Supervised Learning Methods for Modeling Concrete Compressive Strength Prediction at High Temperature

Supervised learning algorithms are a recent trend for the prediction of mechanical properties of concrete. This paper presents AdaBoost, random forest (RF), and decision tree (DT) models for predicting the compressive strength of concrete at high temperature, based on the experimental data of 207 te...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2021-04, Vol.14 (8), p.1983
Hauptverfasser: Ahmad, Mahmood, Hu, Ji-Lei, Ahmad, Feezan, Tang, Xiao-Wei, Amjad, Maaz, Iqbal, Muhammad Junaid, Asim, Muhammad, Farooq, Asim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page 1983
container_title Materials
container_volume 14
creator Ahmad, Mahmood
Hu, Ji-Lei
Ahmad, Feezan
Tang, Xiao-Wei
Amjad, Maaz
Iqbal, Muhammad Junaid
Asim, Muhammad
Farooq, Asim
description Supervised learning algorithms are a recent trend for the prediction of mechanical properties of concrete. This paper presents AdaBoost, random forest (RF), and decision tree (DT) models for predicting the compressive strength of concrete at high temperature, based on the experimental data of 207 tests. The cement content, water, fine and coarse aggregates, silica fume, nano silica, fly ash, super plasticizer, and temperature were used as inputs for the models' development. The performance of the AdaBoost, RF, and DT models are assessed using statistical indices, including the coefficient of determination (R ), root mean squared error-observations standard deviation ratio (RSR), mean absolute percentage error, and relative root mean square error. The applications of the above-mentioned approach for predicting the compressive strength of concrete at high temperature are compared with each other, and also to the artificial neural network and adaptive neuro-fuzzy inference system models described in the literature, to demonstrate the suitability of using the supervised learning methods for modeling to predict the compressive strength at high temperature. The results indicated a strong correlation between experimental and predicted values, with R above 0.9 and RSR lower than 0.5 during the learning and testing phases for the AdaBoost model. Moreover, the cement content in the mix was revealed as the most sensitive parameter by sensitivity analysis.
doi_str_mv 10.3390/ma14081983
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8071252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548722174</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-5e294d51a7474ade93a62e77b88068a0635bfd18a1093377fbdcc5395d5ef87a3</originalsourceid><addsrcrecordid>eNpdkVFLHDEQx0OpVNF76QcoAV-KcJpskk3yUiiHrYWTFs4-h9xm9i6ym5xJ9sBvb0Rr1XmZYeY3f2b4I_SZknPGNLkYLeVEUa3YB3REtW7nVHP-8VV9iGY535IajFHV6E_osG42RCt1hGA17SDtfQaHl2BT8GGDr6Fso8u4jwlfRwfDY3MRQ5egQC3GXYKc_R7wqiQIm7LFfxI43xUfA7YFX_nNFt_AWKVtmRKcoIPeDhlmz_kY_f1xebO4mi9___y1-L6cd5y0ZS6g0dwJaiWX3DrQzLYNSLlWirTKkpaJde-ospRoxqTs167rBNPCCeiVtOwYfXvS3U3rEVwHoSQ7mF3yo033Jlpv3k6C35pN3BtFJG1EUwW-PgukeDdBLmb0uYNhsAHilE1liBJKcFHR03fobZxSqO9ViivZNFTySp09UV2KOSfoX46hxDwaaP4bWOEvr89_Qf_ZxR4AU02XFw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548722174</pqid></control><display><type>article</type><title>Supervised Learning Methods for Modeling Concrete Compressive Strength Prediction at High Temperature</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Ahmad, Mahmood ; Hu, Ji-Lei ; Ahmad, Feezan ; Tang, Xiao-Wei ; Amjad, Maaz ; Iqbal, Muhammad Junaid ; Asim, Muhammad ; Farooq, Asim</creator><creatorcontrib>Ahmad, Mahmood ; Hu, Ji-Lei ; Ahmad, Feezan ; Tang, Xiao-Wei ; Amjad, Maaz ; Iqbal, Muhammad Junaid ; Asim, Muhammad ; Farooq, Asim</creatorcontrib><description>Supervised learning algorithms are a recent trend for the prediction of mechanical properties of concrete. This paper presents AdaBoost, random forest (RF), and decision tree (DT) models for predicting the compressive strength of concrete at high temperature, based on the experimental data of 207 tests. The cement content, water, fine and coarse aggregates, silica fume, nano silica, fly ash, super plasticizer, and temperature were used as inputs for the models' development. The performance of the AdaBoost, RF, and DT models are assessed using statistical indices, including the coefficient of determination (R ), root mean squared error-observations standard deviation ratio (RSR), mean absolute percentage error, and relative root mean square error. The applications of the above-mentioned approach for predicting the compressive strength of concrete at high temperature are compared with each other, and also to the artificial neural network and adaptive neuro-fuzzy inference system models described in the literature, to demonstrate the suitability of using the supervised learning methods for modeling to predict the compressive strength at high temperature. The results indicated a strong correlation between experimental and predicted values, with R above 0.9 and RSR lower than 0.5 during the learning and testing phases for the AdaBoost model. Moreover, the cement content in the mix was revealed as the most sensitive parameter by sensitivity analysis.