The C-Terminus of Perilipin 3 Shows Distinct Lipid Binding at Phospholipid-Oil-Aqueous Interfaces

Lipid droplets (LDs) are ubiquitously expressed organelles; the only intracellular organelles that contain a lipid monolayer rather than a bilayer. Proteins localize and bind to this monolayer as they do to intracellular lipid bilayers. The mechanism by which cytosolic LD binding proteins recognize,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Membranes (Basel) 2021-04, Vol.11 (4), p.265, Article 265
Hauptverfasser: Titus, Amber R., Ridgway, Ellyse N., Douglas, Rebecca, Brenes, Elena Sanchez, Mann, Elizabeth K., Kooijman, Edgar E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 265
container_title Membranes (Basel)
container_volume 11
creator Titus, Amber R.
Ridgway, Ellyse N.
Douglas, Rebecca
Brenes, Elena Sanchez
Mann, Elizabeth K.
Kooijman, Edgar E.
description Lipid droplets (LDs) are ubiquitously expressed organelles; the only intracellular organelles that contain a lipid monolayer rather than a bilayer. Proteins localize and bind to this monolayer as they do to intracellular lipid bilayers. The mechanism by which cytosolic LD binding proteins recognize, and bind, to this lipid interface remains poorly understood. Amphipathic alpha-helix bundles form a common motif that is shared between cytosolic LD binding proteins (e.g., perilipins 2, 3, and 5) and apolipoproteins, such as apoE and apoLp-III, found on lipoprotein particles. Here, we use pendant drop tensiometry to expand our previous work on the C-terminal alpha-helix bundle of perilipin 3 and the full-length protein. We measure the recruitment and insertion of perilipin 3 at mixed lipid monolayers at an aqueous-phospholipid-oil interface. We find that, compared to its C-terminus alone, the full-length perilipin 3 has a higher affinity for both a neat oil/aqueous interface and a phosphatidylcholine (PC) coated oil/aqueous interface. Both the full-length protein and the C-terminus show significantly more insertion into a fully unsaturated PC monolayer, contrary to our previous results at the air-aqueous interface. Additionally, the C-terminus shows a preference for lipid monolayers containing phosphatidylethanolamine (PE), whereas the full-length protein does not. These results strongly support a model whereby both the N-terminal 11-mer repeat region and C-terminal amphipathic alpha-helix bundle domains of perilipin 3 have distinct lipid binding, and potentially biological roles.
doi_str_mv 10.3390/membranes11040265
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8067514</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_650602c6b12246909eb247b6d6a15d37</doaj_id><sourcerecordid>2530163393</sourcerecordid><originalsourceid>FETCH-LOGICAL-c493t-eb35973944a0d97daffa1c2284b582da5ac125ee238ebd30a1ea435565ab27e83</originalsourceid><addsrcrecordid>eNqNkl2L1DAUhoso7rLuD_BGCt4IUs132xthrV8DA7vgeB3S5HQmQ5uMSerivzd11mFXb8xNwsmTN8l73qJ4jtEbSlv0doKpD8pBxBgxRAR_VJwTVNcVojV_fG99VlzGuEd5CMQFRU-LsyyAa8bxeaE2Oyi7agNhsm6OpR_KGwh2tAfrSlp-3fnbWH6wMVmnU7nOZVO-t85Yty1VKm92Ph52fsFNdW3H6ur7DD7rrFyCMCgN8VnxZFBjhMu7-aL49unjpvtSra8_r7qrdaVZS1MFPeVtTVvGFDJtbdQwKKwJaVjPG2IUVxoTDkBoA72hSGFQjHIuuOpJDQ29KFZHXePVXh6CnVT4Kb2y8nfBh61UIVk9ghQ8W0G06DEhTLSohZ6wuhdGKMwNrbPWu6PWYe4nMBpcCmp8IPpwx9md3PofskGi5phlgVd3AsFnR2KSk40axjE3LNsjCSeoEbhtlrte_oXu_RxctipTFGGRm0UzhY-UDj7GAMPpMRjJJQ_ynzzkMy_u_-J04k_3M_D6CNxC74eoLTgNJ2wJDKOEimbJzkI3_093Nqlkvev87BL9BVTC0so</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2530163393</pqid></control><display><type>article</type><title>The C-Terminus of Perilipin 3 Shows Distinct Lipid Binding at Phospholipid-Oil-Aqueous Interfaces</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Titus, Amber R. ; Ridgway, Ellyse N. ; Douglas, Rebecca ; Brenes, Elena Sanchez ; Mann, Elizabeth K. ; Kooijman, Edgar E.