PI3Kγ inhibition suppresses microglia/TAM accumulation in glioblastoma microenvironment to promote exceptional temozolomide response

Precision medicine in oncology leverages clinical observations of exceptional response. Toward an understanding of the molecular features that define this response, we applied an integrated, multiplatform analysis of RNA profiles derived from clinically annotated glioblastoma samples. This analysis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2021-04, Vol.118 (16), p.1-12
Hauptverfasser: Li, Jie, Kaneda, Megan M., Ma, Jun, Li, Ming, Shepard, Ryan M., Patel, Kunal, Koga, Tomoyuki, Sarver, Aaron, Furnari, Frank, Xu, Beibei, Dhawan, Sanjay, Ning, Jianfang, Zhu, Hua, Wu, Anhua, You, Gan, Jiang, Tao, Venteicher, Andrew S., Rich, Jeremy N., Glass, Christopher K., Varner, Judith A., Chen, Clark C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue 16
container_start_page 1
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 118
creator Li, Jie
Kaneda, Megan M.
Ma, Jun
Li, Ming
Shepard, Ryan M.
Patel, Kunal
Koga, Tomoyuki
Sarver, Aaron
Furnari, Frank
Xu, Beibei
Dhawan, Sanjay
Ning, Jianfang
Zhu, Hua
Wu, Anhua
You, Gan
Jiang, Tao
Venteicher, Andrew S.
Rich, Jeremy N.
Glass, Christopher K.
Varner, Judith A.
Chen, Clark C.
description Precision medicine in oncology leverages clinical observations of exceptional response. Toward an understanding of the molecular features that define this response, we applied an integrated, multiplatform analysis of RNA profiles derived from clinically annotated glioblastoma samples. This analysis suggested that specimens from exceptional responders are characterized by decreased accumulation of microglia/macrophages in the glioblastoma microenvironment. Glioblastoma-associated microglia/macrophages secreted interleukin 11 (IL11) to activate STAT3-MYC signaling in glioblastoma cells. This signaling induced stem cell states that confer enhanced tumorigenicity and resistance to the standard-of-care chemotherapy, temozolomide (TMZ). Targeting a myeloid cell restricted an isoform of phosphoinositide-3-kinase, phosphoinositide-3-kinase gamma isoform (PI3Kγ), by pharmacologic inhibition or genetic inactivation disrupted this signaling axis by reducing microglia/macrophage-associated IL11 secretion in the tumor microenvironment. Mirroring the clinical outcomes of exceptional responders, PI3Kγ inhibition synergistically enhanced the anti-neoplastic effects of TMZ in orthotopic murine glioblastoma models. Moreover, inhibition or genetic inactivation of PI3Kγ in murine glioblastoma models recapitulated expression profiles observed in clinical specimens isolated from exceptional responders. Our results suggest key contributions from tumor-associated microglia/macrophages in exceptional responses and highlight the translational potential for PI3Kγ inhibition as a glioblastoma therapy.
doi_str_mv 10.1073/pnas.2009290118
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8072253</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27039892</jstor_id><sourcerecordid>27039892</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-59163d0459940a8bfd1debc39cd48c7c4d6fe87854c2743006d39ec94dbff8393</originalsourceid><addsrcrecordid>eNpVkc1u1DAUhS0EokNhzQpkqet0_JvYG6SqorSiCBZlbTm203oU28FOKto9T8R78Ex4OmWA1V2c7577cwB4jdExRh1dT1GXY4KQJBJhLJ6AFUYSNy2T6ClYIUS6RjDCDsCLUjaoclyg5-CAUsFawsgK_PhyQT_--gl9vPG9n32KsCzTlF0prsDgTU7Xo9frq5NPUBuzhGXUD5SPsAqpH3WZU9A71MVbn1MMLs5wTnDKKaTZQffduGnbpUc4u5Du05iCtw7WMVOKxb0EzwY9FvfqsR6Cr2fvr07Pm8vPHy5OTy4bwxidGy5xSy1iXEqGtOgHi63rDZXGMmE6w2w7ONEJzgzpGEWotVQ6I5nth0FQSQ_Bu53vtPTBWVP3zHpUU_ZB5zuVtFf_K9HfqOt0qwTqCOG0Ghw9GuT0bXFlVpu05HpXUYRj3nHBxZZa76j6klKyG_YTMFLb3NQ2N_U3t9rx9t_F9vyfoCrwZgds6rvzXicdolJIQn8DxHijrg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2515758583</pqid></control><display><type>article</type><title>PI3Kγ inhibition suppresses microglia/TAM accumulation in glioblastoma microenvironment to promote exceptional temozolomide response</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Li, Jie ; Kaneda, Megan M. ; Ma, Jun ; Li, Ming ; Shepard, Ryan M. ; Patel, Kunal ; Koga, Tomoyuki ; Sarver, Aaron ; Furnari, Frank ; Xu, Beibei ; Dhawan, Sanjay ; Ning, Jianfang ; Zhu, Hua ; Wu, Anhua ; You, Gan ; Jiang, Tao ; Venteicher, Andrew S. ; Rich, Jeremy N. ; Glass, Christopher K. ; Varner, Judith A. ; Chen, Clark C.