Evaluation of the Technical Viability of Distributed Mechanical Recycling of PLA 3D Printing Wastes

3D printing PLA wastes were recovered from a well-known reference grade and from different sources. The recovered wastes were subjected to an energic washing step and then reprocessed into films by melt-extrusion, followed by compression molding to simulate the industrial processing conditions. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers 2021-04, Vol.13 (8), p.1247
Hauptverfasser: Beltrán, Freddys R, Arrieta, Marina P, Moreno, Eduardo, Gaspar, Gerald, Muneta, Luisa M, Carrasco-Gallego, Ruth, Yáñez, Susana, Hidalgo-Carvajal, David, de la Orden, María U, Martínez Urreaga, Joaquín
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page 1247
container_title Polymers
container_volume 13
creator Beltrán, Freddys R
Arrieta, Marina P
Moreno, Eduardo
Gaspar, Gerald
Muneta, Luisa M
Carrasco-Gallego, Ruth
Yáñez, Susana
Hidalgo-Carvajal, David
de la Orden, María U
Martínez Urreaga, Joaquín
description 3D printing PLA wastes were recovered from a well-known reference grade and from different sources. The recovered wastes were subjected to an energic washing step and then reprocessed into films by melt-extrusion, followed by compression molding to simulate the industrial processing conditions. The obtained materials were characterized and the optical, structural, thermal and crystallization behavior are reported. The mechanical recycling process leads to an increase of the crystallinity and a decrease of the intrinsic viscosity of the formulations, particularly in the sample based on blends of different 3D-PLA wastes. Moreover, the obtained films were disintegrated under composting conditions in less than one month and it was observed that recycled materials degrade somewhat faster than the starting 3D-PLA filament, as a consequence of the presence of shorter polymer chains. Finally, to increase the molecular weight of the recycled materials, the 3D-PLA wastes were submitted to a solid-state polymerization process at 110, 120, and 130 °C, observing that the recycled 3D-wastes materials based on a well-known reference grade experiences an improvement of the intrinsic viscosity, while that coming from different sources showed no significant changes. Thus, the results show that 3D printing PLA products provides an ideal environment for the implementation of distributed recycling program, in which wastes coming from well-known PLA grades can successfully be processed in films with good overall performance.
doi_str_mv 10.3390/polym13081247
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8069463</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2520862781</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-650fcab6f779b48adde55ade3b4f71f6d9834775afcbea2eb77bf4905aa9cab83</originalsourceid><addsrcrecordid>eNpdkc9rFTEQx4MottQevcqCFy9bk82v3YtQ2lqFJ5bS6jFMsklfSt7mmWQL7783y6uldS4zzHzmywxfhN4TfELpgD9vY9htCMU96Zh8hQ47LGnLqMCvn9UH6Djne1yDcSGIfIsO6nJHqBgOkbl4gDBD8XFqomvK2jY31qwnbyA0vzxoH3zZLaNzn0vyei52bH5UBPbMtTU7E_x0tzBXq9OGnjdXyU9laf2GXGx-h944CNkeP-YjdPv14ubsW7v6efn97HTVGkZ4aQXHzoAWTspBsx7G0XIOo6WaOUmcGIeeMik5OKMtdFZLqR0bMAcY6l5Pj9CXve521hs7GjuVBEFtk99A2qkIXr2cTH6t7uKD6rEYmKBV4NOjQIp_ZpuL2vhsbAgw2Thn1fEO96KTPanox__Q-zinqb5XKY47Jnq2UO2eMinmnKx7OoZgtTioXjhY-Q_PP3ii__lF_wLYjZkY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550246841</pqid></control><display><type>article</type><title>Evaluation of the Technical Viability of Distributed Mechanical Recycling of PLA 3D Printing Wastes</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed</source><source>EZB Electronic Journals Library</source><source>PubMed Central Open Access</source><creator>Beltrán, Freddys R ; Arrieta, Marina P ; Moreno, Eduardo ; Gaspar, Gerald ; Muneta, Luisa M ; Carrasco-Gallego, Ruth ; Yáñez, Susana ; Hidalgo-Carvajal, David ; de la Orden, María U ; Martínez Urreaga, Joaquín</creator><creatorcontrib>Beltrán, Freddys R ; Arrieta, Marina P ; Moreno, Eduardo ; Gaspar, Gerald ; Muneta, Luisa M ; Carrasco-Gallego, Ruth ; Yáñez, Susana ; Hidalgo-Carvajal, David ; de la Orden, María U ; Martínez Urreaga, Joaquín</creatorcontrib><description>3D