Impaired TRPV4-eNOS signaling in trabecular meshwork elevates intraocular pressure in glaucoma

Primary Open Angle Glaucoma (POAG) is the most common form of glaucoma that leads to irreversible vision loss. Dysfunction of trabecular meshwork (TM) tissue, a major regulator of aqueous humor (AH) outflow resistance, is associated with intraocular pressure (IOP) elevation in POAG. However, the und...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2021-04, Vol.118 (16), p.1-11
Hauptverfasser: Patel, Pinkal D., Chen, Yen-Lin, Kasetti, Ramesh B., Maddineni, Prabhavathi, Mayhew, William, Millar, J. Cameron, Ellis, Dorette Z., Sonkusare, Swapnil K., Zode, Gulab S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue 16
container_start_page 1
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 118
creator Patel, Pinkal D.
Chen, Yen-Lin
Kasetti, Ramesh B.
Maddineni, Prabhavathi
Mayhew, William
Millar, J. Cameron
Ellis, Dorette Z.
Sonkusare, Swapnil K.
Zode, Gulab S.
description Primary Open Angle Glaucoma (POAG) is the most common form of glaucoma that leads to irreversible vision loss. Dysfunction of trabecular meshwork (TM) tissue, a major regulator of aqueous humor (AH) outflow resistance, is associated with intraocular pressure (IOP) elevation in POAG. However, the underlying pathological mechanisms of TM dysfunction in POAG remain elusive. In this regard, transient receptor potential vanilloid 4 (TRPV4) cation channels are known to be important Ca2+ entry pathways in multiple cell types. Here, we provide direct evidence supporting Ca2+ entry through TRPV4 channels in human TM cells and show that TRPV4 channels in TM cells can be activated by increased fluid flow/shear stress. TM-specific TRPV4 channel knockout in mice elevated IOP, supporting a crucial role for TRPV4 channels in IOP regulation. Pharmacological activation of TRPV4 channels in mouse eyes also improved AH outflow facility and lowered IOP. Importantly, TRPV4 channels activated endothelial nitric oxide synthase (eNOS) in TM cells, and loss of eNOS abrogated TRPV4-induced lowering of IOP. Remarkably, TRPV4-eNOS signaling was significantly more pronounced in TM cells compared to Schlemm’s canal cells. Furthermore, glaucomatous human TM cells show impaired activity of TRPV4 channels and disrupted TRPV4-eNOS signaling. Flow/shear stress activation of TRPV4 channels and subsequent NO release were also impaired in glaucomatous primary human TM cells. Together, our studies demonstrate a central role for TRPV4-eNOS signaling in IOP regulation. Our results also provide evidence that impaired TRPV4 channel activity in TM cells contributes to TM dysfunction and elevated IOP in glaucoma.
doi_str_mv 10.1073/pnas.2022461118
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8072326</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27039904</jstor_id><sourcerecordid>27039904</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-aa7ee498886c284854bb54e53b90998ab4b15b79ca80edea41cb0739089e71ec3</originalsourceid><addsrcrecordid>eNpdkc1v1DAQxS0EokvhzAkUqZde0o6_YvuChKoWKlUtgsIRy_ZOt1mSONhJEf89XrZsgdMc3m-eZt4j5CWFIwqKH4-Dy0cMGBMNpVQ_IgsKhtaNMPCYLACYqrVgYo88y3kNAEZqeEr2ONeSG6EX5Ot5P7o24bK6_vjhi6jx8upTldvV4Lp2WFXtUE3JeQxz51LVY779EdO3Cju8cxPmohc5btUxYc5zws3SqnNziL17Tp7cuC7ji_u5Tz6fnV6fvK8vrt6dn7y9qIMEM9XOKURhtNZNYFpoKbyXAiX3BozRzgtPpVcmOA24RCdo8OV9A9qgohj4Pnmz9R1n3-My4Oauzo6p7V36aaNr7b_K0N7aVbyzGhTjrCkGh_cGKX6fMU-2b3PArnMDxjlbJikvITdgCnrwH7qOcyqB_aakklJQVajjLRVSzDnhze4YCnbTnd10Zx-6Kxuv__5hx_8pqwCvtsA6TzHtdKaAGwOC_wIYMaBE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2515755417</pqid></control><display><type>article</type><title>Impaired TRPV4-eNOS signaling in trabecular meshwork elevates intraocular pressure in glaucoma</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Patel, Pinkal D. ; Chen, Yen-Lin ; Kasetti, Ramesh B. ; Maddineni, Prabhavathi ; Mayhew, William ; Millar, J. Cameron ; Ellis, Dorette Z. ; Sonkusare, Swapnil K. ; Zode, Gulab S.