</creator><creatorcontrib>Li, Jie ; Kaneda, Megan M. ; Ma, Jun ; Li, Ming ; Shepard, Ryan M. ; Patel, Kunal ; Koga, Tomoyuki ; Sarver, Aaron ; Furnari, Frank ; Xu, Beibei ; Dhawan, Sanjay ; Ning, Jianfang ; Zhu, Hua ; Wu, Anhua ; You, Gan ; Jiang, Tao ; Venteicher, Andrew S. ; Rich, Jeremy N. ; Glass, Christopher K. ; Varner, Judith A. ; Chen, Clark C.</creatorcontrib><description>Precision medicine in oncology leverages clinical observations of exceptional response. Toward an understanding of the molecular features that define this response, we applied an integrated, multiplatform analysis of RNA profiles derived from clinically annotated glioblastoma samples. This analysis suggested that specimens from exceptional responders are characterized by decreased accumulation of microglia/macrophages in the glioblastoma microenvironment. Glioblastoma-associated microglia/macrophages secreted interleukin 11 (IL11) to activate STAT3-MYC signaling in glioblastoma cells. This signaling induced stem cell states that confer enhanced tumorigenicity and resistance to the standard-of-care chemotherapy, temozolomide (TMZ). Targeting a myeloid cell restricted an isoform of phosphoinositide-3-kinase, phosphoinositide-3-kinase gamma isoform (PI3Kγ), by pharmacologic inhibition or genetic inactivation disrupted this signaling axis by reducing microglia/macrophage-associated IL11 secretion in the tumor microenvironment. Mirroring the clinical outcomes of exceptional responders, PI3Kγ inhibition synergistically enhanced the anti-neoplastic effects of TMZ in orthotopic murine glioblastoma models. Moreover, inhibition or genetic inactivation of PI3Kγ in murine glioblastoma models recapitulated expression profiles observed in clinical specimens isolated from exceptional responders. Our results suggest key contributions from tumor-associated microglia/macrophages in exceptional responses and highlight the translational potential for PI3Kγ inhibition as a glioblastoma therapy.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2009290118</identifier><identifier>PMID: 33846242</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Accumulation ; Adult ; Animal models ; Animals ; Biological Sciences ; Brain Neoplasms - pathology ; Cell Line, Tumor ; Chemotherapy ; Class Ib Phosphatidylinositol 3-Kinase - metabolism ; Deactivation ; Drug Resistance, Neoplasm - physiology ; Female ; Glioblastoma ; Glioblastoma - drug therapy ; Glioblastoma - metabolism ; Glioblastoma - pathology ; Glioblastoma cells ; Humans ; Inactivation ; Interleukin 1 ; Interleukin 11 ; Interleukin-11 - immunology ; Interleukin-11 - metabolism ; Kinases ; Macrophages ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Nude ; Microglia ; Microglia - metabolism ; Microglia - physiology ; Myc protein ; Phosphatidylinositol 3-Kinase - metabolism ; Phosphoinositide-3 Kinase Inhibitors - pharmacology ; Precision medicine ; Signal Transduction - drug effects ; Signaling ; Stat3 protein ; Stem cells ; Temozolomide ; Temozolomide - metabolism ; Temozolomide - pharmacology ; Tumor microenvironment ; Tumor Microenvironment - drug effects ; Tumor-Associated Macrophages - metabolism ; Tumor-Associated Macrophages - physiology ; Tumorigenicity ; Tumors</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2021-04, Vol.118 (16), p.1-12</ispartof><rights>Copyright National Academy of Sciences Apr 20, 