Improved Hydrogenation Kinetics of TiMn1.52 Alloy Coated with Palladium through Electroless Deposition
The deterioration of hydrogen charging performances resulting from the surface chemical action of electrophilic gases such as CO2 is one of the prevailing drawbacks of TiMn1.52 materials. In this study, we report the effect of autocatalytic Pd deposition on the morphology, structure, and hydrogenati...
Gespeichert in:
Veröffentlicht in: | Materials 2021-04, Vol.14 (8), p.1833 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | 1833 |
container_title | Materials |
container_volume | 14 |
creator | Somo, Thabang R. Davids, Moegamat W. Lototskyy, Mykhaylo V. Hato, Mpitloane J. Modibane, Kwena D. |
description | The deterioration of hydrogen charging performances resulting from the surface chemical action of electrophilic gases such as CO2 is one of the prevailing drawbacks of TiMn1.52 materials. In this study, we report the effect of autocatalytic Pd deposition on the morphology, structure, and hydrogenation kinetics of TiMn1.52 alloy. Both the uncoated and Pd-coated materials were characterized using scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS) and X-ray diffraction (XRD). XRD analyses indicated that TiMn1.52 alloy contains C14-type Laves phase without any second phase, while the SEM images, together with a particle size distribution histogram, showed a smooth non-porous surface with irregular-shaped particles ranging in size from 1 to 8 µm. The XRD pattern of Pd-coated alloy revealed that C14-type Laves phase was still maintained upon Pd deposition. This was further supported by calculated crystallite size of 29 nm for both materials. Furthermore, a Sieverts-type apparatus was used to study the kinetics of the alloys after pre-exposure to air and upon vacuum heating at 300 °C. The Pd-coated AB2 alloy exhibited good coating quality as confirmed by EDS with enhanced hydrogen absorption kinetics, even without activation. This is attributed to improved surface tolerance and a hydrogen spillover mechanism, facilitated by Pd nanoparticles. Vacuum heating at 300 °C resulted in removal of surface barriers and showed improved hydrogen absorption performances for both coated and uncoated alloys. |
doi_str_mv | 10.3390/ma14081833 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8067964</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2520863432</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-c93c20bc11e8bcde23cbcf36114f348b3b45db7758a6edfc6294a62a9c6d18cc3</originalsourceid><addsrcrecordid>eNpdkU1LAzEQhoMoKtWLvyDgRYTqJpNmk4sg9RMretBzyGazbWR3U5Nspf_eiOLXXGZgnnmZdwahA1KcAMjitNOEFYIIgA20S6TkYyIZ2_xV76D9GF-KHABEULmNdvIkKWkhdlFz2y2DX9ka36zr4Oe218n5Ht-53iZnIvYNfnL3PTmZUHzetn6Np16nzL-5tMCPum117YYOp0Xww3yBL1trUvCtjRFf2KWP7kNvD201uo12_yuP0PPV5dP0Zjx7uL6dns_GBgSksZFgaFEZQqyoTG0pmMo0wAlhDTBRQcUmdVWWE6G5rRvDqWSaUy0Nr4kwBkbo7FN3OVSdrY3tU9CtWgbX6bBWXjv1t9O7hZr7lRIFLyVnWeDoSyD418HGpDoXjc0ue-uHqOgkn40DA5rRw3_oix9Cn-1ligkBlEKZqeNPygQfY7DN9zKkUB8fVD8fhHfJGI3B</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548832237</pqid></control><display><type>article</type><title>Improved Hydrogenation Kinetics of TiMn1.52 Alloy Coated with Palladium through Electroless Deposition</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Somo, Thabang R. ; Davids, Moegamat W. ; Lototskyy, Mykhaylo V. ; Hato, Mpitloane J. ; Modibane, Kwena D.</creator><creatorcontrib>Somo, Thabang R. ; Davids, Moegamat W. ; Lototskyy, Mykhaylo V. ; Hato, Mpitloane J. ; Modibane, Kwena D.</creatorcontrib><description>The deterioration of hydrogen charging performances resulting from the surface chemical action of electrophilic gases such as CO2 is one of the prevailing drawbacks of TiMn1.52 materials. In this study, we report the effect of autocatalytic Pd deposition on the morphology, structure, and hydrogenation kinetics of TiMn1.52 alloy. Both the uncoated and Pd-coated materials were characterized using scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS) and X-ray diffraction (XRD). XRD analyses indicated that TiMn1.52 alloy contains C14-type Laves phase without any second phase, while the SEM images, together with a particle size distribution histogram, showed a smooth non-porous surface with irregular-shaped particles ranging in size from 1 to 8 µm. The XRD pattern of Pd-coated alloy revealed that C14-type Laves phase was still maintained upon Pd deposition. This was further supported by calculated crystallite size of 29 nm for both materials. Furthermore, a Sieverts-type apparatus was used to study the kinetics of the alloys after pre-exposure to air and upon vacuum heating at 300 °C. The Pd-coated AB2 alloy exhibited good coating quality as confirmed by EDS with enhanced hydrogen absorption kinetics, even without activation. This is attributed to improved surface tolerance and a hydrogen spillover mechanism, facilitated by Pd nanoparticles. Vacuum heating at 300 °C resulted in removal of surface barriers and showed improved hydrogen absorption performances for both coated and uncoated alloys.