Semantic Cardiac Segmentation in Chest CT Images Using K-Means Clustering and the Mathematical Morphology Method

Whole cardiac segmentation in chest CT images is important to identify functional abnormalities that occur in cardiovascular diseases, such as coronary artery disease (CAD) detection. However, manual efforts are time-consuming and labor intensive. Additionally, labeling the ground truth for cardiac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2021-04, Vol.21 (8), p.2675
Hauptverfasser: Rim, Beanbonyka, Lee, Sungjin, Lee, Ahyoung, Gil, Hyo-Wook, Hong, Min
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page 2675
container_title Sensors (Basel, Switzerland)
container_volume 21
creator Rim, Beanbonyka
Lee, Sungjin
Lee, Ahyoung
Gil, Hyo-Wook
Hong, Min
description Whole cardiac segmentation in chest CT images is important to identify functional abnormalities that occur in cardiovascular diseases, such as coronary artery disease (CAD) detection. However, manual efforts are time-consuming and labor intensive. Additionally, labeling the ground truth for cardiac segmentation requires the extensive manual annotation of images by the radiologist. Due to the difficulty in obtaining the annotated data and the required expertise as an annotator, an unsupervised approach is proposed. In this paper, we introduce a semantic whole-heart segmentation combining K-Means clustering as a threshold criterion of the mean-thresholding method and mathematical morphology method as a threshold shifting enhancer. The experiment was conducted on 500 subjects in two cases: (1) 56 slices per volume containing full heart scans, and (2) 30 slices per volume containing about half of the top of heart scans before the liver appears. In both cases, the results showed an average silhouette score of the K-Means method of 0.4130. Additionally, the experiment on 56 slices per volume achieved an overall accuracy (OA) and mean intersection over union (mIoU) of 34.90% and 41.26%, respectively, while the performance for the first 30 slices per volume achieved an OA and mIoU of 55.10% and 71.46%, respectively.
doi_str_mv 10.3390/s21082675
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8070040</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_8f4e323f29fd40d9a9dac8cb11d89992</doaj_id><sourcerecordid>2550454027</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-94810fe8a7f9272a1f194448cc7de3d06b419a501ddb25d3acdeba25513adb0a3</originalsourceid><addsrcrecordid>eNpdkktv1DAUhSMEoqWw4A8gS2xgEbh-ZGJvkFDEY0RHLNqurRvbeYwSe7ATpP57XKaMWja2df3do6OjUxSvKXzgXMHHxChItqmrJ8U5FUyUkjF4-uB9VrxIaQ_AOOfyeXGWtxgwqs6Lw5Wb0S-jIQ1GO6IhV66fnV9wGYMnoyfN4NJCmmuynbF3idyk0ffkR7lz6BNppjUtLt6N0FuyDI7sMJ9z3jc4kV2IhyFMob8lO7cMwb4snnU4Jffq_r4obr5-uW6-l5c_v22bz5elERu1lEpICp2TWHeK1QxpR5UQQhpTW8ctbFpBFVZArW1ZZTka61pkVUU52haQXxTbo64NuNeHOM4Yb3XAUf8dhNhrjNnj5LTshOOMd0x1VoBVqCwaaVpKrVRKsaz16ah1WNvZWZPjiTg9En3848dB9-G3llADCMgC7-4FYvi15jz1PCbjpgm9C2vSrGIgK7URMqNv_0P3YY0-R5WpCkQlgNWZen-kTAwpRdedzFDQd53Qp05k9s1D9yfyXwn4HwAQsbU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550454027</pqid></control><display><type>article</type><title>Semantic Cardiac Segmentation in Chest CT Images Using K-Means Clustering and the Mathematical Morphology Method</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>EZB Electronic Journals Library</source><creator>Rim, Beanbonyka ; Lee, Sungjin ; Lee, Ahyoung ; Gil, Hyo-Wook ; Hong, Min</creator><creatorcontrib>Rim, Beanbonyka ; Lee, Sungjin ; Lee, Ahyoung ; Gil, Hyo-Wook ; Hong, Min</creatorcontrib><description>Whole cardiac segmentation in chest CT images is important to identify functional abnormalities that occur in cardiovascular diseases, such as coronary artery disease (CAD) detection. However, manual efforts are time-consuming and labor intensive. Additionally, labeling the ground truth for