A Micro-Computed Tomography Comparison of the Porosity in Additively Fabricated CuCr1 Alloy Parts Using Virgin and Surface-Modified Powders

Recently, the use of novel CuCr1 surface-modified powder for reliable laser powder-bed fusion (LPBF) manufacturing has been proposed, enabling a broader LPBF processing window and longer powder storage life. Nevertheless, virgin CuCr1 powder is also LPBF processable, on the condition that a high-ene...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2021-04, Vol.14 (8), p.1995
Hauptverfasser: Sinico, Mirko, Jadhav, Suraj Dinkar, Witvrouw, Ann, Vanmeensel, Kim, Dewulf, Wim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page 1995
container_title Materials
container_volume 14
creator Sinico, Mirko
Jadhav, Suraj Dinkar
Witvrouw, Ann
Vanmeensel, Kim
Dewulf, Wim
description Recently, the use of novel CuCr1 surface-modified powder for reliable laser powder-bed fusion (LPBF) manufacturing has been proposed, enabling a broader LPBF processing window and longer powder storage life. Nevertheless, virgin CuCr1 powder is also LPBF processable, on the condition that a high-energy density is employed. In this work, we compare two dense specimens produced from virgin and surface-modified CuCr1 powder. Furthermore, a third sample fabricated from surface-modified powder is characterized to understand an abnormal porosity content initially detected through Archimedes testing. Utilizing high-resolution micro-CT scans, the nature of the defects present in the different samples is revealed. Pores are analyzed in terms of size, morphology and spatial distribution. The micro-CT data reveal that the virgin CuCr1 dense specimen displays keyhole pores plus pit cavities spanning multiple layer thicknesses. On the other hand, the sample fabricated with the surface-modified CuCr1 powder mainly contains small and spherical equi-distributed metallurgical defects. Finally, the CT analysis of the third specimen reveals the presence of a W contamination, favoring lack-of-fusion pores between subsequent LPBF layers. The LPBF melting mode (keyhole or conductive), the properties of the material, and the potential presence of contaminants are connected to the different porosity types and discussed.
doi_str_mv 10.3390/ma14081995
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8072991</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2520851856</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-6b8f9d533ac9ba4726e34c1ca022351dc5557aa1c3ebfca215cf89b076e9a5483</originalsourceid><addsrcrecordid>eNpdkd1q3DAQhUVpaUKamz5AEfSmFJzq15ZuCotJ2kJCFpr0VoxleVfBtraSneJn6EtX2_w0zdzMMPrOYcRB6C0lJ5xr8mkAKoiiWssX6DC3sqBaiJdP5gN0nNINycU5VUy_RgdZybjQ8hD9XuELb2Mo6jDs5sm1-CoMYRNht13wfgfRpzDi0OFp6_A6xJD8tGA_4lXb-snfun7BZ9BEb2Evr-c6Urzq-7DgNcQp4evkxw3-4eMmi2Bs8fc5dmBdcRFa3_msWYdfrYvpDXrVQZ_c8X0_Qtdnp1f11-L88su3enVeWEHKqSgb1elWcg5WNyAqVjouLLVAGOOStlZKWQFQy13TWWBU2k7phlSl0yCF4kfo853vbm4G11o3ThF6s4t-gLiYAN78_zL6rdmEW6NIxbSm2eDDvUEMP2eXJjP4ZF3fw-jCnAyTjChJlSwz-v4ZehPmOObvZUqoinH2l_p4R-UkUoquezyGErOP2fyLOcPvnp7_iD6Eyv8Ag0ekTw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548723256</pqid></control><display><type>article</type><title>A Micro-Computed Tomography Comparison of the Porosity in Additively Fabricated CuCr1 Alloy Parts Using Virgin and Surface-Modified Powders</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PMC (PubMed Central)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Sinico, Mirko ; Jadhav, Suraj Dinkar ; Witvrouw, Ann ; Vanmeensel, Kim ; Dewulf, Wim</creator><creatorcontrib>Sinico, Mirko ; Jadhav, Suraj Dinkar ; Witvrouw, Ann ; Vanmeensel, Kim ; Dewulf, Wim</creatorcontrib><description>Recently, the use of novel CuCr1 surface-modified powder for reliable laser powder-bed fusion (LPBF) manufacturing has been proposed, enabling a broader LPBF processing window and longer powder storage life. Nevertheless, virgin CuCr1 powder is also LPBF processable, on the condition that a high-energy density is employed. In this work, we compare two dense specimens produced from virgin and surface-modified CuCr1 powder. Furthermore, a third sample fabricated from surface-modified powder is characterized to understand an abnormal porosity content initially detected through Archimedes testing. Utilizing high-resolution micro-CT scans, the nature of the defects present in the different samples is revealed. Pores are analyzed in terms of size, morphology and spatial distribution. The micro-CT data reveal that the virgin CuCr1 dense specimen displays keyhole pores plus pit cavities spanning multiple layer thicknesses. On the other hand, the sample fabricated with the surface-modified CuCr1 powder mainly contains small and spherical equi-distributed metallurgical defects. Finally, the CT analysis of the third specimen reveals the presence of a W contamination, favoring lack-of-fusion pores between subsequent LPBF layers. The LPBF melting mode (keyhole or conductive), the properties of the material, and the potential presence of contaminants are connected to the different porosity types and discussed.