The C-Terminus of Perilipin 3 Shows Distinct Lipid Binding at Phospholipid-Oil-Aqueous Interfaces
Lipid droplets (LDs) are ubiquitously expressed organelles; the only intracellular organelles that contain a lipid monolayer rather than a bilayer. Proteins localize and bind to this monolayer as they do to intracellular lipid bilayers. The mechanism by which cytosolic LD binding proteins recognize,...
Gespeichert in:
Veröffentlicht in: | Membranes (Basel) 2021-04, Vol.11 (4), p.265, Article 265 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | 265 |
container_title | Membranes (Basel) |
container_volume | 11 |
creator | Titus, Amber R. Ridgway, Ellyse N. Douglas, Rebecca Brenes, Elena Sanchez Mann, Elizabeth K. Kooijman, Edgar E. |
description | Lipid droplets (LDs) are ubiquitously expressed organelles; the only intracellular organelles that contain a lipid monolayer rather than a bilayer. Proteins localize and bind to this monolayer as they do to intracellular lipid bilayers. The mechanism by which cytosolic LD binding proteins recognize, and bind, to this lipid interface remains poorly understood. Amphipathic alpha-helix bundles form a common motif that is shared between cytosolic LD binding proteins (e.g., perilipins 2, 3, and 5) and apolipoproteins, such as apoE and apoLp-III, found on lipoprotein particles. Here, we use pendant drop tensiometry to expand our previous work on the C-terminal alpha-helix bundle of perilipin 3 and the full-length protein. We measure the recruitment and insertion of perilipin 3 at mixed lipid monolayers at an aqueous-phospholipid-oil interface. We find that, compared to its C-terminus alone, the full-length perilipin 3 has a higher affinity for both a neat oil/aqueous interface and a phosphatidylcholine (PC) coated oil/aqueous interface. Both the full-length protein and the C-terminus show significantly more insertion into a fully unsaturated PC monolayer, contrary to our previous results at the air-aqueous interface. Additionally, the C-terminus shows a preference for lipid monolayers containing phosphatidylethanolamine (PE), whereas the full-length protein does not. These results strongly support a model whereby both the N-terminal 11-mer repeat region and C-terminal amphipathic alpha-helix bundle domains of perilipin 3 have distinct lipid binding, and potentially biological roles. |
doi_str_mv | 10.3390/membranes11040265 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8067514</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_650602c6b12246909eb247b6d6a15d37</doaj_id><sourcerecordid>2530163393</sourcerecordid><originalsourceid>FETCH-LOGICAL-c493t-eb35973944a0d97daffa1c2284b582da5ac125ee238ebd30a1ea435565ab27e83</originalsourceid><addsrcrecordid>eNqNkl2L1DAUhoso7rLuD_BGCt4IUs132xthrV8DA7vgeB3S5HQmQ5uMSerivzd11mFXb8xNwsmTN8l73qJ4jtEbSlv0doKpD8pBxBgxRAR_VJwTVNcVojV_fG99VlzGuEd5CMQFRU-LsyyAa8bxeaE2Oyi7agNhsm6OpR_KGwh2tAfrSlp-3fnbWH6wMVmnU7nOZVO-t85Yty1VKm92Ph52fsFNdW3H6ur7DD7rrFyCMCgN8VnxZFBjhMu7-aL49unjpvtSra8_r7qrdaVZS1MFPeVtTVvGFDJtbdQwKKwJaVjPG2IUVxoTDkBoA72hSGFQjHIuuOpJDQ29KFZHXePVXh6CnVT4Kb2y8nfBh61UIVk9ghQ8W0G06DEhTLSohZ6wuhdGKMwNrbPWu6PWYe4nMBpcCmp8IPpwx9md3PofskGi5phlgVd3AsFnR2KSk40axjE3LNsjCSeoEbhtlrte_oXu_RxctipTFGGRm0UzhY-UDj7GAMPpMRjJJQ_ynzzkMy_u_-J04k_3M_D6CNxC74eoLTgNJ2wJDKOEimbJzkI3_093Nqlkvev87BL9BVTC0so</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2530163393</pqid></control><display><type>article</type><title>The C-Terminus of Perilipin 3 Shows Distinct Lipid Binding at Phospholipid-Oil-Aqueous Interfaces</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Titus, Amber R. ; Ridgway, Ellyse N. ; Douglas, Rebecca ; Brenes, Elena Sanchez ; Mann, Elizabeth K. ; Kooijman, Edgar E.