cardiac segmentation requires the extensive manual annotation of images by the radiologist. Due to the difficulty in obtaining the annotated data and the required expertise as an annotator, an unsupervised approach is proposed. In this paper, we introduce a semantic whole-heart segmentation combining K-Means clustering as a threshold criterion of the mean-thresholding method and mathematical morphology method as a threshold shifting enhancer. The experiment was conducted on 500 subjects in two cases: (1) 56 slices per volume containing full heart scans, and (2) 30 slices per volume containing about half of the top of heart scans before the liver appears. In both cases, the results showed an average silhouette score of the K-Means method of 0.4130. Additionally, the experiment on 56 slices per volume achieved an overall accuracy (OA) and mean intersection over union (mIoU) of 34.90% and 41.26%, respectively, while the performance for the first 30 slices per volume achieved an OA and mIoU of 55.10% and 71.46%, respectively.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s21082675</identifier><identifier>PMID: 33920219</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Abnormalities ; Accuracy ; Algorithms ; Annotations ; Cardiovascular disease ; chest CT scans ; Cluster Analysis ; Clustering ; Computed tomography ; Coronary artery disease ; Coronary vessels ; Deep learning ; Experiments ; Heart attacks ; Humans ; image processing ; Image Processing, Computer-Assisted ; K-Means clustering ; Magnetic resonance imaging ; mathematical morphology method ; Medical imaging ; Morphology ; Performance evaluation ; Semantics ; silhouette score ; Tomography, X-Ray Computed ; whole cardiac segmentation</subject><ispartof>Sensors (Basel, Switzerland), 2021-04, Vol.21 (8), p.2675</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-94810fe8a7f9272a1f194448cc7de3d06b419a501ddb25d3acdeba25513adb0a3</citedby><cites>FETCH-LOGICAL-c469t-94810fe8a7f9272a1f194448cc7de3d06b419a501ddb25d3acdeba25513adb0a3</cites><orcidid>0000-0002-7865-7163 ; 0000-0001-7467-3038 ; 0000-0001-9963-5521 ; 0000-0003-1232-0610 ; 0000-0003-2550-2739</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8070040/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8070040/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33920219$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rim, Beanbonyka</creatorcontrib><creatorcontrib>Lee, Sungjin</creatorcontrib><creatorcontrib>Lee, Ahyoung</creatorcontrib><creatorcontrib>Gil, Hyo-Wook</creatorcontrib><creatorcontrib>Hong, Min</creatorcontrib><title>Semantic Cardiac Segmentation in Chest CT Images Using K-Means Clustering and the Mathematical Morphology Method</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>Whole cardiac segmentation in chest CT images is important to identify functional abnormalities that occur in cardiovascular diseases, such as coronary artery disease (CAD) detection. However, manual efforts are time-consuming and labor intensive. Additionally, labeling the ground truth for cardiac segmentation requires the extensive manual annotation of images by the radiologist. Due to the difficulty in obtaining the annotated data and the required expertise as an annotator, an unsupervised approach is proposed. In this paper, we introduce a semantic whole-heart segmentation combining K-Means clustering as a threshold criterion of the mean-thresholding method and mathematical morphology method as a threshold shifting enhancer. The experiment was conducted on 500 subjects in two cases: (1) 56 slices per volume containing full heart scans, and (2) 30 slices per volume containing about half of the top of heart scans before the liver appears. In both cases, the results showed an average silhouette score of the K-Means method of 0.4130. Additionally, the experiment on 56 slices per volume achieved an overall accuracy (OA) and mean intersection over union (mIoU) of 34.90% and 41.26%, respectively, while the performance for the first 30 slices per volume achieved an OA and mIoU of 55.10% and 71.46%, respectively.