Synthesis and fluorine-18 radiolabeling of a phospholipid as a PET imaging agent for prostate cancer

Altered lipid metabolism and subsequent changes in cellular lipid composition have been observed in prostate cancer cells, are associated with poor clinical outcome, and are promising targets for metabolic therapies. This study reports for the first time on the synthesis of a phospholipid radiotrace...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nuclear medicine and biology 2021-02, Vol.93, p.37-45
Hauptverfasser: Kwan, Kim H., Burvenich, Ingrid J.G., Centenera, Margaret M., Goh, Yit Wooi, Rigopoulos, Angela, Dehairs, Jonas, Swinnen, Johannes V., Raj, Ganesh V., Hoy, Andrew J., Butler, Lisa M., Scott, Andrew M., White, Jonathan M., Ackermann, Uwe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 45
container_issue
container_start_page 37
container_title Nuclear medicine and biology
container_volume 93
creator Kwan, Kim H.
Burvenich, Ingrid J.G.
Centenera, Margaret M.
Goh, Yit Wooi
Rigopoulos, Angela
Dehairs, Jonas
Swinnen, Johannes V.
Raj, Ganesh V.
Hoy, Andrew J.
Butler, Lisa M.
Scott, Andrew M.
White, Jonathan M.
Ackermann, Uwe
description Altered lipid metabolism and subsequent changes in cellular lipid composition have been observed in prostate cancer cells, are associated with poor clinical outcome, and are promising targets for metabolic therapies. This study reports for the first time on the synthesis of a phospholipid radiotracer based on the phospholipid 1,2-didocosahexaenoyl-sn-glycero-3-phosphocholine (PC44:12) to allow tracking of polyunsaturated lipid tumor uptake via PET imaging. This tracer may aid in the development of strategies to modulate response to therapies targeting lipid metabolism in prostate cancer. Lipidomics analysis of prostate tumor explants and LNCaP tumor cells were used to identify PC44:12 as a potential phospholipid candidate for radiotracer development. Synthesis of phosphocholine precursor and non-radioactive standard were optimised using click chemistry. The biodistribution of a fluorine-18 labeled analogue, N-{[4-(2-[18F]fluoroethyl)-2,3,4-triazol-1-yl]methyl}-1,2-didocosahexaenoyl-sn-glycero-3-phosphocholine ([18F]2) was determined in LNCaP prostate tumor-bearing NOD SCID gamma mice by ex vivo biodistribution and PET imaging studies and compared to biodistribution of [18F]fluoromethylcholine. [18F]2 was produced with a decay-corrected yield of 17.8 ± 3.7% and an average radiochemical purity of 97.00 ± 0.89% (n = 6). Molar activity was 85.1 ± 3.45 GBq/μmol (2300 ± 93 mCi/μmol) and the total synthesis time was 2 h. Ex vivo biodistribution data demonstrated high liver uptake (41.1 ± 9.2%ID/g) and high splenic uptake (10.9 ± 9.1%ID/g) 50 min post-injection. Ex vivo biodistribution showed low absolute tumor uptake of [18F]2 (0.8 ± 0.3%ID/g). However, dynamic PET imaging demonstrated an increase over time of the relative tumor-to-muscle ratio with a peak of 2.8 ± 0.5 reached 1 h post-injection. In contrast, dynamic PET of [18F]fluoromethylcholine demonstrated no increase in tumor-to-muscle ratios due to an increase in both tumor and muscle over time. Absolute uptake of [18F]fluoromethylcholine was higher and peaked at 60 min post injection (2.25 ± 0.29%ID/g) compared to [18F]2 (1.44 ± 0.06%ID/g) during the 1 h dynamic scan period. This study demonstrates the ability to radiolabel phospholipids and indicates the potential to monitor the in vivo distribution of phospholipids using fluorine-18 based PET. [Display omitted]
doi_str_mv 10.1016/j.nucmedbio.2020.11.007