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma14081833</identifier><identifier>PMID: 33917208</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Absorption ; Alloys ; Catalysis ; Crystallites ; Electroless deposition ; Electroless plating ; Heating ; Histograms ; Hydrogen ; Hydrogen charging ; Hydrogenation ; Kinetics ; Laves phase ; Metals ; Morphology ; Nanoparticles ; Palladium ; Particle size ; Particle size distribution ; Phosphorus ; Poisoning ; Scanning electron microscopy ; Surface chemistry ; X-ray diffraction</subject><ispartof>Materials, 2021-04, Vol.14 (8), p.1833</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-c93c20bc11e8bcde23cbcf36114f348b3b45db7758a6edfc6294a62a9c6d18cc3</citedby><cites>FETCH-LOGICAL-c383t-c93c20bc11e8bcde23cbcf36114f348b3b45db7758a6edfc6294a62a9c6d18cc3</cites><orcidid>0000-0003-4502-122X ; 0000-0002-0277-7409 ; 0000-0001-8387-2856</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8067964/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8067964/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids></links><search><creatorcontrib>Somo, Thabang R.</creatorcontrib><creatorcontrib>Davids, Moegamat W.</creatorcontrib><creatorcontrib>Lototskyy, Mykhaylo V.</creatorcontrib><creatorcontrib>Hato, Mpitloane J.</creatorcontrib><creatorcontrib>Modibane, Kwena D.</creatorcontrib><title>Improved Hydrogenation Kinetics of TiMn1.52 Alloy Coated with Palladium through Electroless Deposition</title><title>Materials</title><description>The deterioration of hydrogen charging performances resulting from the surface chemical action of electrophilic gases such as CO2 is one of the prevailing drawbacks of TiMn1.52 materials. In this study, we report the effect of autocatalytic Pd deposition on the morphology, structure, and hydrogenation kinetics of TiMn1.52 alloy. Both the uncoated and Pd-coated materials were characterized using scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS) and X-ray diffraction (XRD). XRD analyses indicated that TiMn1.52 alloy contains C14-type Laves phase without any second phase, while the SEM images, together with a particle size distribution histogram, showed a smooth non-porous surface with irregular-shaped particles ranging in size from 1 to 8 µm. The XRD pattern of Pd-coated alloy revealed that C14-type Laves phase was still maintained upon Pd deposition. This was further supported by calculated crystallite size of 29 nm for both materials. Furthermore, a Sieverts-type apparatus was used to study the kinetics of the alloys after pre-exposure to air and upon vacuum heating at 300 °C. The Pd-coated AB2 alloy exhibited good coating quality as confirmed by EDS with enhanced hydrogen absorption kinetics, even without activation. This is attributed to improved surface tolerance and a hydrogen spillover mechanism, facilitated by Pd nanoparticles. Vacuum heating at 300 °C resulted in removal of surface barriers and showed improved hydrogen absorption performances for both coated and uncoated alloys.</description><subject>Absorption</subject><subject>Alloys</subject><subject>Catalysis</subject><subject>Crystallites</subject><subject>Electroless deposition</subject><subject>Electroless plating</subject><subject>Heating</subject><subject>Histograms</subject><subject>Hydrogen</subject><subject>Hydrogen charging</subject><subject>Hydrogenation</subject><subject>Kinetics</subject><subject>Laves phase</subject><subject>Metals</subject><subject>Morphology</subject><subject>Nanoparticles</subject><subject>Palladium</subject><subject>Particle size</subject><subject>Particle size distribution</subject><subject>Phosphorus</subject><subject>Poisoning</subject><subject>Scanning electron microscopy</subject><subject>Surface chemistry</subject><subject>X-ray diffraction</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkU1LAzEQhoMoKtWLvyDgRYTqJpNmk4sg9RMretBzyGazbWR3U5Nspf_eiOLXXGZgnnmZdwahA1KcAMjitNOEFYIIgA20S6TkYyIZ2_xV76D9GF-KHABEULmNdvIkKWkhdlFz2y2DX9ka36zr4Oe218n5Ht-53iZnIvYNfnL3PTmZUHzetn6Np16nzL-5tMCPum117YYOp0Xww3yBL1trUvCtjRFf2KWP7kNvD201uo12_yuP0PPV5dP0Zjx7uL6dns_GBgSksZFgaFEZQqyoTG0pmMo0wAlhDTBRQcUmdVWWE6G5rRvDqWSaUy0Nr4kwBkbo7FN3OVSdrY3tU9CtWgbX6bBWXjv1t9O7hZr7lRIFLyVnWeDoSyD418HGpDoXjc0ue-uHqOgkn40DA5rRw3_oix9Cn-1ligkBlEKZqeNPygQfY7DN9zKkUB8fVD8fhHfJGI3B</recordid><startdate>20210407</startdate><enddate>20210407</enddate><creator>Somo, Thabang R.</creator><creator>Davids, Moegamat W.</creator><creator>Lototskyy, Mykhaylo V.</creator><creator>Hato, Mpitloane J.</creator><creator>Modibane, Kwena D.