2021</rights><rights>2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-59163d0459940a8bfd1debc39cd48c7c4d6fe87854c2743006d39ec94dbff8393</citedby><cites>FETCH-LOGICAL-c443t-59163d0459940a8bfd1debc39cd48c7c4d6fe87854c2743006d39ec94dbff8393</cites><orcidid>0000-0001-9544-2570 ; 0000-0001-5199-7742 ; 0000-0002-9251-0600 ; 0000-0003-0427-8205 ; 0000-0003-0643-0493 ; 0000-0002-2540-1738 ; 0000-0003-1909-4361 ; 0000-0002-7488-369X ; 0000-0002-3402-1884 ; 0000-0003-4344-3592 ; 0000-0002-8330-117X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27039892$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27039892$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33846242$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Jie</creatorcontrib><creatorcontrib>Kaneda, Megan M.</creatorcontrib><creatorcontrib>Ma, Jun</creatorcontrib><creatorcontrib>Li, Ming</creatorcontrib><creatorcontrib>Shepard, Ryan M.</creatorcontrib><creatorcontrib>Patel, Kunal</creatorcontrib><creatorcontrib>Koga, Tomoyuki</creatorcontrib><creatorcontrib>Sarver, Aaron</creatorcontrib><creatorcontrib>Furnari, Frank</creatorcontrib><creatorcontrib>Xu, Beibei</creatorcontrib><creatorcontrib>Dhawan, Sanjay</creatorcontrib><creatorcontrib>Ning, Jianfang</creatorcontrib><creatorcontrib>Zhu, Hua</creatorcontrib><creatorcontrib>Wu, Anhua</creatorcontrib><creatorcontrib>You, Gan</creatorcontrib><creatorcontrib>Jiang, Tao</creatorcontrib><creatorcontrib>Venteicher, Andrew S.</creatorcontrib><creatorcontrib>Rich, Jeremy N.</creatorcontrib><creatorcontrib>Glass, Christopher K.</creatorcontrib><creatorcontrib>Varner, Judith A.</creatorcontrib><creatorcontrib>Chen, Clark C.</creatorcontrib><title>PI3Kγ inhibition suppresses microglia/TAM accumulation in glioblastoma microenvironment to promote exceptional temozolomide response</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Precision medicine in oncology leverages clinical observations of exceptional response. Toward an understanding of the molecular features that define this response, we applied an integrated, multiplatform analysis of RNA profiles derived from clinically annotated glioblastoma samples. This analysis suggested that specimens from exceptional responders are characterized by decreased accumulation of microglia/macrophages in the glioblastoma microenvironment. Glioblastoma-associated microglia/macrophages secreted interleukin 11 (IL11) to activate STAT3-MYC signaling in glioblastoma cells. This signaling induced stem cell states that confer enhanced tumorigenicity and resistance to the standard-of-care chemotherapy, temozolomide (TMZ). Targeting a myeloid cell restricted an isoform of phosphoinositide-3-kinase, phosphoinositide-3-kinase gamma isoform (PI3Kγ), by pharmacologic inhibition or genetic inactivation disrupted this signaling axis by reducing microglia/macrophage-associated IL11 secretion in the tumor microenvironment. Mirroring the clinical outcomes of exceptional responders, PI3Kγ inhibition synergistically enhanced the anti-neoplastic effects of TMZ in orthotopic murine glioblastoma models. Moreover, inhibition or genetic inactivation of PI3Kγ in murine glioblastoma models recapitulated expression profiles observed in clinical specimens isolated from exceptional responders. Our results suggest key contributions from tumor-associated microglia/macrophages in exceptional responses and highlight the translational potential for PI3Kγ inhibition as a glioblastoma therapy.