printing PLA wastes were recovered from a well-known reference grade and from different sources. The recovered wastes were subjected to an energic washing step and then reprocessed into films by melt-extrusion, followed by compression molding to simulate the industrial processing conditions. The obtained materials were characterized and the optical, structural, thermal and crystallization behavior are reported. The mechanical recycling process leads to an increase of the crystallinity and a decrease of the intrinsic viscosity of the formulations, particularly in the sample based on blends of different 3D-PLA wastes. Moreover, the obtained films were disintegrated under composting conditions in less than one month and it was observed that recycled materials degrade somewhat faster than the starting 3D-PLA filament, as a consequence of the presence of shorter polymer chains. Finally, to increase the molecular weight of the recycled materials, the 3D-PLA wastes were submitted to a solid-state polymerization process at 110, 120, and 130 °C, observing that the recycled 3D-wastes materials based on a well-known reference grade experiences an improvement of the intrinsic viscosity, while that coming from different sources showed no significant changes. Thus, the results show that 3D printing PLA products provides an ideal environment for the implementation of distributed recycling program, in which wastes coming from well-known PLA grades can successfully be processed in films with good overall performance.</description><identifier>ISSN: 2073-4360</identifier><identifier>EISSN: 2073-4360</identifier><identifier>DOI: 10.3390/polym13081247</identifier><identifier>PMID: 33921369</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>3-D printers ; Additive manufacturing ; Compacting ; Composting ; Coronaviruses ; COVID-19 ; Crystallization ; Disintegration ; Extrusion molding ; Mechanical properties ; Molecular weight ; Pandemics ; Pressure molding ; Recycled materials ; Recycling ; Recycling programs ; Three dimensional printing ; Viscosity ; Wastes</subject><ispartof>Polymers, 2021-04, Vol.13 (8), p.1247</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-650fcab6f779b48adde55ade3b4f71f6d9834775afcbea2eb77bf4905aa9cab83</citedby><cites>FETCH-LOGICAL-c415t-650fcab6f779b48adde55ade3b4f71f6d9834775afcbea2eb77bf4905aa9cab83</cites><orcidid>0000-0003-1816-011X ; 0000-0002-9542-3836 ; 0000-0002-7897-8311 ; 0000-0003-3725-7400 ; 0000-0001-7771-0906</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8069463/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8069463/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,886,27926,27927,53793,53795</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33921369$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Beltrán, Freddys R</creatorcontrib><creatorcontrib>Arrieta, Marina P</creatorcontrib><creatorcontrib>Moreno, Eduardo</creatorcontrib><creatorcontrib>Gaspar, Gerald</creatorcontrib><creatorcontrib>Muneta, Luisa M</creatorcontrib><creatorcontrib>Carrasco-Gallego, Ruth</creatorcontrib><creatorcontrib>Yáñez, Susana</creatorcontrib><creatorcontrib>Hidalgo-Carvajal, David</creatorcontrib><creatorcontrib>de la Orden, María U</creatorcontrib><creatorcontrib>Martínez Urreaga, Joaquín</creatorcontrib><title>Evaluation of the Technical Viability of Distributed Mechanical Recycling of PLA 3D Printing Wastes</title><title>Polymers</title><addtitle>Polymers (Basel)</addtitle><description>3D printing PLA wastes were recovered from a well-known reference grade and from different sources. The recovered wastes were subjected to an energic washing step and then reprocessed into films by melt-extrusion, followed by compression molding to simulate the industrial processing conditions. The obtained materials were characterized and the optical, structural, thermal and crystallization behavior are reported. The mechanical recycling process leads to an increase of the crystallinity and a decrease of the intrinsic viscosity of the formulations, particularly in the sample based on blends of different 3D-PLA wastes. Moreover, the obtained films were disintegrated