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8071757</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0969805120303000</els_id><sourcerecordid>2470026792</sourcerecordid><originalsourceid>FETCH-LOGICAL-c503t-775f3b81b86d606921103946de5b24282de1714d56022708c3c423b3c9f6a53a3</originalsourceid><addsrcrecordid>eNqFUcFu1DAUtBCIbgu_AJa4cMnynp3YyQWpqgpFqgQS5Ww5trPrVdYOdlKpf18vW1bAhYNlyZ6ZN2-GkLcIawQUH3brsJi9s72PawasvOIaQD4jK2wlqzqB9XOygk50VQsNnpHznHdQmDXCS3LGOUfgDayI_f4Q5q3LPlMdLB3GJSYfXIUtTdr6OOrejT5saByoptM25nJGP3lLdaHQb9d31O_15gDRGxdmOsREpxTzrGdHjQ7GpVfkxaDH7F4_3Rfkx6fru6ub6vbr5y9Xl7eVaYDPlZTNwPsW-1ZYAaJjWEx2tbCu6VnNWmYdSqxtI4AxCa3hpma856YbhG645hfk41F3WvoSjil2kh7VlIrD9KCi9urvn-C3ahPvVQsSZSOLwPsngRR_Li7Pau-zceOog4tLVqyWAEzIjhXou3-gu7ikUNZTrGGsrTv8JSiPKFMSyckNJzMI6tCk2qlTk-rQpEJUpcnCfPPnLife7-oK4PIIcCXRe--Sysa7Erf1yZlZ2ej_O-QRKOSy8Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2522849157</pqid></control><display><type>article</type><title>Synthesis and fluorine-18 radiolabeling of a phospholipid as a PET imaging agent for prostate cancer</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Kwan, Kim H. ; Burvenich, Ingrid J.G. ; Centenera, Margaret M. ; Goh, Yit Wooi ; Rigopoulos, Angela ; Dehairs, Jonas ; Swinnen, Johannes V. ; Raj, Ganesh V. ; Hoy, Andrew J. ; Butler, Lisa M. ; Scott, Andrew M. ; White, Jonathan M. ; Ackermann, Uwe</creator><creatorcontrib>Kwan, Kim H. ; Burvenich, Ingrid J.G. ; Centenera, Margaret M. ; Goh, Yit Wooi ; Rigopoulos, Angela ; Dehairs, Jonas ; Swinnen, Johannes V. ; Raj, Ganesh V. ; Hoy, Andrew J. ; Butler, Lisa M. ; Scott, Andrew M. ; White, Jonathan M. ; Ackermann, Uwe</creatorcontrib><description>Altered lipid metabolism and subsequent changes in cellular lipid composition have been observed in prostate cancer cells, are associated with poor clinical outcome, and are promising targets for metabolic therapies. This study reports for the first time on the synthesis of a phospholipid radiotracer based on the phospholipid 1,2-didocosahexaenoyl-sn-glycero-3-phosphocholine (PC44:12) to allow tracking of polyunsaturated lipid tumor uptake via PET imaging. This tracer may aid in the development of strategies to modulate response to therapies targeting lipid metabolism in prostate cancer. Lipidomics analysis of prostate tumor explants and LNCaP tumor cells were used to identify PC44:12 as a potential phospholipid candidate for radiotracer development. Synthesis of phosphocholine precursor and non-radioactive standard were optimised using click chemistry. The biodistribution of a fluorine-18 labeled analogue, N-{[4-(2-[18F]fluoroethyl)-2,3,4-triazol-1-yl]methyl}-1,2-didocosahexaenoyl-sn-glycero-3-phosphocholine ([18F]2) was determined in LNCaP prostate tumor-bearing NOD SCID gamma mice by ex vivo biodistribution and PET imaging studies and compared to biodistribution of [18F]fluoromethylcholine. [18F]2 was produced with a decay-corrected yield of 17.8 ± 3.7% and an average radiochemical purity of 97.00 ± 0.89% (n = 6). Molar activity was 85.1 ± 3.45 GBq/μmol (2300 ± 93 mCi/μmol) and the total synthesis time was 2 h. Ex vivo biodistribution data demonstrated high liver uptake (41.1 ± 9.2%ID/g) and high splenic uptake (10.9 ± 9.1%ID/g) 50 min post-injection. Ex vivo biodistribution showed low absolute tumor uptake of [18F]2 (0.8 ± 0.3%ID/g). However, dynamic PET imaging demonstrated an increase over time of the relative tumor-to-muscle ratio with a peak of 2.8 ± 0.5 reached 1 h post-injection. In contrast, dynamic PET of [18F]fluoromethylcholine demonstrated no increase in tumor-to-muscle ratios due to an increase in both tumor and muscle over time. Absolute uptake of [18F]fluoromethylcholine was higher and peaked at 60 min post injection (2.25 ± 0.29%ID/g) compared to [18F]2 (1.44 ± 0.06%ID/g) during the 1 h dynamic scan period. This study demonstrates the ability to radiolabel phospholipids and indicates the potential to monitor the in vivo distribution of phospholipids using fluorine-18 