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma14081983</identifier><identifier>PMID: 33920988</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Adaptive systems ; Algorithms ; Artificial neural networks ; Cement ; Compressive strength ; Concrete ; Construction ; Datasets ; Decision trees ; Failure analysis ; Fly ash ; Fuzzy logic ; Gene expression ; High temperature ; Machine learning ; Mechanical properties ; Modelling ; Numerical analysis ; Parameter sensitivity ; Root-mean-square errors ; Sensitivity analysis ; Silica fume ; Silicon dioxide ; Supervised learning ; Temperature effects</subject><ispartof>Materials, 2021-04, Vol.14 (8), p.1983</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-5e294d51a7474ade93a62e77b88068a0635bfd18a1093377fbdcc5395d5ef87a3</citedby><cites>FETCH-LOGICAL-c406t-5e294d51a7474ade93a62e77b88068a0635bfd18a1093377fbdcc5395d5ef87a3</cites><orcidid>0000-0003-4673-0845 ; 0000-0002-1139-1831 ; 0000-0001-6939-0180</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8071252/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8071252/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33920988$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ahmad, Mahmood</creatorcontrib><creatorcontrib>Hu, Ji-Lei</creatorcontrib><creatorcontrib>Ahmad, Feezan</creatorcontrib><creatorcontrib>Tang, Xiao-Wei</creatorcontrib><creatorcontrib>Amjad, Maaz</creatorcontrib><creatorcontrib>Iqbal, Muhammad Junaid</creatorcontrib><creatorcontrib>Asim, Muhammad</creatorcontrib><creatorcontrib>Farooq, Asim</creatorcontrib><title>Supervised Learning Methods for Modeling Concrete Compressive Strength Prediction at High Temperature</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>Supervised learning algorithms are a recent trend for the prediction of mechanical properties of concrete. This paper presents AdaBoost, random forest (RF), and decision tree (DT) models for predicting the compressive strength of concrete at high temperature, based on the experimental data of 207 tests. The cement content, water, fine and coarse aggregates, silica fume, nano silica, fly ash, super plasticizer, and temperature were used as inputs for the models' development. The performance of the AdaBoost, RF, and DT models are assessed using statistical indices, including the coefficient of determination (R ), root mean squared error-observations standard deviation ratio (RSR), mean absolute percentage error, and relative root mean square error. The applications of the above-mentioned approach for predicting the compressive strength of concrete at high temperature are compared with each other, and also to the artificial neural network and adaptive neuro-fuzzy inference system models described in the literature, to demonstrate the suitability of using the supervised learning methods for modeling to predict the compressive strength at high temperature. The results indicated a strong correlation between experimental and predicted values, with R above 0.9 and RSR lower than 0.5 during the learning and testing phases for the AdaBoost model. Moreover, the cement content in the mix was revealed as the most sensitive parameter by sensitivity analysis.</description><subject>Adaptive systems</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Cement</subject><subject>Compressive strength</subject><subject>Concrete</subject><subject>Construction</subject><subject>Datasets</subject><subject>Decision trees</subject><subject>Failure analysis</subject><subject>Fly ash</subject><subject>Fuzzy logic</subject><subject>Gene expression</subject><subject>High temperature</subject><subject>Machine learning</subject><subject>Mechanical properties</subject><subject>Modelling</subject><subject>Numerical analysis</subject><subject>Parameter sensitivity</subject><subject>Root-mean-square errors</subject><subject>Sensitivity analysis</subject><subject>Silica fume</subject><subject>Silicon dioxide</subject><subject>Supervised learning</subject><subject>Temperature effects</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkVFLHDEQx0OpVNF76QcoAV-KcJpskk3yUiiHrYWTFs4-h9xm9i6ym5xJ9sBvb0Rr1XmZYeY3f2b4I_SZknPGNLkYLeVEUa3YB3REtW7nVHP-8VV9iGY535IajFHV6E_osG42RCt1hGA17SDtfQaHl2BT8GGDr6Fso8u4jwlfRwfDY3MRQ5egQC3GXYKc_R7wqiQIm7LFfxI43xUfA7YFX_nNFt_AWKVtmRKcoIPeDhlmz_kY_f1xebO4mi9___y1-L6cd5y0ZS6g0dwJaiWX3DrQzLYNSLlWirTKkpaJde-ospRoxqTs167rBNPCCeiVtOwYfXvS3U3rEVwHoSQ7mF3yo033Jlpv3k6C35pN3BtFJG1EUwW-PgukeDdBLmb0uYNhsAHilE1liBJKcFHR03fobZxSqO9ViivZNFTySp09UV2KOSfoX46hxDwaaP4bWOEvr89_Qf_ZxR4AU02XFw</recordid><startdate>20210415</startdate><enddate>20210415</enddate><creator>Ahmad, Mahmood</creator><creator>Hu, Ji-Lei</creator><creator>Ahmad, Feezan</creator><creator>Tang, Xiao-Wei</creator><creator>Amjad, Maaz</creator><creator>Iqbal, Muhammad Junaid</creator><creator>Asim, Muhammad</creator><creator>Farooq, Asim</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4673-0845</orcidid><orcidid>https://orcid.org/0000-0002-1139-1831</orcidid><orcidid>https://orcid.org/0000-0001-6939-0180</orcidid></search><sort><creationdate>20210415</creationdate><title>Supervised