Forecasting stock price using integrated artificial neural network and metaheuristic algorithms compared to time series models
Today, stock market has important function and it can be a place as a measure of economic position. People can earn a lot of money and return by investing their money in the stock exchange market. But it is not easy because many factors should be considered. So, there are many ways to predict the mo...
Gespeichert in:
Veröffentlicht in: | Soft computing (Berlin, Germany) Germany), 2021, Vol.25 (13), p.8483-8513 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8513 |
---|---|
container_issue | 13 |
container_start_page | 8483 |
container_title | Soft computing (Berlin, Germany) |
container_volume | 25 |
creator | Shahvaroughi Farahani, Milad Razavi Hajiagha, Seyed Hossein |
description | Today, stock market has important function and it can be a place as a measure of economic position. People can earn a lot of money and return by investing their money in the stock exchange market. But it is not easy because many factors should be considered. So, there are many ways to predict the movement of share price. The main goal of this article is to predict stock price indices using artificial neural network (ANN) and train it with some new metaheuristic algorithms such as social spider optimization (SSO) and bat algorithm (BA). We used some technical indicators as input variables. Then, we used genetic algorithms (GA) as a heuristic algorithm for feature selection and choosing the best and most related indicators. We used some loss functions such as mean absolute error (MAE) as error evaluation criteria. On the other hand, we used some time series models forecasting like ARMA and ARIMA for prediction of stock price. Finally, we compared the results with each other means ANN-Metaheuristic algorithms and time series models. The statistical population of research have five most important and international indices which were S&P500, DAX, FTSE100, Nasdaq and DJI. |
doi_str_mv | 10.1007/s00500-021-05775-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8070984</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2521501341</sourcerecordid><originalsourceid>FETCH-LOGICAL-c494t-22454de638ccd17f12901f6d2eac3f15714e693fa82ec4bf9b0d95499a0907ad3</originalsourceid><addsrcrecordid>eNp9kU9vFSEUxYmxsbX6BVwYlm5G-TsMGxPT2NakSTftmvDgzjzaGXgCY-PGzy59rza6cXXJveccuPwQekfJR0qI-lQIkYR0hNGOSKVkJ1-gEyo475RQ-uX-zDrVC36MXpdyR5pSSf4KHXOuuZRDf4J-nacMzpYa4oRLTe4e73JwgNfy2AmxwpRtBY9trmEMLtgZR1jzvtSHlO-xjR4vUO22tUNLctjOU8qhbpeCXVp2Njd_TbiGBXCBHKDgJXmYyxt0NNq5wNuneopuz7_enF12V9cX386-XHVOaFE7xoQUHno-OOepGinThI69Z2AdH6lUVECv-WgHBk5sRr0hXkuhtSWaKOv5Kfp8yN2tmwW8g1jbBqatutj80yQbzL-TGLZmSj_MQBTRg2gBH54Ccvq-QqlmCcXBPNsIaS2GSUYloVzQJmUHqcuplAzj8zWUmEdw5gDONBxmD87IZnr_9wOfLX9INQE_CEobxQmyuUtrju3T_hf7GzcJqEg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2521501341</pqid></control><display><type>article</type><title>Forecasting stock price using integrated artificial neural network and metaheuristic algorithms compared to time series models</title><source>SpringerLink Journals</source><source>ProQuest Central</source><creator>Shahvaroughi Farahani, Milad ; Razavi Hajiagha, Seyed Hossein</creator><creatorcontrib>Shahvaroughi Farahani, Milad ; Razavi Hajiagha, Seyed Hossein</creatorcontrib><description>Today, stock market has important function and it can be a place as a measure of economic position. People can earn a lot of money and return by investing their money in the stock exchange market. But it is not easy because many factors should be considered. So, there are many ways to predict the movement of share price. The main goal of this article is to predict stock price indices using artificial neural network (ANN) and train it with some new metaheuristic algorithms such as social spider optimization (SSO) and bat algorithm (BA). We used some technical indicators as input variables. Then, we used genetic algorithms (GA) as a heuristic algorithm for feature selection and choosing the best and most related indicators. We used some loss functions such as mean absolute error (MAE) as error evaluation criteria. On the other hand, we used some time series models forecasting like ARMA and ARIMA for prediction of stock price. Finally, we compared the results with each other means ANN-Metaheuristic algorithms and time series models. The statistical population of research have five most important and international indices which were S&P500, DAX, FTSE100, Nasdaq and DJI.