</creator><creatorcontrib>Titus, Amber R. ; Ridgway, Ellyse N. ; Douglas, Rebecca ; Brenes, Elena Sanchez ; Mann, Elizabeth K. ; Kooijman, Edgar E.</creatorcontrib><description>Lipid droplets (LDs) are ubiquitously expressed organelles; the only intracellular organelles that contain a lipid monolayer rather than a bilayer. Proteins localize and bind to this monolayer as they do to intracellular lipid bilayers. The mechanism by which cytosolic LD binding proteins recognize, and bind, to this lipid interface remains poorly understood. Amphipathic alpha-helix bundles form a common motif that is shared between cytosolic LD binding proteins (e.g., perilipins 2, 3, and 5) and apolipoproteins, such as apoE and apoLp-III, found on lipoprotein particles. Here, we use pendant drop tensiometry to expand our previous work on the C-terminal alpha-helix bundle of perilipin 3 and the full-length protein. We measure the recruitment and insertion of perilipin 3 at mixed lipid monolayers at an aqueous-phospholipid-oil interface. We find that, compared to its C-terminus alone, the full-length perilipin 3 has a higher affinity for both a neat oil/aqueous interface and a phosphatidylcholine (PC) coated oil/aqueous interface. Both the full-length protein and the C-terminus show significantly more insertion into a fully unsaturated PC monolayer, contrary to our previous results at the air-aqueous interface. Additionally, the C-terminus shows a preference for lipid monolayers containing phosphatidylethanolamine (PE), whereas the full-length protein does not. These results strongly support a model whereby both the N-terminal 11-mer repeat region and C-terminal amphipathic alpha-helix bundle domains of perilipin 3 have distinct lipid binding, and potentially biological roles.</description><identifier>ISSN: 2077-0375</identifier><identifier>EISSN: 2077-0375</identifier><identifier>DOI: 10.3390/membranes11040265</identifier><identifier>PMID: 33917451</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>Amino acids ; amphipathic α-helix bundle ; Apolipoprotein E ; Apolipoproteins ; Binding ; Biochemistry & Molecular Biology ; Biosynthesis ; C-Terminus ; Chemistry ; Chemistry, Physical ; Engineering ; Engineering, Chemical ; Insertion ; Interfaces ; interfacial tension ; Intracellular ; Lecithin ; Life Sciences & Biomedicine ; Lipid bilayers ; lipid droplet ; Lipid monolayers ; Lipids ; Lipoproteins ; Materials Science ; Materials Science, Multidisciplinary ; Metabolism ; Monolayers ; Oil ; Organelles ; perilipins ; Phosphatidylcholine ; Phosphatidylethanolamine ; Phospholipids ; Physical Sciences ; Polymer Science ; Proteins ; Science & Technology ; Sterols ; Technology</subject><ispartof>Membranes (Basel), 2021-04, Vol.11 (4), p.265, Article 265</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>8</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000643236800001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c493t-eb35973944a0d97daffa1c2284b582da5ac125ee238ebd30a1ea435565ab27e83</citedby><cites>FETCH-LOGICAL-c493t-eb35973944a0d97daffa1c2284b582da5ac125ee238ebd30a1ea435565ab27e83</cites><orcidid>0000-0002-9670-2634 ; 0000-0002-1030-437X ; 0000-0003-0860-9358</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8067514/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8067514/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2115,27929,27930,39263,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33917451$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Titus, Amber R.