under composting conditions in less than one month and it was observed that recycled materials degrade somewhat faster than the starting 3D-PLA filament, as a consequence of the presence of shorter polymer chains. Finally, to increase the molecular weight of the recycled materials, the 3D-PLA wastes were submitted to a solid-state polymerization process at 110, 120, and 130 °C, observing that the recycled 3D-wastes materials based on a well-known reference grade experiences an improvement of the intrinsic viscosity, while that coming from different sources showed no significant changes. Thus, the results show that 3D printing PLA products provides an ideal environment for the implementation of distributed recycling program, in which wastes coming from well-known PLA grades can successfully be processed in films with good overall performance.</description><subject>3-D printers</subject><subject>Additive manufacturing</subject><subject>Compacting</subject><subject>Composting</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Crystallization</subject><subject>Disintegration</subject><subject>Extrusion molding</subject><subject>Mechanical properties</subject><subject>Molecular weight</subject><subject>Pandemics</subject><subject>Pressure molding</subject><subject>Recycled materials</subject><subject>Recycling</subject><subject>Recycling programs</subject><subject>Three dimensional printing</subject><subject>Viscosity</subject><subject>Wastes</subject><issn>2073-4360</issn><issn>2073-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkc9rFTEQx4MottQevcqCFy9bk82v3YtQ2lqFJ5bS6jFMsklfSt7mmWQL7783y6uldS4zzHzmywxfhN4TfELpgD9vY9htCMU96Zh8hQ47LGnLqMCvn9UH6Djne1yDcSGIfIsO6nJHqBgOkbl4gDBD8XFqomvK2jY31qwnbyA0vzxoH3zZLaNzn0vyei52bH5UBPbMtTU7E_x0tzBXq9OGnjdXyU9laf2GXGx-h944CNkeP-YjdPv14ubsW7v6efn97HTVGkZ4aQXHzoAWTspBsx7G0XIOo6WaOUmcGIeeMik5OKMtdFZLqR0bMAcY6l5Pj9CXve521hs7GjuVBEFtk99A2qkIXr2cTH6t7uKD6rEYmKBV4NOjQIp_ZpuL2vhsbAgw2Thn1fEO96KTPanox__Q-zinqb5XKY47Jnq2UO2eMinmnKx7OoZgtTioXjhY-Q_PP3ii__lF_wLYjZkY</recordid><startdate>20210412</startdate><enddate>20210412</enddate><creator>Beltrán, Freddys R</creator><creator>Arrieta, Marina P</creator><creator>Moreno, Eduardo</creator><creator>Gaspar, Gerald</creator><creator>Muneta, Luisa M</creator><creator>Carrasco-Gallego, Ruth</creator><creator>Yáñez, Susana</creator><creator>Hidalgo-Carvajal, David</creator><creator>de la Orden, María U</creator><creator>Martínez Urreaga, Joaquín</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>COVID</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1816-011X</orcidid><orcidid>https://orcid.org/0000-0002-9542-3836</orcidid><orcidid>https://orcid.org/0000-0002-7897-8311</orcidid><orcidid>https://orcid.org/0000-0003-3725-7400</orcidid><orcidid>https://orcid.org/0000-0001-7771-0906</orcidid></search><sort><creationdate>20210412</creationdate><title>Evaluation of the Technical Viability of Distributed Mechanical Recycling of PLA 3D Printing Wastes</title><author>Beltrán, Freddys R ; Arrieta, Marina P ; Moreno, Eduardo ; Gaspar, Gerald ; Muneta, Luisa M ; Carrasco-Gallego, Ruth ; Yáñez, Susana ; Hidalgo-Carvajal, David ; de la Orden, María U ; Martínez Urreaga, Joaquín</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-650fcab6f779b48adde55ade3b4f71f6d9834775afcbea2eb77bf4905aa9cab83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>3-D printers</topic><topic>Additive manufacturing</topic><topic>Compacting</topic><topic>Composting</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Crystallization</topic><topic>Disintegration</topic><topic>Extrusion molding</topic><topic>Mechanical properties</topic><topic>Molecular weight</topic><topic>Pandemics</topic><topic>Pressure molding</topic><topic>Recycled materials</topic><topic>Recycling</topic><topic>Recycling programs</topic><topic>Three dimensional printing</topic><topic>Viscosity</topic><topic>Wastes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beltrán, Freddys R</creatorcontrib><creatorcontrib>Arrieta, Marina P</creatorcontrib><creatorcontrib>Moreno, Eduardo</creatorcontrib><creatorcontrib>Gaspar, Gerald</creatorcontrib><creatorcontrib>Muneta, Luisa