</creator><creatorcontrib>Patel, Pinkal D. ; Chen, Yen-Lin ; Kasetti, Ramesh B. ; Maddineni, Prabhavathi ; Mayhew, William ; Millar, J. Cameron ; Ellis, Dorette Z. ; Sonkusare, Swapnil K. ; Zode, Gulab S.</creatorcontrib><description>Primary Open Angle Glaucoma (POAG) is the most common form of glaucoma that leads to irreversible vision loss. Dysfunction of trabecular meshwork (TM) tissue, a major regulator of aqueous humor (AH) outflow resistance, is associated with intraocular pressure (IOP) elevation in POAG. However, the underlying pathological mechanisms of TM dysfunction in POAG remain elusive. In this regard, transient receptor potential vanilloid 4 (TRPV4) cation channels are known to be important Ca2+ entry pathways in multiple cell types. Here, we provide direct evidence supporting Ca2+ entry through TRPV4 channels in human TM cells and show that TRPV4 channels in TM cells can be activated by increased fluid flow/shear stress. TM-specific TRPV4 channel knockout in mice elevated IOP, supporting a crucial role for TRPV4 channels in IOP regulation. Pharmacological activation of TRPV4 channels in mouse eyes also improved AH outflow facility and lowered IOP. Importantly, TRPV4 channels activated endothelial nitric oxide synthase (eNOS) in TM cells, and loss of eNOS abrogated TRPV4-induced lowering of IOP. Remarkably, TRPV4-eNOS signaling was significantly more pronounced in TM cells compared to Schlemm’s canal cells. Furthermore, glaucomatous human TM cells show impaired activity of TRPV4 channels and disrupted TRPV4-eNOS signaling. Flow/shear stress activation of TRPV4 channels and subsequent NO release were also impaired in glaucomatous primary human TM cells. Together, our studies demonstrate a central role for TRPV4-eNOS signaling in IOP regulation. Our results also provide evidence that impaired TRPV4 channel activity in TM cells contributes to TM dysfunction and elevated IOP in glaucoma.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2022461118</identifier><identifier>PMID: 33853948</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Aqueous Humor - physiology ; Aqueous humour ; Biological Sciences ; Calcium channels ; Calcium Channels - metabolism ; Calcium influx ; Calcium ions ; Channel gating ; Eye (anatomy) ; Female ; Fluid dynamics ; Fluid flow ; Glaucoma ; Glaucoma - metabolism ; Glaucoma - physiopathology ; Glaucoma, Open-Angle - metabolism ; Glaucoma, Open-Angle - physiopathology ; Humans ; Intraocular pressure ; Intraocular Pressure - physiology ; Ion channels ; Male ; Mice ; Mice, Inbred C57BL ; Nitric oxide ; Nitric Oxide Synthase Type III - metabolism ; Nitric-oxide synthase ; Outflow ; Sclera - metabolism ; Shear flow ; Shear stress ; Signal Transduction - physiology ; Signaling ; Trabecular Meshwork - physiology ; Transient receptor potential proteins ; TRPV Cation Channels - metabolism ; TRPV Cation Channels - physiology ; Water outflow</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2021-04, Vol.118 (16), p.1-11</ispartof><rights>Copyright © 2021 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Apr 20, 2021</rights><rights>Copyright © 2021 the Author(s). Published by PNAS. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-aa7ee498886c284854bb54e53b90998ab4b15b79ca80edea41cb0739089e71ec3</citedby><cites>FETCH-LOGICAL-c509t-aa7ee498886c284854bb54e53b90998ab4b15b79ca80edea41cb0739089e71ec3</cites><orcidid>0000-0001-7874-3988 ; 0000-0002-1038-8438 ; 0000-0002-7704-4381 ; 0000-0002-7823-2595 ; 0000-0001-9587-9342</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27039904$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27039904$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33853948$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Patel, Pinkal D.