</description><subject>Abnormalities</subject><subject>Accuracy</subject><subject>Algorithms</subject><subject>Annotations</subject><subject>Cardiovascular disease</subject><subject>chest CT scans</subject><subject>Cluster Analysis</subject><subject>Clustering</subject><subject>Computed tomography</subject><subject>Coronary artery disease</subject><subject>Coronary vessels</subject><subject>Deep learning</subject><subject>Experiments</subject><subject>Heart attacks</subject><subject>Humans</subject><subject>image processing</subject><subject>Image Processing, Computer-Assisted</subject><subject>K-Means clustering</subject><subject>Magnetic resonance imaging</subject><subject>mathematical morphology method</subject><subject>Medical imaging</subject><subject>Morphology</subject><subject>Performance evaluation</subject><subject>Semantics</subject><subject>silhouette score</subject><subject>Tomography, X-Ray Computed</subject><subject>whole cardiac segmentation</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNpdkktv1DAUhSMEoqWw4A8gS2xgEbh-ZGJvkFDEY0RHLNqurRvbeYwSe7ATpP57XKaMWja2df3do6OjUxSvKXzgXMHHxChItqmrJ8U5FUyUkjF4-uB9VrxIaQ_AOOfyeXGWtxgwqs6Lw5Wb0S-jIQ1GO6IhV66fnV9wGYMnoyfN4NJCmmuynbF3idyk0ffkR7lz6BNppjUtLt6N0FuyDI7sMJ9z3jc4kV2IhyFMob8lO7cMwb4snnU4Jffq_r4obr5-uW6-l5c_v22bz5elERu1lEpICp2TWHeK1QxpR5UQQhpTW8ctbFpBFVZArW1ZZTka61pkVUU52haQXxTbo64NuNeHOM4Yb3XAUf8dhNhrjNnj5LTshOOMd0x1VoBVqCwaaVpKrVRKsaz16ah1WNvZWZPjiTg9En3848dB9-G3llADCMgC7-4FYvi15jz1PCbjpgm9C2vSrGIgK7URMqNv_0P3YY0-R5WpCkQlgNWZen-kTAwpRdedzFDQd53Qp05k9s1D9yfyXwn4HwAQsbU</recordid><startdate>20210410</startdate><enddate>20210410</enddate><creator>Rim, Beanbonyka</creator><creator>Lee, Sungjin</creator><creator>Lee, Ahyoung</creator><creator>Gil, Hyo-Wook</creator><creator>Hong, Min</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7865-7163</orcidid><orcidid>https://orcid.org/0000-0001-7467-3038</orcidid><orcidid>https://orcid.org/0000-0001-9963-5521</orcidid><orcidid>https://orcid.org/0000-0003-1232-0610</orcidid><orcidid>https://orcid.org/0000-0003-2550-2739</orcidid></search><sort><creationdate>20210410</creationdate><title>Semantic Cardiac Segmentation in Chest CT Images Using K-Means Clustering and the Mathematical Morphology Method</title><author>Rim, Beanbonyka ; Lee, Sungjin ; Lee, Ahyoung ; Gil, Hyo-Wook ; Hong, Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-94810fe8a7f9272a1f194448cc7de3d06b419a501ddb25d3acdeba25513adb0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Abnormalities</topic><topic>Accuracy</topic><topic>Algorithms</topic><topic>Annotations</topic><topic>Cardiovascular disease</topic><topic>chest CT scans</topic><topic>Cluster Analysis</topic><topic>Clustering</topic><topic>Computed tomography</topic><topic>Coronary artery disease</topic><topic>Coronary vessels</topic><topic>Deep learning</topic><topic>Experiments</topic><topic>Heart attacks</topic><topic>Humans</topic><topic>image processing</topic><topic>Image Processing, Computer-Assisted</topic><topic>K-Means clustering</topic><topic>Magnetic resonance imaging</topic><topic>mathematical morphology method</topic><topic>Medical imaging</topic><topic>Morphology</topic><topic>Performance evaluation</topic><topic>Semantics</topic><topic>silhouette score</topic><topic>Tomography, X-Ray Computed</topic><topic>whole cardiac segmentation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rim, Beanbonyka</creatorcontrib><creatorcontrib>Lee, Sungjin</creatorcontrib><creatorcontrib>Lee, Ahyoung</creatorcontrib><creatorcontrib>Gil, Hyo-Wook</creatorcontrib><creatorcontrib>Hong, Min</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rim, Beanbonyka</au><au>Lee, Sungjin</au><au>Lee, Ahyoung</au><au>Gil, Hyo-Wook</au><au>Hong, Min</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semantic