</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4502-122X</orcidid><orcidid>https://orcid.org/0000-0002-0277-7409</orcidid><orcidid>https://orcid.org/0000-0001-8387-2856</orcidid></search><sort><creationdate>20210407</creationdate><title>Improved Hydrogenation Kinetics of TiMn1.52 Alloy Coated with Palladium through Electroless Deposition</title><author>Somo, Thabang R. ; Davids, Moegamat W. ; Lototskyy, Mykhaylo V. ; Hato, Mpitloane J. ; Modibane, Kwena D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-c93c20bc11e8bcde23cbcf36114f348b3b45db7758a6edfc6294a62a9c6d18cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Absorption</topic><topic>Alloys</topic><topic>Catalysis</topic><topic>Crystallites</topic><topic>Electroless deposition</topic><topic>Electroless plating</topic><topic>Heating</topic><topic>Histograms</topic><topic>Hydrogen</topic><topic>Hydrogen charging</topic><topic>Hydrogenation</topic><topic>Kinetics</topic><topic>Laves phase</topic><topic>Metals</topic><topic>Morphology</topic><topic>Nanoparticles</topic><topic>Palladium</topic><topic>Particle size</topic><topic>Particle size distribution</topic><topic>Phosphorus</topic><topic>Poisoning</topic><topic>Scanning electron microscopy</topic><topic>Surface chemistry</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Somo, Thabang R.</creatorcontrib><creatorcontrib>Davids, Moegamat W.</creatorcontrib><creatorcontrib>Lototskyy, Mykhaylo V.</creatorcontrib><creatorcontrib>Hato, Mpitloane J.</creatorcontrib><creatorcontrib>Modibane, Kwena D.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Somo, Thabang R.</au><au>Davids, Moegamat W.</au><au>Lototskyy, Mykhaylo V.</au><au>Hato, Mpitloane J.</au><au>Modibane, Kwena D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved Hydrogenation Kinetics of TiMn1.52 Alloy Coated with Palladium through Electroless Deposition</atitle><jtitle>Materials</jtitle><date>2021-04-07</date><risdate>2021</risdate><volume>14</volume><issue>8</issue><spage>1833</spage><pages>1833-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>The deterioration of hydrogen charging performances resulting from the surface chemical action of electrophilic gases such as CO2 is one of the prevailing drawbacks of TiMn1.52 materials. In this study, we report the effect of autocatalytic Pd deposition on the morphology, structure, and hydrogenation kinetics of TiMn1.52 alloy. Both the uncoated and Pd-coated materials were characterized using scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS) and X-ray diffraction (XRD). XRD analyses indicated that TiMn1.52 alloy contains C14-type Laves phase without any second phase, while the SEM images, together with a particle size distribution histogram, showed a smooth non-porous surface with irregular-shaped particles ranging in size from 1 to 8 µm. The XRD pattern of Pd-coated alloy revealed that C14-type Laves phase was still maintained upon Pd deposition. This was further supported by calculated crystallite size of 29 nm for both materials. Furthermore, a Sieverts-type apparatus was used to study the kinetics of the alloys after pre-exposure to air and upon vacuum heating at 300 °C. The Pd-coated AB2 alloy exhibited good coating quality as confirmed by EDS with enhanced hydrogen absorption kinetics, even without activation. This is attributed to improved surface tolerance and a hydrogen spillover mechanism, facilitated by Pd nanoparticles. Vacuum heating at 300 °C resulted in removal of surface barriers and showed improved hydrogen absorption performances for both coated and uncoated alloys.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>33917208</pmid><doi>10.3390/ma14081833</doi><orcidid>https://orcid.org/0000-0003-4502-122X</orcidid><orcidid>https://orcid.org/0000-0002-0277-7409</orcidid><orcidid>https://orcid.org/0000-0001-8387-2856</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2021-04, Vol.14 (8), p.1833 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8067964 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Absorption Alloys Catalysis Crystallites Electroless deposition Electroless plating Heating Histograms Hydrogen Hydrogen charging Hydrogenation Kinetics Laves phase Metals Morphology Nanoparticles Palladium Particle size Particle size distribution Phosphorus Poisoning Scanning electron microscopy Surface chemistry X-ray diffraction |
title | Improved Hydrogenation Kinetics of TiMn1.52 Alloy Coated with Palladium through Electroless Deposition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T01%3A54%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20Hydrogenation%20Kinetics%20of%20TiMn1.52%20Alloy%20Coated%20with%20Palladium%20through%20Electroless%20Deposition&rft.jtitle=Materials&rft.au=Somo,%20Thabang%20R.&rft.date=2021-04-07&rft.volume=14&rft.issue=8&rft.spage=1833&rft.pages=1833-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma14081833&rft_dat=%3Cproquest_pubme%3E2520863432%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548832237&rft_id=info:pmid/33917208&rfr_iscdi=true |