</creator><creatorcontrib>Titus, Amber R. ; Ridgway, Ellyse N. ; Douglas, Rebecca ; Brenes, Elena Sanchez ; Mann, Elizabeth K. ; Kooijman, Edgar E.</creatorcontrib><description>Lipid droplets (LDs) are ubiquitously expressed organelles; the only intracellular organelles that contain a lipid monolayer rather than a bilayer. Proteins localize and bind to this monolayer as they do to intracellular lipid bilayers. The mechanism by which cytosolic LD binding proteins recognize, and bind, to this lipid interface remains poorly understood. Amphipathic alpha-helix bundles form a common motif that is shared between cytosolic LD binding proteins (e.g., perilipins 2, 3, and 5) and apolipoproteins, such as apoE and apoLp-III, found on lipoprotein particles. Here, we use pendant drop tensiometry to expand our previous work on the C-terminal alpha-helix bundle of perilipin 3 and the full-length protein. We measure the recruitment and insertion of perilipin 3 at mixed lipid monolayers at an aqueous-phospholipid-oil interface. We find that, compared to its C-terminus alone, the full-length perilipin 3 has a higher affinity for both a neat oil/aqueous interface and a phosphatidylcholine (PC) coated oil/aqueous interface. Both the full-length protein and the C-terminus show significantly more insertion into a fully unsaturated PC monolayer, contrary to our previous results at the air-aqueous interface. Additionally, the C-terminus shows a preference for lipid monolayers containing phosphatidylethanolamine (PE), whereas the full-length protein does not. These results strongly support a model whereby both the N-terminal 11-mer repeat region and C-terminal amphipathic alpha-helix bundle domains of perilipin 3 have distinct lipid binding, and potentially biological roles.</description><identifier>ISSN: 2077-0375</identifier><identifier>EISSN: 2077-0375</identifier><identifier>DOI: 10.3390/membranes11040265</identifier><identifier>PMID: 33917451</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>Amino acids ; amphipathic α-helix bundle ; Apolipoprotein E ; Apolipoproteins ; Binding ; Biochemistry &amp; Molecular Biology ; Biosynthesis ; C-Terminus ; Chemistry ; Chemistry, Physical ; Engineering ; Engineering, Chemical ; Insertion ; Interfaces ; interfacial tension ; Intracellular ; Lecithin ; Life Sciences &amp; Biomedicine ; Lipid bilayers ; lipid droplet ; Lipid monolayers ; Lipids ; Lipoproteins ; Materials Science ; Materials Science, Multidisciplinary ; Metabolism ; Monolayers ; Oil ; Organelles ; perilipins ; Phosphatidylcholine ; Phosphatidylethanolamine ; Phospholipids ; Physical Sciences ; Polymer Science ; Proteins ; Science &amp; Technology ; Sterols ; Technology</subject><ispartof>Membranes (Basel), 2021-04, Vol.11 (4), p.265, Article 265</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>8</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000643236800001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c493t-eb35973944a0d97daffa1c2284b582da5ac125ee238ebd30a1ea435565ab27e83</citedby><cites>FETCH-LOGICAL-c493t-eb35973944a0d97daffa1c2284b582da5ac125ee238ebd30a1ea435565ab27e83</cites><orcidid>0000-0002-9670-2634 ; 0000-0002-1030-437X ; 0000-0003-0860-9358</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8067514/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8067514/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2115,27929,27930,39263,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33917451$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Titus, Amber R.