</creatorcontrib><creatorcontrib>Chen, Yen-Lin</creatorcontrib><creatorcontrib>Kasetti, Ramesh B.</creatorcontrib><creatorcontrib>Maddineni, Prabhavathi</creatorcontrib><creatorcontrib>Mayhew, William</creatorcontrib><creatorcontrib>Millar, J. Cameron</creatorcontrib><creatorcontrib>Ellis, Dorette Z.</creatorcontrib><creatorcontrib>Sonkusare, Swapnil K.</creatorcontrib><creatorcontrib>Zode, Gulab S.</creatorcontrib><title>Impaired TRPV4-eNOS signaling in trabecular meshwork elevates intraocular pressure in glaucoma</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Primary Open Angle Glaucoma (POAG) is the most common form of glaucoma that leads to irreversible vision loss. Dysfunction of trabecular meshwork (TM) tissue, a major regulator of aqueous humor (AH) outflow resistance, is associated with intraocular pressure (IOP) elevation in POAG. However, the underlying pathological mechanisms of TM dysfunction in POAG remain elusive. In this regard, transient receptor potential vanilloid 4 (TRPV4) cation channels are known to be important Ca2+ entry pathways in multiple cell types. Here, we provide direct evidence supporting Ca2+ entry through TRPV4 channels in human TM cells and show that TRPV4 channels in TM cells can be activated by increased fluid flow/shear stress. TM-specific TRPV4 channel knockout in mice elevated IOP, supporting a crucial role for TRPV4 channels in IOP regulation. Pharmacological activation of TRPV4 channels in mouse eyes also improved AH outflow facility and lowered IOP. Importantly, TRPV4 channels activated endothelial nitric oxide synthase (eNOS) in TM cells, and loss of eNOS abrogated TRPV4-induced lowering of IOP. Remarkably, TRPV4-eNOS signaling was significantly more pronounced in TM cells compared to Schlemm’s canal cells. Furthermore, glaucomatous human TM cells show impaired activity of TRPV4 channels and disrupted TRPV4-eNOS signaling. Flow/shear stress activation of TRPV4 channels and subsequent NO release were also impaired in glaucomatous primary human TM cells. Together, our studies demonstrate a central role for TRPV4-eNOS signaling in IOP regulation. Our results also provide evidence that impaired TRPV4 channel activity in TM cells contributes to TM dysfunction and elevated IOP in glaucoma.</description><subject>Animals</subject><subject>Aqueous Humor - physiology</subject><subject>Aqueous humour</subject><subject>Biological Sciences</subject><subject>Calcium channels</subject><subject>Calcium Channels - metabolism</subject><subject>Calcium influx</subject><subject>Calcium ions</subject><subject>Channel gating</subject><subject>Eye (anatomy)</subject><subject>Female</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Glaucoma</subject><subject>Glaucoma - metabolism</subject><subject>Glaucoma - physiopathology</subject><subject>Glaucoma, Open-Angle - metabolism</subject><subject>Glaucoma, Open-Angle - physiopathology</subject><subject>Humans</subject><subject>Intraocular pressure</subject><subject>Intraocular Pressure - physiology</subject><subject>Ion channels</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Nitric oxide</subject><subject>Nitric Oxide Synthase Type III - metabolism</subject><subject>Nitric-oxide synthase</subject><subject>Outflow</subject><subject>Sclera - metabolism</subject><subject>Shear flow</subject><subject>Shear stress</subject><subject>Signal Transduction - physiology</subject><subject>Signaling</subject><subject>Trabecular Meshwork - physiology</subject><subject>Transient receptor potential proteins</subject><subject>TRPV Cation Channels - metabolism</subject><subject>TRPV Cation Channels - physiology</subject><subject>Water outflow</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1v1DAQxS0EokvhzAkUqZde0o6_YvuChKoWKlUtgsIRy_ZOt1mSONhJEf89XrZsgdMc3m-eZt4j5CWFIwqKH4-Dy0cMGBMNpVQ_IgsKhtaNMPCYLACYqrVgYo88y3kNAEZqeEr2ONeSG6EX5Ot5P7o24bK6_vjhi6jx8upTldvV4Lp2WFXtUE3JeQxz51LVY779EdO3Cju8cxPmohc5btUxYc5zws3SqnNziL17Tp7cuC7ji_u5Tz6fnV6fvK8vrt6dn7y9qIMEM9XOKURhtNZNYFpoKbyXAiX3BozRzgtPpVcmOA24RCdo8OV9A9qgohj4Pnmz9R1n3-My4Oauzo6p7V36aaNr7b_K0N7aVbyzGhTjrCkGh_cGKX6fMU-2b3PArnMDxjlbJikvITdgCnrwH7qOcyqB_aakklJQVajjLRVSzDnhze4YCnbTnd10Zx-6Kxuv__5hx_8pqwCvtsA6TzHtdKaAGwOC_wIYMaBE</recordid><startdate>20210420</startdate><enddate>20210420</enddate><creator>Patel, Pinkal D.