontrib><creatorcontrib>Teunissen, Abraham J.P.</creatorcontrib><creatorcontrib>Sofias, Alexandros Marios</creatorcontrib><creatorcontrib>Mourits, Vera P.</creatorcontrib><creatorcontrib>Willemsen, Lisa</creatorcontrib><creatorcontrib>Klein, Emma D.</creatorcontrib><creatorcontrib>Oosterwijk, Roderick S.</creatorcontrib><creatorcontrib>Meerwaldt, Anu E.</creatorcontrib><creatorcontrib>Munitz, Jazz</creatorcontrib><creatorcontrib>Prévot, Geoffrey</creatorcontrib><creatorcontrib>Vera Verschuur, Anna</creatorcontrib><creatorcontrib>Nauta, Sheqouia A.</creatorcontrib><creatorcontrib>van Leeuwen, Esther M.</creatorcontrib><creatorcontrib>Fisher, Elizabeth L.</creatorcontrib><creatorcontrib>de Jong, Karen A.M.</creatorcontrib><creatorcontrib>Zhao, Yiming</creatorcontrib><creatorcontrib>Toner, Yohana C.</creatorcontrib><creatorcontrib>Soultanidis, Georgios</creatorcontrib><creatorcontrib>Calcagno, Claudia</creatorcontrib><creatorcontrib>Bomans, Paul H.H.</creatorcontrib><creatorcontrib>Friedrich, Heiner</creatorcontrib><creatorcontrib>Sommerdijk, Nico</creatorcontrib><creatorcontrib>Reiner, Thomas</creatorcontrib><creatorcontrib>Duivenvoorden, Raphaël</creatorcontrib><creatorcontrib>Zupančič, Eva</creatorcontrib><creatorcontrib>Di Martino, Julie S.</creatorcontrib><creatorcontrib>Kluza, Ewelina</creatorcontrib><creatorcontrib>Rashidian, Mohammad</creatorcontrib><creatorcontrib>Ploegh, Hidde L.</creatorcontrib><creatorcontrib>Dijkhuizen, Rick M.</creatorcontrib><creatorcontrib>Hak, Sjoerd</creatorcontrib><creatorcontrib>Pérez-Medina, Carlos</creatorcontrib><creatorcontrib>Bravo-Cordero, Jose Javier</creatorcontrib><creatorcontrib>de Winther, Menno P.J.</creatorcontrib><creatorcontrib>Joosten, Leo A.B.</creatorcontrib><creatorcontrib>van Elsas, Andrea</creatorcontrib><creatorcontrib>Fayad, Zahi A.</creatorcontrib><creatorcontrib>Rialdi, Alexander</creatorcontrib><creatorcontrib>Torre, Denis</creatorcontrib><creatorcontrib>Guccione, Ernesto</creatorcontrib><creatorcontrib>Ochando, Jordi</creatorcontrib><creatorcontrib>Netea, Mihai G.</creatorcontrib><creatorcontrib>Griffioen, Arjan W.</creatorcontrib><creatorcontrib>Mulder, Willem J.M.</creatorcontrib><title>Trained Immunity-Promoting Nanobiologic Therapy Suppresses Tumor Growth and Potentiates Checkpoint Inhibition</title><title>Cell</title><addtitle>Cell</addtitle><description>Trained immunity, a functional state of myeloid cells, has been proposed as a compelling immune-oncological target. Its efficient induction requires direct engagement of myeloid progenitors in the bone marrow. For this purpose, we developed a bone marrow-avid nanobiologic platform designed specifically to induce trained immunity. We established the potent anti-tumor capabilities of our lead candidate MTP10-HDL in a B16F10 mouse melanoma model. These anti-tumor effects result from trained immunity-induced myelopoiesis caused by epigenetic rewiring of multipotent progenitors in the bone marrow, which overcomes the immunosuppressive tumor microenvironment. Furthermore, MTP10-HDL nanotherapy potentiates checkpoint inhibition in this melanoma model refractory to anti-PD-1 and anti-CTLA-4 therapy. Finally, we determined MTP10-HDL’s favorable biodistribution and safety profile in non-human primates. In conclusion, we show that rationally designed nanobiologics can promote trained immunity and elicit a durable anti-tumor response either as a monotherapy or in combination with checkpoint inhibitor drugs.