Learning Methods for Modeling Concrete Compressive Strength Prediction at High Temperature</title><author>Ahmad, Mahmood ; Hu, Ji-Lei ; Ahmad, Feezan ; Tang, Xiao-Wei ; Amjad, Maaz ; Iqbal, Muhammad Junaid ; Asim, Muhammad ; Farooq, Asim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-5e294d51a7474ade93a62e77b88068a0635bfd18a1093377fbdcc5395d5ef87a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptive systems</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Cement</topic><topic>Compressive strength</topic><topic>Concrete</topic><topic>Construction</topic><topic>Datasets</topic><topic>Decision trees</topic><topic>Failure analysis</topic><topic>Fly ash</topic><topic>Fuzzy logic</topic><topic>Gene expression</topic><topic>High temperature</topic><topic>Machine learning</topic><topic>Mechanical properties</topic><topic>Modelling</topic><topic>Numerical analysis</topic><topic>Parameter sensitivity</topic><topic>Root-mean-square errors</topic><topic>Sensitivity analysis</topic><topic>Silica fume</topic><topic>Silicon dioxide</topic><topic>Supervised learning</topic><topic>Temperature effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahmad, Mahmood</creatorcontrib><creatorcontrib>Hu, Ji-Lei</creatorcontrib><creatorcontrib>Ahmad, Feezan</creatorcontrib><creatorcontrib>Tang, Xiao-Wei</creatorcontrib><creatorcontrib>Amjad, Maaz</creatorcontrib><creatorcontrib>Iqbal, Muhammad Junaid</creatorcontrib><creatorcontrib>Asim, Muhammad</creatorcontrib><creatorcontrib>Farooq, Asim</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahmad, Mahmood</au><au>Hu, Ji-Lei</au><au>Ahmad, Feezan</au><au>Tang, Xiao-Wei</au><au>Amjad, Maaz</au><au>Iqbal, Muhammad Junaid</au><au>Asim, Muhammad</au><au>Farooq, Asim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Supervised Learning Methods for Modeling Concrete Compressive Strength Prediction at High Temperature</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2021-04-15</date><risdate>2021</risdate><volume>14</volume><issue>8</issue><spage>1983</spage><pages>1983-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Supervised learning algorithms are a recent trend for the prediction of mechanical properties of concrete. This paper presents AdaBoost, random forest (RF), and decision tree (DT) models for predicting the compressive strength of concrete at high temperature, based on the experimental data of 207 tests. The cement content, water, fine and coarse aggregates, silica fume, nano silica, fly ash, super plasticizer, and temperature were used as inputs for the models' development. The performance of the AdaBoost, RF, and DT models are assessed using statistical indices, including the coefficient of determination (R ), root mean squared error-observations standard deviation ratio (RSR), mean absolute percentage error, and relative root mean square error. The applications of the above-mentioned approach for predicting the compressive strength of concrete at high temperature are compared with each other, and also to the artificial neural network and adaptive neuro-fuzzy inference system models described in the literature, to demonstrate the suitability of using the supervised learning methods for modeling to predict the compressive strength at high temperature. The results indicated a strong correlation between experimental and predicted values, with R above 0.9 and RSR lower than 0.5 during the learning and testing phases for the AdaBoost model. Moreover, the cement content in the mix was revealed as the most sensitive parameter by sensitivity analysis.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>33920988</pmid><doi>10.3390/ma14081983</doi><orcidid>https://orcid.org/0000-0003-4673-0845</orcidid><orcidid>https://orcid.org/0000-0002-1139-1831</orcidid><orcidid>https://orcid.org/0000-0001-6939-0180</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2021-04, Vol.14 (8), p.1983
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8071252
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access
subjects Adaptive systems
Algorithms
Artificial neural networks
Cement
Compressive strength
Concrete
Construction
Datasets
Decision trees
Failure analysis
Fly ash
Fuzzy logic
Gene expression
High temperature
Machine learning
Mechanical properties
Modelling
Numerical analysis
Parameter sensitivity
Root-mean-square errors
Sensitivity analysis
Silica fume
Silicon dioxide
Supervised learning
Temperature effects
title Supervised Learning Methods for Modeling Concrete Compressive Strength Prediction at High Temperature
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T03%3A34%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Supervised%20Learning%20Methods%20for%20Modeling%20Concrete%20Compressive%20Strength%20Prediction%20at%20High%20Temperature&rft.jtitle=Materials&rft.au=Ahmad,%20Mahmood&rft.date=2021-04-15&rft.volume=14&rft.issue=8&rft.spage=1983&rft.pages=1983-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma14081983&rft_dat=%3Cproquest_pubme%3E2548722174%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548722174&rft_id=info:pmid/33920988&rfr_iscdi=true