</creatorcontrib><creatorcontrib>Ridgway, Ellyse N.</creatorcontrib><creatorcontrib>Douglas, Rebecca</creatorcontrib><creatorcontrib>Brenes, Elena Sanchez</creatorcontrib><creatorcontrib>Mann, Elizabeth K.</creatorcontrib><creatorcontrib>Kooijman, Edgar E.</creatorcontrib><title>The C-Terminus of Perilipin 3 Shows Distinct Lipid Binding at Phospholipid-Oil-Aqueous Interfaces</title><title>Membranes (Basel)</title><addtitle>MEMBRANES-BASEL</addtitle><addtitle>Membranes (Basel)</addtitle><description>Lipid droplets (LDs) are ubiquitously expressed organelles; the only intracellular organelles that contain a lipid monolayer rather than a bilayer. Proteins localize and bind to this monolayer as they do to intracellular lipid bilayers. The mechanism by which cytosolic LD binding proteins recognize, and bind, to this lipid interface remains poorly understood. Amphipathic alpha-helix bundles form a common motif that is shared between cytosolic LD binding proteins (e.g., perilipins 2, 3, and 5) and apolipoproteins, such as apoE and apoLp-III, found on lipoprotein particles. Here, we use pendant drop tensiometry to expand our previous work on the C-terminal alpha-helix bundle of perilipin 3 and the full-length protein. We measure the recruitment and insertion of perilipin 3 at mixed lipid monolayers at an aqueous-phospholipid-oil interface. We find that, compared to its C-terminus alone, the full-length perilipin 3 has a higher affinity for both a neat oil/aqueous interface and a phosphatidylcholine (PC) coated oil/aqueous interface. Both the full-length protein and the C-terminus show significantly more insertion into a fully unsaturated PC monolayer, contrary to our previous results at the air-aqueous interface. Additionally, the C-terminus shows a preference for lipid monolayers containing phosphatidylethanolamine (PE), whereas the full-length protein does not. These results strongly support a model whereby both the N-terminal 11-mer repeat region and C-terminal amphipathic alpha-helix bundle domains of perilipin 3 have distinct lipid binding, and potentially biological roles.</description><subject>Amino acids</subject><subject>amphipathic α-helix bundle</subject><subject>Apolipoprotein E</subject><subject>Apolipoproteins</subject><subject>Binding</subject><subject>Biochemistry & Molecular Biology</subject><subject>Biosynthesis</subject><subject>C-Terminus</subject><subject>Chemistry</subject><subject>Chemistry, Physical</subject><subject>Engineering</subject><subject>Engineering, Chemical</subject><subject>Insertion</subject><subject>Interfaces</subject><subject>interfacial tension</subject><subject>Intracellular</subject><subject>Lecithin</subject><subject>Life Sciences & Biomedicine</subject><subject>Lipid bilayers</subject><subject>lipid droplet</subject><subject>Lipid monolayers</subject><subject>Lipids</subject><subject>Lipoproteins</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Metabolism</subject><subject>Monolayers</subject><subject>Oil</subject><subject>Organelles</subject><subject>perilipins</subject><subject>Phosphatidylcholine</subject><subject>Phosphatidylethanolamine</subject><subject>Phospholipids</subject><subject>Physical Sciences</subject><subject>Polymer Science</subject><subject>Proteins</subject><subject>Science & Technology</subject><subject>Sterols</subject><subject>Technology</subject><issn>2077-0375</issn><issn>2077-0375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl2L1DAUhoso7rLuD_BGCt4IUs132xthrV8DA7vgeB3S5HQmQ5uMSerivzd11mFXb8xNwsmTN8l73qJ4jtEbSlv0doKpD8pBxBgxRAR_VJwTVNcVojV_fG99VlzGuEd5CMQFRU-LsyyAa8bxeaE2Oyi7agNhsm6OpR_KGwh2tAfrSlp-3fnbWH6wMVmnU7nOZVO-t85Yty1VKm92Ph52fsFNdW3H6ur7DD7rrFyCMCgN8VnxZFBjhMu7-aL49unjpvtSra8_r7qrdaVZS1MFPeVtTVvGFDJtbdQwKKwJaVjPG2IUVxoTDkBoA72hSGFQjHIuuOpJDQ29KFZHXePVXh6CnVT4Kb2y8nfBh61UIVk9ghQ8W0G06DEhTLSohZ6wuhdGKMwNrbPWu6PWYe4nMBpcCmp8IPpwx9md3PofskGi5phlgVd3AsFnR2KSk40axjE3LNsjCSeoEbhtlrte_oXu_RxctipTFGGRm0UzhY-UDj7GAMPpMRjJJQ_ynzzkMy_u_-J04k_3M_D6CNxC74eoLTgNJ2wJDKOEimbJzkI3_093Nqlkvev87BL9BVTC0so</recordid><startdate>20210406</startdate><enddate>20210406</enddate><creator>Titus, Amber R.</creator><creator>Ridgway, Ellyse N.</creator><creator>Douglas, Rebecca</creator><creator>Brenes, Elena Sanchez</creator><creator>Mann, Elizabeth K.</creator><creator>Kooijman, Edgar E.</creator><general>Mdpi</general><general>MDPI AG</general><general>MDPI</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9670-2634</orcidid><orcidid>https://orcid.org/0000-0002-1030-437X</orcidid><orcidid>https://orcid.org/0000-0003-0860-9358</orcidid></search><sort><creationdate>20210406</creationdate><title>The C-Terminus of Perilipin 3 Shows Distinct Lipid Binding at Phospholipid-Oil-Aqueous Interfaces</title><author>Titus, Amber R. ; Ridgway, Ellyse N. ; Douglas, Rebecca ; Brenes, Elena Sanchez ; Mann, Elizabeth K. ; Kooijman, Edgar E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c493t-eb35973944a0d97daffa1c2284b582da5ac125ee238ebd30a1ea435565ab27e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Amino acids</topic><topic>amphipathic α-helix bundle</topic><topic>Apolipoprotein E</topic><topic>Apolipoproteins</topic><topic>Binding</topic><topic>Biochemistry & Molecular Biology</topic><topic>Biosynthesis</topic><topic>C-Terminus</topic><topic>Chemistry</topic><topic>Chemistry, Physical</topic><topic>Engineering</topic><topic>Engineering, Chemical</topic><topic>Insertion</topic><topic>Interfaces</topic><topic>interfacial tension</topic><topic>Intracellular</topic><topic>Lecithin</topic><topic>Life Sciences & Biomedicine</topic><topic>Lipid bilayers</topic><topic>lipid droplet</topic><topic>Lipid monolayers</topic><topic>Lipids</topic><topic>Lipoproteins</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Metabolism</topic><topic>Monolayers</topic><topic>Oil</topic><topic>Organelles</topic><topic>perilipins</topic><topic>Phosphatidylcholine</topic><topic>Phosphatidylethanolamine</topic><topic>Phospholipids</topic><topic>Physical Sciences</topic><topic>Polymer Science</topic><topic>Proteins</topic><topic>Science & Technology</topic><topic>Sterols</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Titus, Amber R.</creatorcontrib><creatorcontrib>Ridgway, Ellyse N.</creatorcontrib><creatorcontrib>Douglas, Rebecca</creatorcontrib><creatorcontrib>Brenes, Elena Sanchez</creatorcontrib><creatorcontrib>Mann, Elizabeth K.</creatorcontrib><creatorcontrib>Kooijman, Edgar E.</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Membranes (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Titus, Amber R.</au><au>Ridgway, Ellyse N.</au><au>Douglas, Rebecca</au><au>Brenes, Elena Sanchez</au><au>Mann, Elizabeth K.