based PET. [Display omitted]</description><identifier>ISSN: 0969-8051</identifier><identifier>ISSN: 1872-9614</identifier><identifier>EISSN: 1872-9614</identifier><identifier>DOI: 10.1016/j.nucmedbio.2020.11.007</identifier><identifier>PMID: 33310350</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Biodistribution ; Cell Line, Tumor ; Chemical synthesis ; Chemistry Techniques, Synthetic ; Explants ; Fluorine ; Fluorine isotopes ; Fluorine Radioisotopes - chemistry ; Fluorine-18 ; Humans ; Imaging ; Injection ; Isotope Labeling ; Lipid composition ; Lipid metabolism ; Lipids ; Male ; Metabolism ; Mice ; Muscles ; PET ; Phosphocholine ; Phospholipid ; Phospholipids ; Phospholipids - chemical synthesis ; Phospholipids - chemistry ; Phospholipids - pharmacokinetics ; Positron emission ; Positron-Emission Tomography - methods ; Prostate cancer ; Prostatic Neoplasms - diagnostic imaging ; Prostatic Neoplasms - metabolism ; Radioactive tracers ; Radiochemical analysis ; Radiochemistry ; Radiolabelling ; Spleen ; Tissue Distribution ; Tomography ; Tumor cells ; Tumors</subject><ispartof>Nuclear medicine and biology, 2021-02, Vol.93, p.37-45</ispartof><rights>2020 Elsevier Inc.</rights><rights>Copyright © 2020 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier BV Feb 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c503t-775f3b81b86d606921103946de5b24282de1714d56022708c3c423b3c9f6a53a3</citedby><cites>FETCH-LOGICAL-c503t-775f3b81b86d606921103946de5b24282de1714d56022708c3c423b3c9f6a53a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0969805120303000$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33310350$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kwan, Kim H.</creatorcontrib><creatorcontrib>Burvenich, Ingrid J.G.</creatorcontrib><creatorcontrib>Centenera, Margaret M.</creatorcontrib><creatorcontrib>Goh, Yit Wooi</creatorcontrib><creatorcontrib>Rigopoulos, Angela</creatorcontrib><creatorcontrib>Dehairs, Jonas</creatorcontrib><creatorcontrib>Swinnen, Johannes V.</creatorcontrib><creatorcontrib>Raj, Ganesh V.</creatorcontrib><creatorcontrib>Hoy, Andrew J.</creatorcontrib><creatorcontrib>Butler, Lisa M.</creatorcontrib><creatorcontrib>Scott, Andrew M.</creatorcontrib><creatorcontrib>White, Jonathan M.</creatorcontrib><creatorcontrib>Ackermann, Uwe</creatorcontrib><title>Synthesis and fluorine-18 radiolabeling of a phospholipid as a PET imaging agent for prostate cancer</title><title>Nuclear medicine and biology</title><addtitle>Nucl Med Biol</addtitle><description>Altered lipid metabolism and subsequent changes in cellular lipid composition have been observed in prostate cancer cells, are associated with poor clinical outcome, and are promising targets for metabolic therapies. This study reports for the first time on the synthesis of a phospholipid radiotracer based on the phospholipid 1,2-didocosahexaenoyl-sn-glycero-3-phosphocholine (PC44:12) to allow tracking of polyunsaturated lipid tumor uptake via PET imaging. This tracer may aid in the development of strategies to modulate response to therapies targeting lipid metabolism in prostate cancer. Lipidomics analysis of prostate tumor explants and LNCaP tumor cells were used to identify PC44:12 as a potential phospholipid candidate for radiotracer development. Synthesis of phosphocholine precursor and non-radioactive standard were optimised using click chemistry. The biodistribution of a fluorine-18 labeled analogue, N-{[4-(2-[18F]fluoroethyl)-2,3,4-triazol-1-yl]methyl}-1,2-didocosahexaenoyl-sn-glycero-3-phosphocholine ([18F]2) was determined in LNCaP prostate tumor-bearing NOD SCID gamma mice by ex vivo biodistribution and PET imaging studies and compared to biodistribution of [18F]fluoromethylcholine. [18F]2 was produced with a decay-corrected