[Display omitted]
•We have developed a trained immunity-inducing nanobiologic therapeutic named MTP-HDL•MTP-HDL favorably accumulates in hematopoietic organs of mice and non-human primates•MTP-HDL nanotherapy induces trained immunity through bone marrow progenitors in vivo•MTP-HDL nanotherapy inhibits tumor growth and potentiates immune checkpoint inhibition
A bone marrow targeted nanobiologic platform that is designed to elicit trained immunity responses has the ability to reduce tumor growth and augment immune checkpoint blockade.</description><subject>cancer</subject><subject>checkpoint inhibitors</subject><subject>immunotherapy</subject><subject>innate immunity</subject><subject>melanoma</subject><subject>myeloid cells</subject><subject>nanobiologics</subject><subject>nanomedicine</subject><subject>nanotechnology</subject><subject>trained immunity</subject><issn>0092-8674</issn><issn>1097-4172</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UU1v1DAQtRCILoU_wAHlyCXp2IntREJIaFXKShVUYjlbjjPZeNnYwXaK9t-T1ZaqXDjN4X3MzHuEvKVQUKDial8YPBwKBgwKaArgzTOyotDIvKKSPScrgIbltZDVBXkV4x4Aas75S3JRlpTxuilXZNwGbR122WYcZ2fTMb8LfvTJul32VTvfWn_wO2uy7YBBT8fs-zxNAWPEmG3n0YfsJvjfaci067I7n9Alq9MCrgc0PydvXco2brCtTda71-RFrw8R3zzMS_Lj8_V2_SW__XazWX-6zQ2HKuWlaPsey0YK03Utl8uzlApOsQUmKtZVWkCrhelr3TSIpqS8RylELTUHDWV5ST6efae5HbEzy1VBH9QU7KjDUXlt1b-Is4Pa-XtVg6xqyRaD9w8Gwf-aMSY12nhKWzv0c1Ss4qKiIGu-UNmZaoKPMWD_uIaCOvWk9uqkVKeeFDRq6WkRvXt64KPkbzEL4cOZgEtM9xaDisaiM9jZgCapztv_-f8B9Vmnxg</recordid><startdate>20201029</startdate><enddate>20201029</enddate><creator>Priem, Bram</creator><creator>van Leent, Mandy M.T.</creator><creator>Teunissen, Abraham J.P.</creator><creator>Sofias, Alexandros Marios</creator><creator>Mourits, Vera P.</creator><creator>Willemsen, Lisa</creator><creator>Klein, Emma D.</creator><creator>Oosterwijk, Roderick S.</creator><creator>Meerwaldt, Anu E.</creator><creator>Munitz, Jazz</creator><creator>Prévot, Geoffrey</creator><creator>Vera Verschuur, Anna</creator><creator>Nauta, Sheqouia A.</creator><creator>van Leeuwen, Esther M.</creator><creator>Fisher, Elizabeth L.</creator><creator>de Jong, Karen A.M.</creator><creator>Zhao, Yiming</creator><creator>Toner, Yohana C.</creator><creator>Soultanidis, Georgios</creator><creator>Calcagno, Claudia</creator><creator>Bomans, Paul H.H.</creator><creator>Friedrich, Heiner</creator><creator>Sommerdijk, Nico</creator><creator>Reiner, Thomas</creator><creator>Duivenvoorden, Raphaël</creator><creator>Zupančič, Eva</creator><creator>Di Martino, Julie S.</creator><creator>Kluza, Ewelina</creator><creator>Rashidian, Mohammad</creator><creator>Ploegh, Hidde L.</creator><creator>Dijkhuizen, Rick M.</creator><creator>Hak, Sjoerd</creator><creator>Pérez-Medina, Carlos</creator><creator>Bravo-Cordero, Jose Javier</creator><creator>de Winther, Menno P.J.</creator><creator>Joosten, Leo A.B.</creator><creator>van Elsas, Andrea</creator><creator>Fayad, Zahi A.</creator><creator>Rialdi, Alexander</creator><creator>Torre, Denis</creator><creator>Guccione, Ernesto</creator><creator>Ochando, Jordi</creator><creator>Netea, Mihai G.</creator><creator>Griffioen, Arjan W.</creator><creator>Mulder, Willem J.M.</creator><general>Elsevier Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20201029</creationdate><title>Trained Immunity-Promoting Nanobiologic Therapy Suppresses Tumor Growth and Potentiates Checkpoint Inhibition</title><author>Priem, Bram ; van Leent, Mandy M.T. ; Teunissen, Abraham J.P. ; Sofias, Alexandros Marios ; Mourits, Vera P. ; Willemsen, Lisa ; Klein, Emma D. ; Oosterwijk, Roderick S. ; Meerwaldt, Anu E. ; Munitz, Jazz ; Prévot, Geoffrey ; Vera Verschuur, Anna ; Nauta, Sheqouia A. ; van Leeuwen, Esther M. ; Fisher, Elizabeth L. ; de Jong, Karen A.M. ; Zhao, Yiming ; Toner, Yohana C. ; Soultanidis, Georgios ; Calcagno, Claudia ; Bomans, Paul H.H. ; Friedrich, Heiner ; Sommerdijk, Nico ; Reiner, Thomas ; Duivenvoorden, Raphaël ; Zupančič, Eva ; Di Martino, Julie S. ; Kluza, Ewelina ; Rashidian, Mohammad ; Ploegh, Hidde L. ; Dijkhuizen, Rick M. ; Hak, Sjoerd ; Pérez-Medina, Carlos ; Bravo-Cordero, Jose Javier ; de Winther, Menno P.J. ; Joosten, Leo A.B. ; van Elsas, Andrea ; Fayad, Zahi A. ; Rialdi, Alexander ; Torre, Denis ; Guccione, Ernesto ; Ochando, Jordi ; Netea, Mihai G. ; Griffioen, Arjan W. ; Mulder, Willem J.