M</creatorcontrib><creatorcontrib>Carrasco-Gallego, Ruth</creatorcontrib><creatorcontrib>Yáñez, Susana</creatorcontrib><creatorcontrib>Hidalgo-Carvajal, David</creatorcontrib><creatorcontrib>de la Orden, María U</creatorcontrib><creatorcontrib>Martínez Urreaga, Joaquín</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beltrán, Freddys R</au><au>Arrieta, Marina P</au><au>Moreno, Eduardo</au><au>Gaspar, Gerald</au><au>Muneta, Luisa M</au><au>Carrasco-Gallego, Ruth</au><au>Yáñez, Susana</au><au>Hidalgo-Carvajal, David</au><au>de la Orden, María U</au><au>Martínez Urreaga, Joaquín</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of the Technical Viability of Distributed Mechanical Recycling of PLA 3D Printing Wastes</atitle><jtitle>Polymers</jtitle><addtitle>Polymers (Basel)</addtitle><date>2021-04-12</date><risdate>2021</risdate><volume>13</volume><issue>8</issue><spage>1247</spage><pages>1247-</pages><issn>2073-4360</issn><eissn>2073-4360</eissn><abstract>3D printing PLA wastes were recovered from a well-known reference grade and from different sources. The recovered wastes were subjected to an energic washing step and then reprocessed into films by melt-extrusion, followed by compression molding to simulate the industrial processing conditions. The obtained materials were characterized and the optical, structural, thermal and crystallization behavior are reported. The mechanical recycling process leads to an increase of the crystallinity and a decrease of the intrinsic viscosity of the formulations, particularly in the sample based on blends of different 3D-PLA wastes. Moreover, the obtained films were disintegrated under composting conditions in less than one month and it was observed that recycled materials degrade somewhat faster than the starting 3D-PLA filament, as a consequence of the presence of shorter polymer chains. Finally, to increase the molecular weight of the recycled materials, the 3D-PLA wastes were submitted to a solid-state polymerization process at 110, 120, and 130 °C, observing that the recycled 3D-wastes materials based on a well-known reference grade experiences an improvement of the intrinsic viscosity, while that coming from different sources showed no significant changes. Thus, the results show that 3D printing PLA products provides an ideal environment for the implementation of distributed recycling program, in which wastes coming from well-known PLA grades can successfully be processed in films with good overall performance.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>33921369</pmid><doi>10.3390/polym13081247</doi><orcidid>https://orcid.org/0000-0003-1816-011X</orcidid><orcidid>https://orcid.org/0000-0002-9542-3836</orcidid><orcidid>https://orcid.org/0000-0002-7897-8311</orcidid><orcidid>https://orcid.org/0000-0003-3725-7400</orcidid><orcidid>https://orcid.org/0000-0001-7771-0906</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4360
ispartof Polymers, 2021-04, Vol.13 (8), p.1247
issn 2073-4360
2073-4360
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8069463
source MDPI - Multidisciplinary Digital Publishing Institute; PubMed; EZB Electronic Journals Library; PubMed Central Open Access
subjects 3-D printers
Additive manufacturing
Compacting
Composting
Coronaviruses
COVID-19
Crystallization
Disintegration
Extrusion molding
Mechanical properties
Molecular weight
Pandemics
Pressure molding
Recycled materials
Recycling
Recycling programs
Three dimensional printing
Viscosity
Wastes
title Evaluation of the Technical Viability of Distributed Mechanical Recycling of PLA 3D Printing Wastes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T18%3A50%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20the%20Technical%20Viability%20of%20Distributed%20Mechanical%20Recycling%20of%20PLA%203D%20Printing%20Wastes&rft.jtitle=Polymers&rft.au=Beltr%C3%A1n,%20Freddys%20R&rft.date=2021-04-12&rft.volume=13&rft.issue=8&rft.spage=1247&rft.pages=1247-&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/10.3390/polym13081247&rft_dat=%3Cproquest_pubme%3E2520862781%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2550246841&rft_id=info:pmid/33921369&rfr_iscdi=true