</creatorcontrib><creatorcontrib>Ridgway, Ellyse N.</creatorcontrib><creatorcontrib>Douglas, Rebecca</creatorcontrib><creatorcontrib>Brenes, Elena Sanchez</creatorcontrib><creatorcontrib>Mann, Elizabeth K.</creatorcontrib><creatorcontrib>Kooijman, Edgar E.</creatorcontrib><title>The C-Terminus of Perilipin 3 Shows Distinct Lipid Binding at Phospholipid-Oil-Aqueous Interfaces</title><title>Membranes (Basel)</title><addtitle>MEMBRANES-BASEL</addtitle><addtitle>Membranes (Basel)</addtitle><description>Lipid droplets (LDs) are ubiquitously expressed organelles; the only intracellular organelles that contain a lipid monolayer rather than a bilayer. Proteins localize and bind to this monolayer as they do to intracellular lipid bilayers. The mechanism by which cytosolic LD binding proteins recognize, and bind, to this lipid interface remains poorly understood. Amphipathic alpha-helix bundles form a common motif that is shared between cytosolic LD binding proteins (e.g., perilipins 2, 3, and 5) and apolipoproteins, such as apoE and apoLp-III, found on lipoprotein particles. Here, we use pendant drop tensiometry to expand our previous work on the C-terminal alpha-helix bundle of perilipin 3 and the full-length protein. We measure the recruitment and insertion of perilipin 3 at mixed lipid monolayers at an aqueous-phospholipid-oil interface. We find that, compared to its C-terminus alone, the full-length perilipin 3 has a higher affinity for both a neat oil/aqueous interface and a phosphatidylcholine (PC) coated oil/aqueous interface. Both the full-length protein and the C-terminus show significantly more insertion into a fully unsaturated PC monolayer, contrary to our previous results at the air-aqueous interface. Additionally, the C-terminus shows a preference for lipid monolayers containing phosphatidylethanolamine (PE), whereas the full-length protein does not. These results strongly support a model whereby both the N-terminal 11-mer repeat region and C-terminal amphipathic alpha-helix bundle domains of perilipin 3 have distinct lipid binding, and potentially biological roles.</description><subject>Amino acids</subject><subject>amphipathic α-helix bundle</subject><subject>Apolipoprotein E</subject><subject>Apolipoproteins</subject><subject>Binding</subject><subject>Biochemistry &amp; Molecular Biology</subject><subject>Biosynthesis</subject><subject>C-Terminus</subject><subject>Chemistry</subject><subject>Chemistry, Physical</subject><subject>Engineering</subject><subject>Engineering, Chemical</subject><subject>Insertion</subject><subject>Interfaces</subject><subject>interfacial tension</subject><subject>Intracellular</subject><subject>Lecithin</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Lipid bilayers</subject><subject>lipid droplet</subject><subject>Lipid monolayers</subject><subject>Lipids</subject><subject>Lipoproteins</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Metabolism</subject><subject>Monolayers</subject><subject>Oil</subject><subject>Organelles</subject><subject>perilipins</subject><subject>Phosphatidylcholine</subject><subject>Phosphatidylethanolamine</subject><subject>Phospholipids</subject><subject>Physical Sciences</subject><subject>Polymer Science</subject><subject>Proteins</subject><subject>Science &amp; Technology</subject><subject>Sterols</subject><subject>Technology</subject><issn>2077-0375</issn><issn>2077-0375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl2L1DAUhoso7rLuD_BGCt4IUs132xthrV8DA7vgeB3S5HQmQ5uMSerivzd11mFXb8xNwsmTN8l73qJ4jtEbSlv0doKpD8pBxBgxRAR_VJwTVNcVojV_fG99VlzGuEd5CMQFRU-LsyyAa8bxeaE2Oyi7agNhsm6OpR_KGwh2tAfrSlp-3fnbWH6wMVmnU7nOZVO-t85Yty1VKm92Ph52fsFNdW3H6ur7DD7rrFyCMCgN8VnxZFBjhMu7-aL49unjpvtSra8_r7qrdaVZS1MFPeVtTVvGFDJtbdQwKKwJaVjPG2IUVxoTDkBoA72hSGFQjHIuuOpJDQ29KFZHXePVXh6CnVT4Kb2y8nfBh61UIVk9ghQ8W0G06DEhTLSohZ6wuhdGKMwNrbPWu6PWYe4nMBpcCmp8IPpwx9md3PofskGi5phlgVd3AsFnR2KSk40axjE3LNsjCSeoEbhtlrte_oXu_RxctipTFGGRm0UzhY-UDj7GAMPpMRjJJQ_ynzzkMy_u_-J04k_3M_D6CNxC74eoLTgNJ2wJDKOEimbJzkI3_093Nqlkvev87BL9BVTC0so</recordid><startdate>20210406</startdate><enddate>20210406</enddate><creator>Titus, Amber R.</creator><creator>Ridgway, Ellyse N.</creator><creator>Douglas, Rebecca</creator><creator>Brenes, Elena Sanchez</creator><creator>Mann, Elizabeth K.</creator><creator>Kooijman, Edgar E.</creator><general>Mdpi</general><general>MDPI AG</general><general>MDPI</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9670-2634</orcidid><orcidid>https://orcid.org/0000-0002-1030-437X</orcidid><orcidid>https://orcid.org/0000-0003-0860-9358</orcidid></search><sort><creationdate>20210406</creationdate><title>The C-Terminus of Perilipin 3 Shows Distinct Lipid Binding at Phospholipid-Oil-Aqueous Interfaces</title><author>Titus, Amber R. ; Ridgway, Ellyse N. ; Douglas, Rebecca ; Brenes, Elena Sanchez ; Mann, Elizabeth K. ; Kooijman, Edgar E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c493t-eb35973944a0d97daffa1c2284b582da5ac125ee238ebd30a1ea435565ab27e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Amino acids</topic><topic>amphipathic α-helix bundle</topic><topic>Apolipoprotein E</topic><topic>Apolipoproteins</topic><topic>Binding</topic><topic>Biochemistry &amp; Molecular Biology</topic><topic>Biosynthesis</topic><topic>C-Terminus</topic><topic>Chemistry</topic><topic>Chemistry, Physical</topic><topic>Engineering</topic><topic>Engineering, Chemical</topic><topic>Insertion</topic><topic>Interfaces</topic><topic>interfacial tension</topic><topic>Intracellular</topic><topic>Lecithin</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Lipid bilayers</topic><topic>lipid droplet</topic><topic>Lipid monolayers</topic><topic>Lipids</topic><topic>Lipoproteins</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Metabolism</topic><topic>Monolayers</topic><topic>Oil</topic><topic>Organelles</topic><topic>perilipins</topic><topic>Phosphatidylcholine</topic><topic>Phosphatidylethanolamine</topic><topic>Phospholipids</topic><topic>Physical Sciences</topic><topic>Polymer Science</topic><topic>Proteins</topic><topic>Science &amp; Technology</topic><topic>Sterols</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Titus, Amber R.</creatorcontrib><creatorcontrib>Ridgway, Ellyse N.</creatorcontrib><creatorcontrib>Douglas, Rebecca</creatorcontrib><creatorcontrib>Brenes, Elena Sanchez</creatorcontrib><creatorcontrib>Mann, Elizabeth K.</creatorcontrib><creatorcontrib>Kooijman, Edgar E.</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Membranes (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Titus, Amber R.</au><au>Ridgway, Ellyse N.</au><au>Douglas, Rebecca</au><au>Brenes, Elena Sanchez</au><au>Mann, Elizabeth K.