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-36bffe3976cddb5701611651eb02642d4a60ba6cf8a99eec315fe76687a50a033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>cancer</topic><topic>checkpoint inhibitors</topic><topic>immunotherapy</topic><topic>innate immunity</topic><topic>melanoma</topic><topic>myeloid cells</topic><topic>nanobiologics</topic><topic>nanomedicine</topic><topic>nanotechnology</topic><topic>trained immunity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Priem, Bram</creatorcontrib><creatorcontrib>van Leent, Mandy M.T.</creatorcontrib><creatorcontrib>Teunissen, Abraham J.P.</creatorcontrib><creatorcontrib>Sofias, Alexandros Marios</creatorcontrib><creatorcontrib>Mourits, Vera P.</creatorcontrib><creatorcontrib>Willemsen, Lisa</creatorcontrib><creatorcontrib>Klein, Emma D.</creatorcontrib><creatorcontrib>Oosterwijk, Roderick S.</creatorcontrib><creatorcontrib>Meerwaldt, Anu E.</creatorcontrib><creatorcontrib>Munitz, Jazz</creatorcontrib><creatorcontrib>Prévot, Geoffrey</creatorcontrib><creatorcontrib>Vera Verschuur, Anna</creatorcontrib><creatorcontrib>Nauta, Sheqouia A.</creatorcontrib><creatorcontrib>van Leeuwen, Esther M.</creatorcontrib><creatorcontrib>Fisher, Elizabeth L.</creatorcontrib><creatorcontrib>de Jong, Karen A.M.</creatorcontrib><creatorcontrib>Zhao, Yiming</creatorcontrib><creatorcontrib>Toner, Yohana C.</creatorcontrib><creatorcontrib>Soultanidis, Georgios</creatorcontrib><creatorcontrib>Calcagno, Claudia</creatorcontrib><creatorcontrib>Bomans, Paul H.H.</creatorcontrib><creatorcontrib>Friedrich, Heiner</creatorcontrib><creatorcontrib>Sommerdijk, Nico</creatorcontrib><creatorcontrib>Reiner, Thomas</creatorcontrib><creatorcontrib>Duivenvoorden, Raphaël</creatorcontrib><creatorcontrib>Zupančič, Eva</creatorcontrib><creatorcontrib>Di Martino, Julie S.</creatorcontrib><creatorcontrib>Kluza, Ewelina</creatorcontrib><creatorcontrib>Rashidian, Mohammad</creatorcontrib><creatorcontrib>Ploegh, Hidde L.</creatorcontrib><creatorcontrib>Dijkhuizen, Rick M.</creatorcontrib><creatorcontrib>Hak, Sjoerd</creatorcontrib><creatorcontrib>Pérez-Medina, Carlos</creatorcontrib><creatorcontrib>Bravo-Cordero, Jose Javier</creatorcontrib><creatorcontrib>de Winther, Menno P.J.</creatorcontrib><creatorcontrib>Joosten, Leo A.B.</creatorcontrib><creatorcontrib>van Elsas, Andrea</creatorcontrib><creatorcontrib>Fayad, Zahi A.</creatorcontrib><creatorcontrib>Rialdi, Alexander</creatorcontrib><creatorcontrib>Torre, Denis</creatorcontrib><creatorcontrib>Guccione, Ernesto</creatorcontrib><creatorcontrib>Ochando, Jordi</creatorcontrib><creatorcontrib>Netea, Mihai G.</creatorcontrib><creatorcontrib>Griffioen, Arjan W.</creatorcontrib><creatorcontrib>Mulder, Willem J.M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Priem, Bram</au><au>van Leent, Mandy M.T.</au><au>Teunissen, Abraham J.P.</au><au>Sofias, Alexandros Marios</au><au>Mourits, Vera P.</au><au>Willemsen, Lisa</au><au>Klein, Emma D.</au><au>Oosterwijk, Roderick S.</au><au>Meerwaldt, Anu E.</au><au>Munitz, Jazz</au><au>Prévot, Geoffrey</au><au>Vera Verschuur, Anna</au><au>Nauta, Sheqouia A.</au><au>van Leeuwen, Esther M.</au><au>Fisher, Elizabeth L.</au><au>de Jong, Karen A.M.</au><au>Zhao, Yiming</au><au>Toner, Yohana C.</au><au>Soultanidis, Georgios</au><au>Calcagno, Claudia</au><au>Bomans, Paul H.H.</au><au>Friedrich, Heiner</au><au>Sommerdijk, Nico</au><au>Reiner, Thomas</au><au>Duivenvoorden, Raphaël</au><au>Zupančič, Eva</au><au>Di Martino, Julie S.