Forecasting stock price using integrated artificial neural network and metaheuristic algorithms compared to time series models

Today, stock market has important function and it can be a place as a measure of economic position. People can earn a lot of money and return by investing their money in the stock exchange market. But it is not easy because many factors should be considered. So, there are many ways to predict the mo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft computing (Berlin, Germany) Germany), 2021, Vol.25 (13), p.8483-8513
Hauptverfasser: Shahvaroughi Farahani, Milad, Razavi Hajiagha, Seyed Hossein
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8513
container_issue 13
container_start_page 8483
container_title Soft computing (Berlin, Germany)
container_volume 25
creator Shahvaroughi Farahani, Milad
Razavi Hajiagha, Seyed Hossein
description Today, stock market has important function and it can be a place as a measure of economic position. People can earn a lot of money and return by investing their money in the stock exchange market. But it is not easy because many factors should be considered. So, there are many ways to predict the movement of share price. The main goal of this article is to predict stock price indices using artificial neural network (ANN) and train it with some new metaheuristic algorithms such as social spider optimization (SSO) and bat algorithm (BA). We used some technical indicators as input variables. Then, we used genetic algorithms (GA) as a heuristic algorithm for feature selection and choosing the best and most related indicators. We used some loss functions such as mean absolute error (MAE) as error evaluation criteria. On the other hand, we used some time series models forecasting like ARMA and ARIMA for prediction of stock price. Finally, we compared the results with each other means ANN-Metaheuristic algorithms and time series models. The statistical population of research have five most important and international indices which were S&P500, DAX, FTSE100, Nasdaq and DJI.
doi_str_mv 10.1007/s00500-021-05775-5
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8070984</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2521501341</sourcerecordid><originalsourceid>FETCH-LOGICAL-c494t-22454de638ccd17f12901f6d2eac3f15714e693fa82ec4bf9b0d95499a0907ad3</originalsourceid><addsrcrecordid>eNp9kU9vFSEUxYmxsbX6BVwYlm5G-TsMGxPT2NakSTftmvDgzjzaGXgCY-PGzy59rza6cXXJveccuPwQekfJR0qI-lQIkYR0hNGOSKVkJ1-gEyo475RQ-uX-zDrVC36MXpdyR5pSSf4KHXOuuZRDf4J-nacMzpYa4oRLTe4e73JwgNfy2AmxwpRtBY9trmEMLtgZR1jzvtSHlO-xjR4vUO22tUNLctjOU8qhbpeCXVp2Njd_TbiGBXCBHKDgJXmYyxt0NNq5wNuneopuz7_enF12V9cX386-XHVOaFE7xoQUHno-OOepGinThI69Z2AdH6lUVECv-WgHBk5sRr0hXkuhtSWaKOv5Kfp8yN2tmwW8g1jbBqatutj80yQbzL-TGLZmSj_MQBTRg2gBH54Ccvq-QqlmCcXBPNsIaS2GSUYloVzQJmUHqcuplAzj8zWUmEdw5gDONBxmD87IZnr_9wOfLX9INQE_CEobxQmyuUtrju3T_hf7GzcJqEg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2521501341</pqid></control><display><type>article</type><title>Forecasting stock price using integrated artificial neural network and metaheuristic algorithms compared to time series models</title><source>SpringerLink Journals</source><source>ProQuest Central</source><creator>Shahvaroughi Farahani, Milad ; Razavi Hajiagha, Seyed Hossein</creator><creatorcontrib>Shahvaroughi Farahani, Milad ; Razavi Hajiagha, Seyed Hossein</creatorcontrib><description>Today, stock market has important function and it can be a place as a measure of economic position. People can earn a lot of money and return by investing their money in the stock exchange market. But it is not easy because many factors should be considered. So, there are many ways to predict the movement of share price. The main goal of this article is to predict stock price indices using artificial neural network (ANN) and train it with some new metaheuristic algorithms such as social spider optimization (SSO) and bat algorithm (BA). We used some technical indicators as input variables. Then, we used genetic algorithms (GA) as a heuristic algorithm for feature selection and choosing the best and most related indicators. We used some loss functions such as mean absolute error (MAE) as error evaluation criteria. On the other hand, we used some time series models forecasting like ARMA and ARIMA for prediction of stock price. Finally, we compared the results with each other means ANN-Metaheuristic algorithms and time series models. The statistical population of research have five most important and international indices which were S&amp;P500, DAX, FTSE100, Nasdaq and DJI.