Cardiac Segmentation in Chest CT Images Using K-Means Clustering and the Mathematical Morphology Method</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2021-04-10</date><risdate>2021</risdate><volume>21</volume><issue>8</issue><spage>2675</spage><pages>2675-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>Whole cardiac segmentation in chest CT images is important to identify functional abnormalities that occur in cardiovascular diseases, such as coronary artery disease (CAD) detection. However, manual efforts are time-consuming and labor intensive. Additionally, labeling the ground truth for cardiac segmentation requires the extensive manual annotation of images by the radiologist. Due to the difficulty in obtaining the annotated data and the required expertise as an annotator, an unsupervised approach is proposed. In this paper, we introduce a semantic whole-heart segmentation combining K-Means clustering as a threshold criterion of the mean-thresholding method and mathematical morphology method as a threshold shifting enhancer. The experiment was conducted on 500 subjects in two cases: (1) 56 slices per volume containing full heart scans, and (2) 30 slices per volume containing about half of the top of heart scans before the liver appears. In both cases, the results showed an average silhouette score of the K-Means method of 0.4130. Additionally, the experiment on 56 slices per volume achieved an overall accuracy (OA) and mean intersection over union (mIoU) of 34.90% and 41.26%, respectively, while the performance for the first 30 slices per volume achieved an OA and mIoU of 55.10% and 71.46%, respectively.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>33920219</pmid><doi>10.3390/s21082675</doi><orcidid>https://orcid.org/0000-0002-7865-7163</orcidid><orcidid>https://orcid.org/0000-0001-7467-3038</orcidid><orcidid>https://orcid.org/0000-0001-9963-5521</orcidid><orcidid>https://orcid.org/0000-0003-1232-0610</orcidid><orcidid>https://orcid.org/0000-0003-2550-2739</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2021-04, Vol.21 (8), p.2675
issn 1424-8220
1424-8220
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8070040
source MDPI - Multidisciplinary Digital Publishing Institute; MEDLINE; DOAJ Directory of Open Access Journals; PubMed Central; Free Full-Text Journals in Chemistry; EZB Electronic Journals Library
subjects Abnormalities
Accuracy
Algorithms
Annotations
Cardiovascular disease
chest CT scans
Cluster Analysis
Clustering
Computed tomography
Coronary artery disease
Coronary vessels
Deep learning
Experiments
Heart attacks
Humans
image processing
Image Processing, Computer-Assisted
K-Means clustering
Magnetic resonance imaging
mathematical morphology method
Medical imaging
Morphology
Performance evaluation
Semantics
silhouette score
Tomography, X-Ray Computed
whole cardiac segmentation
title Semantic Cardiac Segmentation in Chest CT Images Using K-Means Clustering and the Mathematical Morphology Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A17%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semantic%20Cardiac%20Segmentation%20in%20Chest%20CT%20Images%20Using%20K-Means%20Clustering%20and%20the%20Mathematical%20Morphology%20Method&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Rim,%20Beanbonyka&rft.date=2021-04-10&rft.volume=21&rft.issue=8&rft.spage=2675&rft.pages=2675-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s21082675&rft_dat=%3Cproquest_doaj_%3E2550454027%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2550454027&rft_id=info:pmid/33920219&rft_doaj_id=oai_doaj_org_article_8f4e323f29fd40d9a9dac8cb11d89992&rfr_iscdi=true