</creator><creator>Chen, Yen-Lin</creator><creator>Kasetti, Ramesh B.</creator><creator>Maddineni, Prabhavathi</creator><creator>Mayhew, William</creator><creator>Millar, J. Cameron</creator><creator>Ellis, Dorette Z.</creator><creator>Sonkusare, Swapnil K.</creator><creator>Zode, Gulab S.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7874-3988</orcidid><orcidid>https://orcid.org/0000-0002-1038-8438</orcidid><orcidid>https://orcid.org/0000-0002-7704-4381</orcidid><orcidid>https://orcid.org/0000-0002-7823-2595</orcidid><orcidid>https://orcid.org/0000-0001-9587-9342</orcidid></search><sort><creationdate>20210420</creationdate><title>Impaired TRPV4-eNOS signaling in trabecular meshwork elevates intraocular pressure in glaucoma</title><author>Patel, Pinkal D. ; Chen, Yen-Lin ; Kasetti, Ramesh B. ; Maddineni, Prabhavathi ; Mayhew, William ; Millar, J. Cameron ; Ellis, Dorette Z. ; Sonkusare, Swapnil K. ; Zode, Gulab S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-aa7ee498886c284854bb54e53b90998ab4b15b79ca80edea41cb0739089e71ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Aqueous Humor - physiology</topic><topic>Aqueous humour</topic><topic>Biological Sciences</topic><topic>Calcium channels</topic><topic>Calcium Channels - metabolism</topic><topic>Calcium influx</topic><topic>Calcium ions</topic><topic>Channel gating</topic><topic>Eye (anatomy)</topic><topic>Female</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Glaucoma</topic><topic>Glaucoma - metabolism</topic><topic>Glaucoma - physiopathology</topic><topic>Glaucoma, Open-Angle - metabolism</topic><topic>Glaucoma, Open-Angle - physiopathology</topic><topic>Humans</topic><topic>Intraocular pressure</topic><topic>Intraocular Pressure - physiology</topic><topic>Ion channels</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Nitric oxide</topic><topic>Nitric Oxide Synthase Type III - metabolism</topic><topic>Nitric-oxide synthase</topic><topic>Outflow</topic><topic>Sclera - metabolism</topic><topic>Shear flow</topic><topic>Shear stress</topic><topic>Signal Transduction - physiology</topic><topic>Signaling</topic><topic>Trabecular Meshwork - physiology</topic><topic>Transient receptor potential proteins</topic><topic>TRPV Cation Channels - metabolism</topic><topic>TRPV Cation Channels - physiology</topic><topic>Water outflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Patel, Pinkal D.</creatorcontrib><creatorcontrib>Chen, Yen-Lin</creatorcontrib><creatorcontrib>Kasetti, Ramesh B.</creatorcontrib><creatorcontrib>Maddineni, Prabhavathi</creatorcontrib><creatorcontrib>Mayhew, William</creatorcontrib><creatorcontrib>Millar, J. Cameron</creatorcontrib><creatorcontrib>Ellis, Dorette Z.</creatorcontrib><creatorcontrib>Sonkusare, Swapnil K.</creatorcontrib><creatorcontrib>Zode, Gulab S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Patel, Pinkal D.</au><au>Chen, Yen-Lin</au><au>Kasetti, Ramesh B.</au><au>Maddineni, Prabhavathi</au><au>Mayhew, William</au><au>Millar, J. Cameron</au><au>Ellis, Dorette Z.</au><au>Sonkusare, Swapnil K.