</au><au>Kooijman, Edgar E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The C-Terminus of Perilipin 3 Shows Distinct Lipid Binding at Phospholipid-Oil-Aqueous Interfaces</atitle><jtitle>Membranes (Basel)</jtitle><stitle>MEMBRANES-BASEL</stitle><addtitle>Membranes (Basel)</addtitle><date>2021-04-06</date><risdate>2021</risdate><volume>11</volume><issue>4</issue><spage>265</spage><pages>265-</pages><artnum>265</artnum><issn>2077-0375</issn><eissn>2077-0375</eissn><abstract>Lipid droplets (LDs) are ubiquitously expressed organelles; the only intracellular organelles that contain a lipid monolayer rather than a bilayer. Proteins localize and bind to this monolayer as they do to intracellular lipid bilayers. The mechanism by which cytosolic LD binding proteins recognize, and bind, to this lipid interface remains poorly understood. Amphipathic alpha-helix bundles form a common motif that is shared between cytosolic LD binding proteins (e.g., perilipins 2, 3, and 5) and apolipoproteins, such as apoE and apoLp-III, found on lipoprotein particles. Here, we use pendant drop tensiometry to expand our previous work on the C-terminal alpha-helix bundle of perilipin 3 and the full-length protein. We measure the recruitment and insertion of perilipin 3 at mixed lipid monolayers at an aqueous-phospholipid-oil interface. We find that, compared to its C-terminus alone, the full-length perilipin 3 has a higher affinity for both a neat oil/aqueous interface and a phosphatidylcholine (PC) coated oil/aqueous interface. Both the full-length protein and the C-terminus show significantly more insertion into a fully unsaturated PC monolayer, contrary to our previous results at the air-aqueous interface. Additionally, the C-terminus shows a preference for lipid monolayers containing phosphatidylethanolamine (PE), whereas the full-length protein does not. These results strongly support a model whereby both the N-terminal 11-mer repeat region and C-terminal amphipathic alpha-helix bundle domains of perilipin 3 have distinct lipid binding, and potentially biological roles.</abstract><cop>BASEL</cop><pub>Mdpi</pub><pmid>33917451</pmid><doi>10.3390/membranes11040265</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-9670-2634</orcidid><orcidid>https://orcid.org/0000-0002-1030-437X</orcidid><orcidid>https://orcid.org/0000-0003-0860-9358</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2077-0375
ispartof Membranes (Basel), 2021-04, Vol.11 (4), p.265, Article 265
issn 2077-0375
2077-0375
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8067514
source DOAJ Directory of Open Access Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Amino acids
amphipathic α-helix bundle
Apolipoprotein E
Apolipoproteins
Binding
Biochemistry & Molecular Biology
Biosynthesis
C-Terminus
Chemistry
Chemistry, Physical
Engineering
Engineering, Chemical
Insertion
Interfaces
interfacial tension
Intracellular
Lecithin
Life Sciences & Biomedicine
Lipid bilayers
lipid droplet
Lipid monolayers
Lipids
Lipoproteins
Materials Science
Materials Science, Multidisciplinary
Metabolism
Monolayers
Oil
Organelles
perilipins
Phosphatidylcholine
Phosphatidylethanolamine
Phospholipids
Physical Sciences
Polymer Science
Proteins
Science & Technology
Sterols
Technology
title The C-Terminus of Perilipin 3 Shows Distinct Lipid Binding at Phospholipid-Oil-Aqueous Interfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T17%3A16%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20C-Terminus%20of%20Perilipin%203%20Shows%20Distinct%20Lipid%20Binding%20at%20Phospholipid-Oil-Aqueous%20Interfaces&rft.jtitle=Membranes%20(Basel)&rft.au=Titus,%20Amber%20R.&rft.date=2021-04-06&rft.volume=11&rft.issue=4&rft.spage=265&rft.pages=265-&rft.artnum=265&rft.issn=2077-0375&rft.eissn=2077-0375&rft_id=info:doi/10.3390/membranes11040265&rft_dat=%3Cproquest_pubme%3E2530163393%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2530163393&rft_id=info:pmid/33917451&rft_doaj_id=oai_doaj_org_article_650602c6b12246909eb247b6d6a15d37&rfr_iscdi=true