</description><identifier>ISSN: 1432-7643</identifier><identifier>EISSN: 1433-7479</identifier><identifier>DOI: 10.1007/s00500-021-05775-5</identifier><identifier>PMID: 33935586</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Artificial Intelligence ; Computational Intelligence ; Control ; Engineering ; Mathematical Logic and Foundations ; Mechatronics ; Methodologies and Application ; Robotics</subject><ispartof>Soft computing (Berlin, Germany), 2021, Vol.25 (13), p.8483-8513</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c494t-22454de638ccd17f12901f6d2eac3f15714e693fa82ec4bf9b0d95499a0907ad3</citedby><cites>FETCH-LOGICAL-c494t-22454de638ccd17f12901f6d2eac3f15714e693fa82ec4bf9b0d95499a0907ad3</cites><orcidid>0000-0003-2084-7244</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00500-021-05775-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00500-021-05775-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,33722,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33935586$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shahvaroughi Farahani, Milad</creatorcontrib><creatorcontrib>Razavi Hajiagha, Seyed Hossein</creatorcontrib><title>Forecasting stock price using integrated artificial neural network and metaheuristic algorithms compared to time series models</title><title>Soft computing (Berlin, Germany)</title><addtitle>Soft Comput</addtitle><addtitle>Soft comput</addtitle><description>Today, stock market has important function and it can be a place as a measure of economic position. People can earn a lot of money and return by investing their money in the stock exchange market. But it is not easy because many factors should be considered. So, there are many ways to predict the movement of share price. The main goal of this article is to predict stock price indices using artificial neural network (ANN) and train it with some new metaheuristic algorithms such as social spider optimization (SSO) and bat algorithm (BA). We used some technical indicators as input variables. Then, we used genetic algorithms (GA) as a heuristic algorithm for feature selection and choosing the best and most related indicators. We used some loss functions such as mean absolute error (MAE) as error evaluation criteria. On the other hand, we used some time series models forecasting like ARMA and ARIMA for prediction of stock price. Finally, we compared the results with each other means ANN-Metaheuristic algorithms and time series models. The statistical population of research have five most important and international indices which were S&amp;P500, DAX, FTSE100, Nasdaq and DJI.</description><subject>Artificial Intelligence</subject><subject>Computational Intelligence</subject><subject>Control</subject><subject>Engineering</subject><subject>Mathematical Logic and Foundations</subject><subject>Mechatronics</subject><subject>Methodologies and Application</subject><subject>Robotics</subject><issn>1432-7643</issn><issn>1433-7479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kU9vFSEUxYmxsbX6BVwYlm5G-TsMGxPT2NakSTftmvDgzjzaGXgCY-PGzy59rza6cXXJveccuPwQekfJR0qI-lQIkYR0hNGOSKVkJ1-gEyo475RQ-uX-zDrVC36MXpdyR5pSSf4KHXOuuZRDf4J-nacMzpYa4oRLTe4e73JwgNfy2AmxwpRtBY9trmEMLtgZR1jzvtSHlO-xjR4vUO22tUNLctjOU8qhbpeCXVp2Njd_TbiGBXCBHKDgJXmYyxt0NNq5wNuneopuz7_enF12V9cX386-XHVOaFE7xoQUHno-OOepGinThI69Z2AdH6lUVECv-WgHBk5sRr0hXkuhtSWaKOv5Kfp8yN2tmwW8g1jbBqatutj80yQbzL-TGLZmSj_MQBTRg2gBH54Ccvq-QqlmCcXBPNsIaS2GSUYloVzQJmUHqcuplAzj8zWUmEdw5gDONBxmD87IZnr_9wOfLX9INQE_CEobxQmyuUtrju3T_hf7GzcJqEg</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Shahvaroughi Farahani, Milad</creator><creator>Razavi Hajiagha, Seyed Hossein</creator><general>Springer Berlin