yield of 17.8 ± 3.7% and an average radiochemical purity of 97.00 ± 0.89% (n = 6). Molar activity was 85.1 ± 3.45 GBq/μmol (2300 ± 93 mCi/μmol) and the total synthesis time was 2 h. Ex vivo biodistribution data demonstrated high liver uptake (41.1 ± 9.2%ID/g) and high splenic uptake (10.9 ± 9.1%ID/g) 50 min post-injection. Ex vivo biodistribution showed low absolute tumor uptake of [18F]2 (0.8 ± 0.3%ID/g). However, dynamic PET imaging demonstrated an increase over time of the relative tumor-to-muscle ratio with a peak of 2.8 ± 0.5 reached 1 h post-injection. In contrast, dynamic PET of [18F]fluoromethylcholine demonstrated no increase in tumor-to-muscle ratios due to an increase in both tumor and muscle over time. Absolute uptake of [18F]fluoromethylcholine was higher and peaked at 60 min post injection (2.25 ± 0.29%ID/g) compared to [18F]2 (1.44 ± 0.06%ID/g) during the 1 h dynamic scan period. This study demonstrates the ability to radiolabel phospholipids and indicates the potential to monitor the in vivo distribution of phospholipids using fluorine-18 based PET. [Display omitted]</description><subject>Animals</subject><subject>Biodistribution</subject><subject>Cell Line, Tumor</subject><subject>Chemical synthesis</subject><subject>Chemistry Techniques, Synthetic</subject><subject>Explants</subject><subject>Fluorine</subject><subject>Fluorine isotopes</subject><subject>Fluorine Radioisotopes - chemistry</subject><subject>Fluorine-18</subject><subject>Humans</subject><subject>Imaging</subject><subject>Injection</subject><subject>Isotope Labeling</subject><subject>Lipid composition</subject><subject>Lipid metabolism</subject><subject>Lipids</subject><subject>Male</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Muscles</subject><subject>PET</subject><subject>Phosphocholine</subject><subject>Phospholipid</subject><subject>Phospholipids</subject><subject>Phospholipids - chemical synthesis</subject><subject>Phospholipids - chemistry</subject><subject>Phospholipids - pharmacokinetics</subject><subject>Positron emission</subject><subject>Positron-Emission Tomography - methods</subject><subject>Prostate cancer</subject><subject>Prostatic Neoplasms - diagnostic imaging</subject><subject>Prostatic Neoplasms - metabolism</subject><subject>Radioactive tracers</subject><subject>Radiochemical analysis</subject><subject>Radiochemistry</subject><subject>Radiolabelling</subject><subject>Spleen</subject><subject>Tissue Distribution</subject><subject>Tomography</subject><subject>Tumor cells</subject><subject>Tumors</subject><issn>0969-8051</issn><issn>1872-9614</issn><issn>1872-9614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUcFu1DAUtBCIbgu_AJa4cMnynp3YyQWpqgpFqgQS5Ww5trPrVdYOdlKpf18vW1bAhYNlyZ6ZN2-GkLcIawQUH3brsJi9s72PawasvOIaQD4jK2wlqzqB9XOygk50VQsNnpHznHdQmDXCS3LGOUfgDayI_f4Q5q3LPlMdLB3GJSYfXIUtTdr6OOrejT5saByoptM25nJGP3lLdaHQb9d31O_15gDRGxdmOsREpxTzrGdHjQ7GpVfkxaDH7F4_3Rfkx6fru6ub6vbr5y9Xl7eVaYDPlZTNwPsW-1ZYAaJjWEx2tbCu6VnNWmYdSqxtI4AxCa3hpma856YbhG645hfk41F3WvoSjil2kh7VlIrD9KCi9urvn-C3ahPvVQsSZSOLwPsngRR_Li7Pau-zceOog4tLVqyWAEzIjhXou3-gu7ikUNZTrGGsrTv8JSiPKFMSyckNJzMI6tCk2qlTk-rQpEJUpcnCfPPnLife7-oK4PIIcCXRe--Sysa7Erf1yZlZ2ej_O-QRKOSy8Q</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Kwan, Kim H.</creator><creator>Burvenich, Ingrid J.G.</creator><creator>Centenera, Margaret M.</creator><creator>Goh, Yit Wooi</creator><creator>Rigopoulos, Angela</creator><creator>Dehairs, Jonas</creator><creator>Swinnen, Johannes V.</creator><creator>Raj, Ganesh V.</creator><creator>Hoy, Andrew J.</creator><creator>Butler, Lisa M.</creator><creator>Scott, Andrew M.</creator><creator>White, Jonathan M.