</description><subject>Accumulation</subject><subject>Adult</subject><subject>Animal models</subject><subject>Animals</subject><subject>Biological Sciences</subject><subject>Brain Neoplasms - pathology</subject><subject>Cell Line, Tumor</subject><subject>Chemotherapy</subject><subject>Class Ib Phosphatidylinositol 3-Kinase - metabolism</subject><subject>Deactivation</subject><subject>Drug Resistance, Neoplasm - physiology</subject><subject>Female</subject><subject>Glioblastoma</subject><subject>Glioblastoma - drug therapy</subject><subject>Glioblastoma - metabolism</subject><subject>Glioblastoma - pathology</subject><subject>Glioblastoma cells</subject><subject>Humans</subject><subject>Inactivation</subject><subject>Interleukin 1</subject><subject>Interleukin 11</subject><subject>Interleukin-11 - immunology</subject><subject>Interleukin-11 - metabolism</subject><subject>Kinases</subject><subject>Macrophages</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Nude</subject><subject>Microglia</subject><subject>Microglia - metabolism</subject><subject>Microglia - physiology</subject><subject>Myc protein</subject><subject>Phosphatidylinositol 3-Kinase - metabolism</subject><subject>Phosphoinositide-3 Kinase Inhibitors - pharmacology</subject><subject>Precision medicine</subject><subject>Signal Transduction - drug effects</subject><subject>Signaling</subject><subject>Stat3 protein</subject><subject>Stem cells</subject><subject>Temozolomide</subject><subject>Temozolomide - metabolism</subject><subject>Temozolomide - pharmacology</subject><subject>Tumor microenvironment</subject><subject>Tumor Microenvironment - drug effects</subject><subject>Tumor-Associated Macrophages - metabolism</subject><subject>Tumor-Associated Macrophages - physiology</subject><subject>Tumorigenicity</subject><subject>Tumors</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkc1u1DAUhS0EokNhzQpkqet0_JvYG6SqorSiCBZlbTm203oU28FOKto9T8R78Ex4OmWA1V2c7577cwB4jdExRh1dT1GXY4KQJBJhLJ6AFUYSNy2T6ClYIUS6RjDCDsCLUjaoclyg5-CAUsFawsgK_PhyQT_--gl9vPG9n32KsCzTlF0prsDgTU7Xo9frq5NPUBuzhGXUD5SPsAqpH3WZU9A71MVbn1MMLs5wTnDKKaTZQffduGnbpUc4u5Du05iCtw7WMVOKxb0EzwY9FvfqsR6Cr2fvr07Pm8vPHy5OTy4bwxidGy5xSy1iXEqGtOgHi63rDZXGMmE6w2w7ONEJzgzpGEWotVQ6I5nth0FQSQ_Bu53vtPTBWVP3zHpUU_ZB5zuVtFf_K9HfqOt0qwTqCOG0Ghw9GuT0bXFlVpu05HpXUYRj3nHBxZZa76j6klKyG_YTMFLb3NQ2N_U3t9rx9t_F9vyfoCrwZgds6rvzXicdolJIQn8DxHijrg</recordid><startdate>20210420</startdate><enddate>20210420</enddate><creator>Li, Jie</creator><creator>Kaneda, Megan M.</creator><creator>Ma, Jun</creator><creator>Li, Ming</creator><creator>Shepard, Ryan M.</creator><creator>Patel, Kunal</creator><creator>Koga, Tomoyuki</creator><creator>Sarver, Aaron</creator><creator>Furnari, Frank</creator><creator>Xu, Beibei</creator><creator>Dhawan, Sanjay</creator><creator>Ning, Jianfang</creator><creator>Zhu, Hua</creator><creator>Wu, Anhua</creator><creator>You, Gan</creator><creator>Jiang, Tao</creator><creator>Venteicher, Andrew S.</creator><creator>Rich, Jeremy N.</creator><creator>Glass, Christopher K.</creator><creator>Varner, Judith A.</creator><creator>Chen, Clark C.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9544-2570</orcidid><orcidid>https://orcid.org/0000-0001-5199-7742</orcidid><orcidid>https://orcid.org/0000-0002-9251-0600</orcidid><orcidid>https://orcid.org/0000-0003-0427-8205</orcidid><orcidid>https://orcid.org/0000-0003-0643-0493</orcidid><orcidid>https://orcid.org/0000-0002-2540-1738</orcidid><orcidid>https://orcid.org/0000-0003-1909-4361</orcidid><orcidid>https://orcid.org/0000-0002-7488-369X</orcidid><orcidid>https://orcid.org/0000-0002-3402-1884</orcidid><orcidid>https://orcid.org/0000-0003-4344-3592</orcidid><orcidid>https://orcid.org/0000-0002-8330-117X</orcidid></search><sort><creationdate>20210420</creationdate><title>PI3Kγ inhibition suppresses microglia/TAM accumulation in glioblastoma microenvironment to promote exceptional temozolomide response</title><author>Li, Jie ; Kaneda, Megan M. ; Ma, Jun ; Li, Ming ; Shepard, Ryan M. ; Patel, Kunal ; Koga, Tomoyuki ; Sarver, Aaron ; Furnari, Frank ; Xu, Beibei ; Dhawan, Sanjay ; Ning, Jianfang ; Zhu, Hua ; Wu, Anhua ; You, Gan ; Jiang, Tao ; Venteicher, Andrew S. ; Rich, Jeremy N. ; Glass, Christopher K. ; Varner, Judith A. ; Chen, Clark