</au><au>Kooijman, Edgar E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The C-Terminus of Perilipin 3 Shows Distinct Lipid Binding at Phospholipid-Oil-Aqueous Interfaces</atitle><jtitle>Membranes (Basel)</jtitle><stitle>MEMBRANES-BASEL</stitle><addtitle>Membranes (Basel)</addtitle><date>2021-04-06</date><risdate>2021</risdate><volume>11</volume><issue>4</issue><spage>265</spage><pages>265-</pages><artnum>265</artnum><issn>2077-0375</issn><eissn>2077-0375</eissn><abstract>Lipid droplets (LDs) are ubiquitously expressed organelles; the only intracellular organelles that contain a lipid monolayer rather than a bilayer. Proteins localize and bind to this monolayer as they do to intracellular lipid bilayers. The mechanism by which cytosolic LD binding proteins recognize, and bind, to this lipid interface remains poorly understood. Amphipathic alpha-helix bundles form a common motif that is shared between cytosolic LD binding proteins (e.g., perilipins 2, 3, and 5) and apolipoproteins, such as apoE and apoLp-III, found on lipoprotein particles. Here, we use pendant drop tensiometry to expand our previous work on the C-terminal alpha-helix bundle of perilipin 3 and the full-length protein. We measure the recruitment and insertion of perilipin 3 at mixed lipid monolayers at an aqueous-phospholipid-oil interface. We find that, compared to its C-terminus alone, the full-length perilipin 3 has a higher affinity for both a neat oil/aqueous interface and a phosphatidylcholine (PC) coated oil/aqueous interface. Both the full-length protein and the C-terminus show significantly more insertion into a fully unsaturated PC monolayer, contrary to our previous results at the air-aqueous interface. Additionally, the C-terminus shows a preference for lipid monolayers containing phosphatidylethanolamine (PE), whereas the full-length protein does not. These results strongly support a model whereby both the N-terminal 11-mer repeat region and C-terminal amphipathic alpha-helix bundle domains of perilipin 3 have distinct lipid binding, and potentially biological roles.</abstract><cop>BASEL</cop><pub>Mdpi</pub><pmid>33917451</pmid><doi>10.3390/membranes11040265</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-9670-2634</orcidid><orcidid>https://orcid.org/0000-0002-1030-437X</orcidid><orcidid>https://orcid.org/0000-0003-0860-9358</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2077-0375 |
ispartof | Membranes (Basel), 2021-04, Vol.11 (4), p.265, Article 265 |
issn | 2077-0375 2077-0375 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8067514 |
source | DOAJ Directory of Open Access Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Amino acids amphipathic α-helix bundle Apolipoprotein E Apolipoproteins Binding Biochemistry & Molecular Biology Biosynthesis C-Terminus Chemistry Chemistry, Physical Engineering Engineering, Chemical Insertion Interfaces interfacial tension Intracellular Lecithin Life Sciences & Biomedicine Lipid bilayers lipid droplet Lipid monolayers Lipids Lipoproteins Materials Science Materials Science, Multidisciplinary Metabolism Monolayers Oil Organelles perilipins Phosphatidylcholine Phosphatidylethanolamine Phospholipids Physical Sciences Polymer Science Proteins Science & Technology Sterols Technology |
title | The C-Terminus of Perilipin 3 Shows Distinct Lipid Binding at Phospholipid-Oil-Aqueous Interfaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T17%3A16%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20C-Terminus%20of%20Perilipin%203%20Shows%20Distinct%20Lipid%20Binding%20at%20Phospholipid-Oil-Aqueous%20Interfaces&rft.jtitle=Membranes%20(Basel)&rft.au=Titus,%20Amber%20R.&rft.date=2021-04-06&rft.volume=11&rft.issue=4&rft.spage=265&rft.pages=265-&rft.artnum=265&rft.issn=2077-0375&rft.eissn=2077-0375&rft_id=info:doi/10.3390/membranes11040265&rft_dat=%3Cproquest_pubme%3E2530163393%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2530163393&rft_id=info:pmid/33917451&rft_doaj_id=oai_doaj_org_article_650602c6b12246909eb247b6d6a15d37&rfr_iscdi=true |