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma14081995</identifier><identifier>PMID: 33923495</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Computed tomography ; Contaminants ; Copper base alloys ; Defects ; Flux density ; Lasers ; Medical imaging ; Melting ; Metallurgical analysis ; Porosity ; Radiation ; Spatial distribution ; Storage life ; Stress concentration ; Thickness</subject><ispartof>Materials, 2021-04, Vol.14 (8), p.1995</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-6b8f9d533ac9ba4726e34c1ca022351dc5557aa1c3ebfca215cf89b076e9a5483</citedby><cites>FETCH-LOGICAL-c406t-6b8f9d533ac9ba4726e34c1ca022351dc5557aa1c3ebfca215cf89b076e9a5483</cites><orcidid>0000-0001-5189-7055 ; 0000-0002-5246-8276 ; 0000-0002-9184-051X ; 0000-0003-3693-9290 ; 0000-0002-1613-1713</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8072991/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8072991/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33923495$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sinico, Mirko</creatorcontrib><creatorcontrib>Jadhav, Suraj Dinkar</creatorcontrib><creatorcontrib>Witvrouw, Ann</creatorcontrib><creatorcontrib>Vanmeensel, Kim</creatorcontrib><creatorcontrib>Dewulf, Wim</creatorcontrib><title>A Micro-Computed Tomography Comparison of the Porosity in Additively Fabricated CuCr1 Alloy Parts Using Virgin and Surface-Modified Powders</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>Recently, the use of novel CuCr1 surface-modified powder for reliable laser powder-bed fusion (LPBF) manufacturing has been proposed, enabling a broader LPBF processing window and longer powder storage life. Nevertheless, virgin CuCr1 powder is also LPBF processable, on the condition that a high-energy density is employed. In this work, we compare two dense specimens produced from virgin and surface-modified CuCr1 powder. Furthermore, a third sample fabricated from surface-modified powder is characterized to understand an abnormal porosity content initially detected through Archimedes testing. Utilizing high-resolution micro-CT scans, the nature of the defects present in the different samples is revealed. Pores are analyzed in terms of size, morphology and spatial distribution. The micro-CT data reveal that the virgin CuCr1 dense specimen displays keyhole pores plus pit cavities spanning multiple layer thicknesses. On the other hand, the sample fabricated with the surface-modified CuCr1 powder mainly contains small and spherical equi-distributed metallurgical defects. Finally, the CT analysis of the third specimen reveals the presence of a W contamination, favoring lack-of-fusion pores between subsequent LPBF layers. The LPBF melting mode (keyhole or conductive), the properties of the material, and the potential presence of contaminants are connected to the different porosity types and discussed.</description><subject>Computed tomography</subject><subject>Contaminants</subject><subject>Copper base alloys</subject><subject>Defects</subject><subject>Flux density</subject><subject>Lasers</subject><subject>Medical imaging</subject><subject>Melting</subject><subject>Metallurgical analysis</subject><subject>Porosity</subject><subject>Radiation</subject><subject>Spatial distribution</subject><subject>Storage life</subject><subject>Stress concentration</subject><subject>Thickness</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkd1q3DAQhUVpaUKamz5AEfSmFJzq15ZuCotJ2kJCFpr0VoxleVfBtraSneJn6EtX2_w0zdzMMPrOYcRB6C0lJ5xr8mkAKoiiWssX6DC3sqBaiJdP5gN0nNINycU5VUy_RgdZybjQ8hD9XuELb2Mo6jDs5sm1-CoMYRNht13wfgfRpzDi0OFp6_A6xJD8tGA_4lXb-snfun7BZ9BEb2Evr-c6Urzq-7DgNcQp4evkxw3-4eMmi2Bs8fc5dmBdcRFa3_msWYdfrYvpDXrVQZ_c8X0_Qtdnp1f11-L88su3enVeWEHKqSgb1elWcg5WNyAqVjouLLVAGOOStlZKWQFQy13TWWBU2k7phlSl0yCF4kfo853vbm4G11o3ThF6s4t-gLiYAN78_zL6rdmEW6NIxbSm2eDDvUEMP2eXJjP4ZF3fw-jCnAyTjChJlSwz-v4ZehPmOObvZUqoinH2l_p4R-UkUoquezyGErOP2fyLOcPvnp7_iD6Eyv8Ag0ekTw</recordid><startdate>20210416</startdate><enddate>20210416</enddate><creator>Sinico, Mirko</creator><creator>Jadhav, Suraj Dinkar</creator><creator>Witvrouw, Ann</creator><creator>Vanmeensel, Kim</creator><creator>Dewulf, Wim</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5189-7055</orcidid><orcidid>https://orcid.org/0000-0002-5246-8276</orcidid><orcidid>https://orcid.org/0000-0002-9184-051X</orcidid><orcidid>https://orcid.org/0000-0003-3693-9290</orcidid><orcidid>https://orcid.org/0000-0002-1613-1713</orcidid></search><sort><creationdate>20210416</creationdate><title>A