</creator><creator>Ackermann, Uwe</creator><general>Elsevier Inc</general><general>Elsevier BV</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20210201</creationdate><title>Synthesis and fluorine-18 radiolabeling of a phospholipid as a PET imaging agent for prostate cancer</title><author>Kwan, Kim H. ; Burvenich, Ingrid J.G. ; Centenera, Margaret M. ; Goh, Yit Wooi ; Rigopoulos, Angela ; Dehairs, Jonas ; Swinnen, Johannes V. ; Raj, Ganesh V. ; Hoy, Andrew J. ; Butler, Lisa M. ; Scott, Andrew M. ; White, Jonathan M. ; Ackermann, Uwe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c503t-775f3b81b86d606921103946de5b24282de1714d56022708c3c423b3c9f6a53a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Biodistribution</topic><topic>Cell Line, Tumor</topic><topic>Chemical synthesis</topic><topic>Chemistry Techniques, Synthetic</topic><topic>Explants</topic><topic>Fluorine</topic><topic>Fluorine isotopes</topic><topic>Fluorine Radioisotopes - chemistry</topic><topic>Fluorine-18</topic><topic>Humans</topic><topic>Imaging</topic><topic>Injection</topic><topic>Isotope Labeling</topic><topic>Lipid composition</topic><topic>Lipid metabolism</topic><topic>Lipids</topic><topic>Male</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Muscles</topic><topic>PET</topic><topic>Phosphocholine</topic><topic>Phospholipid</topic><topic>Phospholipids</topic><topic>Phospholipids - chemical synthesis</topic><topic>Phospholipids - chemistry</topic><topic>Phospholipids - pharmacokinetics</topic><topic>Positron emission</topic><topic>Positron-Emission Tomography - methods</topic><topic>Prostate cancer</topic><topic>Prostatic Neoplasms - diagnostic imaging</topic><topic>Prostatic Neoplasms - metabolism</topic><topic>Radioactive tracers</topic><topic>Radiochemical analysis</topic><topic>Radiochemistry</topic><topic>Radiolabelling</topic><topic>Spleen</topic><topic>Tissue Distribution</topic><topic>Tomography</topic><topic>Tumor cells</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kwan, Kim H.</creatorcontrib><creatorcontrib>Burvenich, Ingrid J.G.</creatorcontrib><creatorcontrib>Centenera, Margaret M.</creatorcontrib><creatorcontrib>Goh, Yit Wooi</creatorcontrib><creatorcontrib>Rigopoulos, Angela</creatorcontrib><creatorcontrib>Dehairs, Jonas</creatorcontrib><creatorcontrib>Swinnen, Johannes V.</creatorcontrib><creatorcontrib>Raj, Ganesh V.</creatorcontrib><creatorcontrib>Hoy, Andrew J.</creatorcontrib><creatorcontrib>Butler, Lisa M.</creatorcontrib><creatorcontrib>Scott, Andrew M.</creatorcontrib><creatorcontrib>White, Jonathan M.</creatorcontrib><creatorcontrib>Ackermann, Uwe</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nuclear medicine and biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kwan, Kim H.</au><au>Burvenich, Ingrid J.G.</au><au>Centenera, Margaret M.</au><au>Goh, Yit Wooi</au><au>Rigopoulos, Angela</au><au>Dehairs, Jonas</au><au>Swinnen, Johannes V.</au><au>Raj, Ganesh V.</au><au>Hoy, Andrew J.</au><au>Butler, Lisa M.</au><au>Scott, Andrew M.</au><au>White, Jonathan M.</au><au>Ackermann, Uwe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis and fluorine-18 radiolabeling of a phospholipid as a PET imaging agent for prostate cancer</atitle><jtitle>Nuclear medicine and biology</jtitle><addtitle>Nucl Med Biol</addtitle><date>2021-02-01</date><risdate>2021</risdate><volume>93</volume><spage>37</spage><epage>45</epage><pages>37-45</pages><issn>0969-8051</issn><issn>1872-9614</issn><eissn>1872-9614</eissn><abstract>Altered lipid metabolism and subsequent changes in cellular lipid composition have been observed in prostate cancer cells, are associated with poor clinical outcome, and are promising targets for metabolic therapies. This study reports for the first time on the synthesis of a phospholipid radiotracer based on the phospholipid 1,2-didocosahexaenoyl-sn-glycero-3-phosphocholine (PC44:12) to allow tracking of