Heidelberg</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2084-7244</orcidid></search><sort><creationdate>2021</creationdate><title>Forecasting stock price using integrated artificial neural network and metaheuristic algorithms compared to time series models</title><author>Shahvaroughi Farahani, Milad ; Razavi Hajiagha, Seyed Hossein</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c494t-22454de638ccd17f12901f6d2eac3f15714e693fa82ec4bf9b0d95499a0907ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial Intelligence</topic><topic>Computational Intelligence</topic><topic>Control</topic><topic>Engineering</topic><topic>Mathematical Logic and Foundations</topic><topic>Mechatronics</topic><topic>Methodologies and Application</topic><topic>Robotics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shahvaroughi Farahani, Milad</creatorcontrib><creatorcontrib>Razavi Hajiagha, Seyed Hossein</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Soft computing (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shahvaroughi Farahani, Milad</au><au>Razavi Hajiagha, Seyed Hossein</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forecasting stock price using integrated artificial neural network and metaheuristic algorithms compared to time series models</atitle><jtitle>Soft computing (Berlin, Germany)</jtitle><stitle>Soft Comput</stitle><addtitle>Soft comput</addtitle><date>2021</date><risdate>2021</risdate><volume>25</volume><issue>13</issue><spage>8483</spage><epage>8513</epage><pages>8483-8513</pages><issn>1432-7643</issn><eissn>1433-7479</eissn><abstract>Today, stock market has important function and it can be a place as a measure of economic position. People can earn a lot of money and return by investing their money in the stock exchange market. But it is not easy because many factors should be considered. So, there are many ways to predict the movement of share price. The main goal of this article is to predict stock price indices using artificial neural network (ANN) and train it with some new metaheuristic algorithms such as social spider optimization (SSO) and bat algorithm (BA). We used some technical indicators as input variables. Then, we used genetic algorithms (GA) as a heuristic algorithm for feature selection and choosing the best and most related indicators. We used some loss functions such as mean absolute error (MAE) as error evaluation criteria. On the other hand, we used some time series models forecasting like ARMA and ARIMA for prediction of stock price. Finally, we compared the results with each other means ANN-Metaheuristic algorithms and time series models. The statistical population of research have five most important and international indices which were S&amp;P500, DAX, FTSE100, Nasdaq and DJI.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>33935586</pmid><doi>10.1007/s00500-021-05775-5</doi><tpages>31</tpages><orcidid>https://orcid.org/0000-0003-2084-7244</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1432-7643
ispartof Soft computing (Berlin, Germany), 2021, Vol.25 (13), p.8483-8513
issn 1432-7643
1433-7479
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8070984
source SpringerLink Journals; ProQuest Central
subjects Artificial Intelligence
Computational Intelligence
Control
Engineering
Mathematical Logic and Foundations
Mechatronics
Methodologies and Application
Robotics
title Forecasting stock price using integrated artificial neural network and metaheuristic algorithms compared to time series models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T03%3A07%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forecasting%20stock%20price%20using%20integrated%20artificial%20neural%20network%20and%20metaheuristic%20algorithms%20compared%20to%20time%20series%20models&rft.jtitle=Soft%20computing%20(Berlin,%20Germany)&rft.au=Shahvaroughi%20Farahani,%20Milad&rft.date=2021&rft.volume=25&rft.issue=13&rft.spage=8483&rft.epage=8513&rft.pages=8483-8513&rft.issn=1432-7643&rft.eissn=1433-7479&rft_id=info:doi/10.1007/s00500-021-05775-5&rft_dat=%3Cproquest_pubme%3E2521501341%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2521501341&rft_id=info:pmid/33935586&rfr_iscdi=true