</au><au>Zode, Gulab S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impaired TRPV4-eNOS signaling in trabecular meshwork elevates intraocular pressure in glaucoma</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2021-04-20</date><risdate>2021</risdate><volume>118</volume><issue>16</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Primary Open Angle Glaucoma (POAG) is the most common form of glaucoma that leads to irreversible vision loss. Dysfunction of trabecular meshwork (TM) tissue, a major regulator of aqueous humor (AH) outflow resistance, is associated with intraocular pressure (IOP) elevation in POAG. However, the underlying pathological mechanisms of TM dysfunction in POAG remain elusive. In this regard, transient receptor potential vanilloid 4 (TRPV4) cation channels are known to be important Ca2+ entry pathways in multiple cell types. Here, we provide direct evidence supporting Ca2+ entry through TRPV4 channels in human TM cells and show that TRPV4 channels in TM cells can be activated by increased fluid flow/shear stress. TM-specific TRPV4 channel knockout in mice elevated IOP, supporting a crucial role for TRPV4 channels in IOP regulation. Pharmacological activation of TRPV4 channels in mouse eyes also improved AH outflow facility and lowered IOP. Importantly, TRPV4 channels activated endothelial nitric oxide synthase (eNOS) in TM cells, and loss of eNOS abrogated TRPV4-induced lowering of IOP. Remarkably, TRPV4-eNOS signaling was significantly more pronounced in TM cells compared to Schlemm’s canal cells. Furthermore, glaucomatous human TM cells show impaired activity of TRPV4 channels and disrupted TRPV4-eNOS signaling. Flow/shear stress activation of TRPV4 channels and subsequent NO release were also impaired in glaucomatous primary human TM cells. Together, our studies demonstrate a central role for TRPV4-eNOS signaling in IOP regulation. Our results also provide evidence that impaired TRPV4 channel activity in TM cells contributes to TM dysfunction and elevated IOP in glaucoma.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>33853948</pmid><doi>10.1073/pnas.2022461118</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7874-3988</orcidid><orcidid>https://orcid.org/0000-0002-1038-8438</orcidid><orcidid>https://orcid.org/0000-0002-7704-4381</orcidid><orcidid>https://orcid.org/0000-0002-7823-2595</orcidid><orcidid>https://orcid.org/0000-0001-9587-9342</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2021-04, Vol.118 (16), p.1-11
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8072326
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Animals
Aqueous Humor - physiology
Aqueous humour
Biological Sciences
Calcium channels
Calcium Channels - metabolism
Calcium influx
Calcium ions
Channel gating
Eye (anatomy)
Female
Fluid dynamics
Fluid flow
Glaucoma
Glaucoma - metabolism
Glaucoma - physiopathology
Glaucoma, Open-Angle - metabolism
Glaucoma, Open-Angle - physiopathology
Humans
Intraocular pressure
Intraocular Pressure - physiology
Ion channels
Male
Mice
Mice, Inbred C57BL
Nitric oxide
Nitric Oxide Synthase Type III - metabolism
Nitric-oxide synthase
Outflow
Sclera - metabolism
Shear flow
Shear stress
Signal Transduction - physiology
Signaling
Trabecular Meshwork - physiology
Transient receptor potential proteins
TRPV Cation Channels - metabolism
TRPV Cation Channels - physiology
Water outflow
title Impaired TRPV4-eNOS signaling in trabecular meshwork elevates intraocular pressure in glaucoma
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T02%3A30%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impaired%20TRPV4-eNOS%20signaling%20in%20trabecular%20meshwork%20elevates%20intraocular%20pressure%20in%20glaucoma&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Patel,%20Pinkal%20D.&rft.date=2021-04-20&rft.volume=118&rft.issue=16&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2022461118&rft_dat=%3Cjstor_pubme%3E27039904%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2515755417&rft_id=info:pmid/33853948&rft_jstor_id=27039904&rfr_iscdi=true