polyunsaturated lipid tumor uptake via PET imaging. This tracer may aid in the development of strategies to modulate response to therapies targeting lipid metabolism in prostate cancer. Lipidomics analysis of prostate tumor explants and LNCaP tumor cells were used to identify PC44:12 as a potential phospholipid candidate for radiotracer development. Synthesis of phosphocholine precursor and non-radioactive standard were optimised using click chemistry. The biodistribution of a fluorine-18 labeled analogue, N-{[4-(2-[18F]fluoroethyl)-2,3,4-triazol-1-yl]methyl}-1,2-didocosahexaenoyl-sn-glycero-3-phosphocholine ([18F]2) was determined in LNCaP prostate tumor-bearing NOD SCID gamma mice by ex vivo biodistribution and PET imaging studies and compared to biodistribution of [18F]fluoromethylcholine. [18F]2 was produced with a decay-corrected yield of 17.8 ± 3.7% and an average radiochemical purity of 97.00 ± 0.89% (n = 6). Molar activity was 85.1 ± 3.45 GBq/μmol (2300 ± 93 mCi/μmol) and the total synthesis time was 2 h. Ex vivo biodistribution data demonstrated high liver uptake (41.1 ± 9.2%ID/g) and high splenic uptake (10.9 ± 9.1%ID/g) 50 min post-injection. Ex vivo biodistribution showed low absolute tumor uptake of [18F]2 (0.8 ± 0.3%ID/g). However, dynamic PET imaging demonstrated an increase over time of the relative tumor-to-muscle ratio with a peak of 2.8 ± 0.5 reached 1 h post-injection. In contrast, dynamic PET of [18F]fluoromethylcholine demonstrated no increase in tumor-to-muscle ratios due to an increase in both tumor and muscle over time. Absolute uptake of [18F]fluoromethylcholine was higher and peaked at 60 min post injection (2.25 ± 0.29%ID/g) compared to [18F]2 (1.44 ± 0.06%ID/g) during the 1 h dynamic scan period. This study demonstrates the ability to radiolabel phospholipids and indicates the potential to monitor the in vivo distribution of phospholipids using fluorine-18 based PET. [Display omitted]</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>33310350</pmid><doi>10.1016/j.nucmedbio.2020.11.007</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0969-8051
ispartof Nuclear medicine and biology, 2021-02, Vol.93, p.37-45
issn 0969-8051
1872-9614
1872-9614
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8071757
source MEDLINE; Elsevier ScienceDirect Journals
subjects Animals
Biodistribution
Cell Line, Tumor
Chemical synthesis
Chemistry Techniques, Synthetic
Explants
Fluorine
Fluorine isotopes
Fluorine Radioisotopes - chemistry
Fluorine-18
Humans
Imaging
Injection
Isotope Labeling
Lipid composition
Lipid metabolism
Lipids
Male
Metabolism
Mice
Muscles
PET
Phosphocholine
Phospholipid
Phospholipids
Phospholipids - chemical synthesis
Phospholipids - chemistry
Phospholipids - pharmacokinetics
Positron emission
Positron-Emission Tomography - methods
Prostate cancer
Prostatic Neoplasms - diagnostic imaging
Prostatic Neoplasms - metabolism
Radioactive tracers
Radiochemical analysis
Radiochemistry
Radiolabelling
Spleen
Tissue Distribution
Tomography
Tumor cells
Tumors
title Synthesis and fluorine-18 radiolabeling of a phospholipid as a PET imaging agent for prostate cancer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T13%3A09%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20and%20fluorine-18%20radiolabeling%20of%20a%20phospholipid%20as%20a%20PET%20imaging%20agent%20for%20prostate%20cancer&rft.jtitle=Nuclear%20medicine%20and%20biology&rft.au=Kwan,%20Kim%20H.&rft.date=2021-02-01&rft.volume=93&rft.spage=37&rft.epage=45&rft.pages=37-45&rft.issn=0969-8051&rft.eissn=1872-9614&rft_id=info:doi/10.1016/j.nucmedbio.2020.11.007&rft_dat=%3Cproquest_pubme%3E2470026792%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2522849157&rft_id=info:pmid/33310350&rft_els_id=S0969805120303000&rfr_iscdi=true