C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-59163d0459940a8bfd1debc39cd48c7c4d6fe87854c2743006d39ec94dbff8393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accumulation</topic><topic>Adult</topic><topic>Animal models</topic><topic>Animals</topic><topic>Biological Sciences</topic><topic>Brain Neoplasms - pathology</topic><topic>Cell Line, Tumor</topic><topic>Chemotherapy</topic><topic>Class Ib Phosphatidylinositol 3-Kinase - metabolism</topic><topic>Deactivation</topic><topic>Drug Resistance, Neoplasm - physiology</topic><topic>Female</topic><topic>Glioblastoma</topic><topic>Glioblastoma - drug therapy</topic><topic>Glioblastoma - metabolism</topic><topic>Glioblastoma - pathology</topic><topic>Glioblastoma cells</topic><topic>Humans</topic><topic>Inactivation</topic><topic>Interleukin 1</topic><topic>Interleukin 11</topic><topic>Interleukin-11 - immunology</topic><topic>Interleukin-11 - metabolism</topic><topic>Kinases</topic><topic>Macrophages</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Nude</topic><topic>Microglia</topic><topic>Microglia - metabolism</topic><topic>Microglia - physiology</topic><topic>Myc protein</topic><topic>Phosphatidylinositol 3-Kinase - metabolism</topic><topic>Phosphoinositide-3 Kinase Inhibitors - pharmacology</topic><topic>Precision medicine</topic><topic>Signal Transduction - drug effects</topic><topic>Signaling</topic><topic>Stat3 protein</topic><topic>Stem cells</topic><topic>Temozolomide</topic><topic>Temozolomide - metabolism</topic><topic>Temozolomide - pharmacology</topic><topic>Tumor microenvironment</topic><topic>Tumor Microenvironment - drug effects</topic><topic>Tumor-Associated Macrophages - metabolism</topic><topic>Tumor-Associated Macrophages - physiology</topic><topic>Tumorigenicity</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jie</creatorcontrib><creatorcontrib>Kaneda, Megan M.</creatorcontrib><creatorcontrib>Ma, Jun</creatorcontrib><creatorcontrib>Li, Ming</creatorcontrib><creatorcontrib>Shepard, Ryan M.</creatorcontrib><creatorcontrib>Patel, Kunal</creatorcontrib><creatorcontrib>Koga, Tomoyuki</creatorcontrib><creatorcontrib>Sarver, Aaron</creatorcontrib><creatorcontrib>Furnari, Frank</creatorcontrib><creatorcontrib>Xu, Beibei</creatorcontrib><creatorcontrib>Dhawan, Sanjay</creatorcontrib><creatorcontrib>Ning, Jianfang</creatorcontrib><creatorcontrib>Zhu, Hua</creatorcontrib><creatorcontrib>Wu, Anhua</creatorcontrib><creatorcontrib>You, Gan</creatorcontrib><creatorcontrib>Jiang, Tao</creatorcontrib><creatorcontrib>Venteicher, Andrew S.</creatorcontrib><creatorcontrib>Rich, Jeremy N.</creatorcontrib><creatorcontrib>Glass, Christopher K.</creatorcontrib><creatorcontrib>Varner, Judith A.</creatorcontrib><creatorcontrib>Chen, Clark C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Jie</au><au>Kaneda, Megan M.</au><au>Ma, Jun</au><au>Li, Ming</au><au>Shepard, Ryan M.</au><au>Patel, Kunal</au><au>Koga, Tomoyuki</au><au>Sarver, Aaron</au><au>Furnari, Frank</au><au>Xu, Beibei</au><au>Dhawan, Sanjay</au><au>Ning, Jianfang</au><au>Zhu, Hua</au><au>Wu, Anhua</au><au>You, Gan</au><au>Jiang, Tao</au><au>Venteicher, Andrew S.</au><au>Rich, Jeremy N.</au><au>Glass, Christopher K.</au><au>Varner, Judith A.</au><au>Chen, Clark C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PI3Kγ inhibition suppresses microglia/TAM accumulation in glioblastoma microenvironment to promote exceptional temozolomide response</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2021-04-20</date><risdate>2021</risdate><volume>118</volume><issue>16</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Precision medicine in oncology leverages clinical observations of exceptional response. Toward an understanding of the molecular features that define this response, we applied an integrated, multiplatform analysis of RNA profiles derived from clinically annotated glioblastoma samples. This analysis suggested that specimens from exceptional responders are