Micro-Computed Tomography Comparison of the Porosity in Additively Fabricated CuCr1 Alloy Parts Using Virgin and Surface-Modified Powders</title><author>Sinico, Mirko ; Jadhav, Suraj Dinkar ; Witvrouw, Ann ; Vanmeensel, Kim ; Dewulf, Wim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-6b8f9d533ac9ba4726e34c1ca022351dc5557aa1c3ebfca215cf89b076e9a5483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computed tomography</topic><topic>Contaminants</topic><topic>Copper base alloys</topic><topic>Defects</topic><topic>Flux density</topic><topic>Lasers</topic><topic>Medical imaging</topic><topic>Melting</topic><topic>Metallurgical analysis</topic><topic>Porosity</topic><topic>Radiation</topic><topic>Spatial distribution</topic><topic>Storage life</topic><topic>Stress concentration</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sinico, Mirko</creatorcontrib><creatorcontrib>Jadhav, Suraj Dinkar</creatorcontrib><creatorcontrib>Witvrouw, Ann</creatorcontrib><creatorcontrib>Vanmeensel, Kim</creatorcontrib><creatorcontrib>Dewulf, Wim</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sinico, Mirko</au><au>Jadhav, Suraj Dinkar</au><au>Witvrouw, Ann</au><au>Vanmeensel, Kim</au><au>Dewulf, Wim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Micro-Computed Tomography Comparison of the Porosity in Additively Fabricated CuCr1 Alloy Parts Using Virgin and Surface-Modified Powders</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2021-04-16</date><risdate>2021</risdate><volume>14</volume><issue>8</issue><spage>1995</spage><pages>1995-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Recently, the use of novel CuCr1 surface-modified powder for reliable laser powder-bed fusion (LPBF) manufacturing has been proposed, enabling a broader LPBF processing window and longer powder storage life. Nevertheless, virgin CuCr1 powder is also LPBF processable, on the condition that a high-energy density is employed. In this work, we compare two dense specimens produced from virgin and surface-modified CuCr1 powder. Furthermore, a third sample fabricated from surface-modified powder is characterized to understand an abnormal porosity content initially detected through Archimedes testing. Utilizing high-resolution micro-CT scans, the nature of the defects present in the different samples is revealed. Pores are analyzed in terms of size, morphology and spatial distribution. The micro-CT data reveal that the virgin CuCr1 dense specimen displays keyhole pores plus pit cavities spanning multiple layer thicknesses. On the other hand, the sample fabricated with the surface-modified CuCr1 powder mainly contains small and spherical equi-distributed metallurgical defects. Finally, the CT analysis of the third specimen reveals the presence of a W contamination, favoring lack-of-fusion pores between subsequent LPBF layers. The LPBF melting mode (keyhole or conductive), the properties of the material, and the potential presence of contaminants are connected to the different porosity types and discussed.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>33923495</pmid><doi>10.3390/ma14081995</doi><orcidid>https://orcid.org/0000-0001-5189-7055</orcidid><orcidid>https://orcid.org/0000-0002-5246-8276</orcidid><orcidid>https://orcid.org/0000-0002-9184-051X</orcidid><orcidid>https://orcid.org/0000-0003-3693-9290</orcidid><orcidid>https://orcid.org/0000-0002-1613-1713</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2021-04, Vol.14 (8), p.1995
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8072991
source MDPI - Multidisciplinary Digital Publishing Institute; PMC (PubMed Central); EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry; PubMed Central Open Access
subjects Computed tomography
Contaminants
Copper base alloys
Defects
Flux density
Lasers
Medical imaging
Melting
Metallurgical analysis
Porosity
Radiation
Spatial distribution
Storage life
Stress concentration
Thickness
title A Micro-Computed Tomography Comparison of the Porosity in Additively Fabricated CuCr1 Alloy Parts Using Virgin and Surface-Modified Powders
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T02%3A21%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Micro-Computed%20Tomography%20Comparison%20of%20the%20Porosity%20in%20Additively%20Fabricated%20CuCr1%20Alloy%20Parts%20Using%20Virgin%20and%20Surface-Modified%20Powders&rft.jtitle=Materials&rft.au=Sinico,%20Mirko&rft.date=2021-04-16&rft.volume=14&rft.issue=8&rft.spage=1995&rft.pages=1995-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma14081995&rft_dat=%3Cproquest_pubme%3E2520851856%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548723256&rft_id=info:pmid/33923495&rfr_iscdi=true