</description><identifier>ISSN: 1432-7643</identifier><identifier>EISSN: 1433-7479</identifier><identifier>DOI: 10.1007/s00500-021-05775-5</identifier><identifier>PMID: 33935586</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Artificial Intelligence ; Computational Intelligence ; Control ; Engineering ; Mathematical Logic and Foundations ; Mechatronics ; Methodologies and Application ; Robotics</subject><ispartof>Soft computing (Berlin, Germany), 2021, Vol.25 (13), p.8483-8513</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c494t-22454de638ccd17f12901f6d2eac3f15714e693fa82ec4bf9b0d95499a0907ad3</citedby><cites>FETCH-LOGICAL-c494t-22454de638ccd17f12901f6d2eac3f15714e693fa82ec4bf9b0d95499a0907ad3</cites><orcidid>0000-0003-2084-7244</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00500-021-05775-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00500-021-05775-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,33722,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33935586$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shahvaroughi Farahani, Milad</creatorcontrib><creatorcontrib>Razavi Hajiagha, Seyed Hossein</creatorcontrib><title>Forecasting stock price using integrated artificial neural network and metaheuristic algorithms compared to time series models</title><title>Soft computing (Berlin, Germany)</title><addtitle>Soft Comput</addtitle><addtitle>Soft comput</addtitle><description>Today, stock market has important function and it can be a place as a measure of economic position. People can earn a lot of money and return by investing their money in the stock exchange market. But it is not easy because many factors should be considered. So, there are many ways to predict the movement of share price. The main goal of this article is to predict stock price indices using artificial neural network (ANN) and train it with some new metaheuristic algorithms such as social spider optimization (SSO) and bat algorithm (BA). We used some technical indicators as input variables. Then, we used genetic algorithms (GA) as a heuristic algorithm for feature selection and choosing the best and most related indicators. We used some loss functions such as mean absolute error (MAE) as error evaluation criteria. On the other hand, we used some time series models forecasting like ARMA and ARIMA for prediction of stock price. Finally, we compared the results with each other means ANN-Metaheuristic algorithms and time series models. The statistical population of research have five most important and international indices which were S&P500, DAX, FTSE100, Nasdaq and DJI.</description><subject>Artificial Intelligence</subject><subject>Computational Intelligence</subject><subject>Control</subject><subject>Engineering</subject><subject>Mathematical Logic and Foundations</subject><subject>Mechatronics</subject><subject>Methodologies and Application</subject><subject>Robotics</subject><issn>1432-7643</issn><issn>1433-7479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kU9vFSEUxYmxsbX6BVwYlm5G-TsMGxPT2NakSTftmvDgzjzaGXgCY-PGzy59rza6cXXJveccuPwQekfJR0qI-lQIkYR0hNGOSKVkJ1-gEyo475RQ-uX-zDrVC36MXpdyR5pSSf4KHXOuuZRDf4J-nacMzpYa4oRLTe4e73JwgNfy2AmxwpRtBY9trmEMLtgZR1jzvtSHlO-xjR4vUO22tUNLctjOU8qhbpeCXVp2Njd_TbiGBXCBHKDgJXmYyxt0NNq5wNuneopuz7_enF12V9cX386-XHVOaFE7xoQUHno-OOepGinThI69Z2AdH6lUVECv-WgHBk5sRr0hXkuhtSWaKOv5Kfp8yN2tmwW8g1jbBqatutj80yQbzL-TGLZmSj_MQBTRg2gBH54Ccvq-QqlmCcXBPNsIaS2GSUYloVzQJmUHqcuplAzj8zWUmEdw5gDONBxmD87IZnr_9wOfLX9INQE_CEobxQmyuUtrju3T_hf7GzcJqEg</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Shahvaroughi Farahani, Milad</creator><creator>Razavi Hajiagha, Seyed Hossein</creator><general>Springer Berlin