characterized by decreased accumulation of microglia/macrophages in the glioblastoma microenvironment. Glioblastoma-associated microglia/macrophages secreted interleukin 11 (IL11) to activate STAT3-MYC signaling in glioblastoma cells. This signaling induced stem cell states that confer enhanced tumorigenicity and resistance to the standard-of-care chemotherapy, temozolomide (TMZ). Targeting a myeloid cell restricted an isoform of phosphoinositide-3-kinase, phosphoinositide-3-kinase gamma isoform (PI3Kγ), by pharmacologic inhibition or genetic inactivation disrupted this signaling axis by reducing microglia/macrophage-associated IL11 secretion in the tumor microenvironment. Mirroring the clinical outcomes of exceptional responders, PI3Kγ inhibition synergistically enhanced the anti-neoplastic effects of TMZ in orthotopic murine glioblastoma models. Moreover, inhibition or genetic inactivation of PI3Kγ in murine glioblastoma models recapitulated expression profiles observed in clinical specimens isolated from exceptional responders. Our results suggest key contributions from tumor-associated microglia/macrophages in exceptional responses and highlight the translational potential for PI3Kγ inhibition as a glioblastoma therapy.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>33846242</pmid><doi>10.1073/pnas.2009290118</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9544-2570</orcidid><orcidid>https://orcid.org/0000-0001-5199-7742</orcidid><orcidid>https://orcid.org/0000-0002-9251-0600</orcidid><orcidid>https://orcid.org/0000-0003-0427-8205</orcidid><orcidid>https://orcid.org/0000-0003-0643-0493</orcidid><orcidid>https://orcid.org/0000-0002-2540-1738</orcidid><orcidid>https://orcid.org/0000-0003-1909-4361</orcidid><orcidid>https://orcid.org/0000-0002-7488-369X</orcidid><orcidid>https://orcid.org/0000-0002-3402-1884</orcidid><orcidid>https://orcid.org/0000-0003-4344-3592</orcidid><orcidid>https://orcid.org/0000-0002-8330-117X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2021-04, Vol.118 (16), p.1-12
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8072253
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Accumulation
Adult
Animal models
Animals
Biological Sciences
Brain Neoplasms - pathology
Cell Line, Tumor
Chemotherapy
Class Ib Phosphatidylinositol 3-Kinase - metabolism
Deactivation
Drug Resistance, Neoplasm - physiology
Female
Glioblastoma
Glioblastoma - drug therapy
Glioblastoma - metabolism
Glioblastoma - pathology
Glioblastoma cells
Humans
Inactivation
Interleukin 1
Interleukin 11
Interleukin-11 - immunology
Interleukin-11 - metabolism
Kinases
Macrophages
Male
Mice
Mice, Inbred C57BL
Mice, Nude
Microglia
Microglia - metabolism
Microglia - physiology
Myc protein
Phosphatidylinositol 3-Kinase - metabolism
Phosphoinositide-3 Kinase Inhibitors - pharmacology
Precision medicine
Signal Transduction - drug effects
Signaling
Stat3 protein
Stem cells
Temozolomide
Temozolomide - metabolism
Temozolomide - pharmacology
Tumor microenvironment
Tumor Microenvironment - drug effects
Tumor-Associated Macrophages - metabolism
Tumor-Associated Macrophages - physiology
Tumorigenicity
Tumors
title PI3Kγ inhibition suppresses microglia/TAM accumulation in glioblastoma microenvironment to promote exceptional temozolomide response
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T08%3A54%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PI3K%CE%B3%20inhibition%20suppresses%20microglia/TAM%20accumulation%20in%20glioblastoma%20microenvironment%20to%20promote%20exceptional%20temozolomide%20response&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Li,%20Jie&rft.date=2021-04-20&rft.volume=118&rft.issue=16&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2009290118&rft_dat=%3Cjstor_pubme%3E27039892%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2515758583&rft_id=info:pmid/33846242&rft_jstor_id=27039892&rfr_iscdi=true