</au><au>Kluza, Ewelina</au><au>Rashidian, Mohammad</au><au>Ploegh, Hidde L.</au><au>Dijkhuizen, Rick M.</au><au>Hak, Sjoerd</au><au>Pérez-Medina, Carlos</au><au>Bravo-Cordero, Jose Javier</au><au>de Winther, Menno P.J.</au><au>Joosten, Leo A.B.</au><au>van Elsas, Andrea</au><au>Fayad, Zahi A.</au><au>Rialdi, Alexander</au><au>Torre, Denis</au><au>Guccione, Ernesto</au><au>Ochando, Jordi</au><au>Netea, Mihai G.</au><au>Griffioen, Arjan W.</au><au>Mulder, Willem J.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Trained Immunity-Promoting Nanobiologic Therapy Suppresses Tumor Growth and Potentiates Checkpoint Inhibition</atitle><jtitle>Cell</jtitle><addtitle>Cell</addtitle><date>2020-10-29</date><risdate>2020</risdate><volume>183</volume><issue>3</issue><spage>786</spage><epage>801.e19</epage><pages>786-801.e19</pages><issn>0092-8674</issn><eissn>1097-4172</eissn><abstract>Trained immunity, a functional state of myeloid cells, has been proposed as a compelling immune-oncological target. Its efficient induction requires direct engagement of myeloid progenitors in the bone marrow. For this purpose, we developed a bone marrow-avid nanobiologic platform designed specifically to induce trained immunity. We established the potent anti-tumor capabilities of our lead candidate MTP10-HDL in a B16F10 mouse melanoma model. These anti-tumor effects result from trained immunity-induced myelopoiesis caused by epigenetic rewiring of multipotent progenitors in the bone marrow, which overcomes the immunosuppressive tumor microenvironment. Furthermore, MTP10-HDL nanotherapy potentiates checkpoint inhibition in this melanoma model refractory to anti-PD-1 and anti-CTLA-4 therapy. Finally, we determined MTP10-HDL’s favorable biodistribution and safety profile in non-human primates. In conclusion, we show that rationally designed nanobiologics can promote trained immunity and elicit a durable anti-tumor response either as a monotherapy or in combination with checkpoint inhibitor drugs.
[Display omitted]
•We have developed a trained immunity-inducing nanobiologic therapeutic named MTP-HDL•MTP-HDL favorably accumulates in hematopoietic organs of mice and non-human primates•MTP-HDL nanotherapy induces trained immunity through bone marrow progenitors in vivo•MTP-HDL nanotherapy inhibits tumor growth and potentiates immune checkpoint inhibition
A bone marrow targeted nanobiologic platform that is designed to elicit trained immunity responses has the ability to reduce tumor growth and augment immune checkpoint blockade.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>33125893</pmid><doi>10.1016/j.cell.2020.09.059</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0092-8674 |
ispartof | Cell, 2020-10, Vol.183 (3), p.786-801.e19 |
issn | 0092-8674 1097-4172 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8074872 |
source | Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | cancer checkpoint inhibitors immunotherapy innate immunity melanoma myeloid cells nanobiologics nanomedicine nanotechnology trained immunity |
title | Trained Immunity-Promoting Nanobiologic Therapy Suppresses Tumor Growth and Potentiates Checkpoint Inhibition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T18%3A16%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Trained%20Immunity-Promoting%20Nanobiologic%20Therapy%20Suppresses%20Tumor%20Growth%20and%20Potentiates%20Checkpoint%20Inhibition&rft.jtitle=Cell&rft.au=Priem,%20Bram&rft.date=2020-10-29&rft.volume=183&rft.issue=3&rft.spage=786&rft.epage=801.e19&rft.pages=786-801.e19&rft.issn=0092-8674&rft.eissn=1097-4172&rft_id=info:doi/10.1016/j.cell.2020.09.059&rft_dat=%3Cproquest_pubme%3E2456410785%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2456410785&rft_id=info:pmid/33125893&rft_els_id=S0092867420313003&rfr_iscdi=true |