Heidelberg</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2084-7244</orcidid></search><sort><creationdate>2021</creationdate><title>Forecasting stock price using integrated artificial neural network and metaheuristic algorithms compared to time series models</title><author>Shahvaroughi Farahani, Milad ; Razavi Hajiagha, Seyed Hossein</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c494t-22454de638ccd17f12901f6d2eac3f15714e693fa82ec4bf9b0d95499a0907ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial Intelligence</topic><topic>Computational Intelligence</topic><topic>Control</topic><topic>Engineering</topic><topic>Mathematical Logic and Foundations</topic><topic>Mechatronics</topic><topic>Methodologies and Application</topic><topic>Robotics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shahvaroughi Farahani, Milad</creatorcontrib><creatorcontrib>Razavi Hajiagha, Seyed Hossein</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Soft computing (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shahvaroughi Farahani, Milad</au><au>Razavi Hajiagha, Seyed Hossein</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forecasting stock price using integrated artificial neural network and metaheuristic algorithms compared to time series models</atitle><jtitle>Soft computing (Berlin, Germany)</jtitle><stitle>Soft Comput</stitle><addtitle>Soft comput</addtitle><date>2021</date><risdate>2021</risdate><volume>25</volume><issue>13</issue><spage>8483</spage><epage>8513</epage><pages>8483-8513</pages><issn>1432-7643</issn><eissn>1433-7479</eissn><abstract>Today, stock market has important function and it can be a place as a measure of economic position. People can earn a lot of money and return by investing their money in the stock exchange market. But it is not easy because many factors should be considered. So, there are many ways to predict the movement of share price. The main goal of this article is to predict stock price indices using artificial neural network (ANN) and train it with some new metaheuristic algorithms such as social spider optimization (SSO) and bat algorithm (BA). We used some technical indicators as input variables. Then, we used genetic algorithms (GA) as a heuristic algorithm for feature selection and choosing the best and most related indicators. We used some loss functions such as mean absolute error (MAE) as error evaluation criteria. On the other hand, we used some time series models forecasting like ARMA and ARIMA for prediction of stock price. Finally, we compared the results with each other means ANN-Metaheuristic algorithms and time series models. The statistical population of research have five most important and international indices which were S&P500, DAX, FTSE100, Nasdaq and DJI.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>33935586</pmid><doi>10.1007/s00500-021-05775-5</doi><tpages>31</tpages><orcidid>https://orcid.org/0000-0003-2084-7244</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1432-7643 |
ispartof | Soft computing (Berlin, Germany), 2021, Vol.25 (13), p.8483-8513 |
issn | 1432-7643 1433-7479 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8070984 |
source | SpringerLink Journals; ProQuest Central |
subjects | Artificial Intelligence Computational Intelligence Control Engineering Mathematical Logic and Foundations Mechatronics Methodologies and Application Robotics |
title | Forecasting stock price using integrated artificial neural network and metaheuristic algorithms compared to time series models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T03%3A07%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forecasting%20stock%20price%20using%20integrated%20artificial%20neural%20network%20and%20metaheuristic%20algorithms%20compared%20to%20time%20series%20models&rft.jtitle=Soft%20computing%20(Berlin,%20Germany)&rft.au=Shahvaroughi%20Farahani,%20Milad&rft.date=2021&rft.volume=25&rft.issue=13&rft.spage=8483&rft.epage=8513&rft.pages=8483-8513&rft.issn=1432-7643&rft.eissn=1433-7479&rft_id=info:doi/10.1007/s00500-021-05775-5&rft_dat=%3Cproquest_pubme%3E2521501341%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2521501341&rft_id=info:pmid/33935586&rfr_iscdi=true |