The molecular basis and disease relevance of non-homologous DNA end joining

Non-homologous DNA end joining (NHEJ) is the predominant repair mechanism of any type of DNA double-strand break (DSB) during most of the cell cycle and is essential for the development of antigen receptors. Defects in NHEJ result in sensitivity to ionizing radiation and loss of lymphocytes. The mos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature reviews. Molecular cell biology 2020-12, Vol.21 (12), p.765-781
Hauptverfasser: Zhao, Bailin, Rothenberg, Eli, Ramsden, Dale A., Lieber, Michael R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 781
container_issue 12
container_start_page 765
container_title Nature reviews. Molecular cell biology
container_volume 21
creator Zhao, Bailin
Rothenberg, Eli
Ramsden, Dale A.
Lieber, Michael R.
description Non-homologous DNA end joining (NHEJ) is the predominant repair mechanism of any type of DNA double-strand break (DSB) during most of the cell cycle and is essential for the development of antigen receptors. Defects in NHEJ result in sensitivity to ionizing radiation and loss of lymphocytes. The most critical step of NHEJ is synapsis, or the juxtaposition of the two DNA ends of a DSB, because all subsequent steps rely on it. Recent findings show that, like the end processing step, synapsis can be achieved through several mechanisms. In this Review, we first discuss repair pathway choice between NHEJ and other DSB repair pathways. We then integrate recent insights into the mechanisms of NHEJ synapsis with updates on other steps of NHEJ, such as DNA end processing and ligation. Finally, we discuss NHEJ-related human diseases, including inherited disorders and neoplasia, which arise from rare failures at different NHEJ steps. Non-homologous DNA end joining (NHEJ) is the main repair pathway of DNA double-strand breaks. Recent studies show that synapsis — the crucial pairing of DNA ends — is performed by several mechanisms, and this insight can now be integrated with updates on the DNA end processing and ligation steps of NHEJ, and with NHEJ-related human diseases.
doi_str_mv 10.1038/s41580-020-00297-8
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8063501</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A642323673</galeid><sourcerecordid>A642323673</sourcerecordid><originalsourceid>FETCH-LOGICAL-c641t-a9c53d8d18422604bd011bc59dc6e7cc628f61a45a02be0f9305bf275e42f0733</originalsourceid><addsrcrecordid>eNp9kl1rFDEUhoMotlb_gBcS8EYvpuZzkrkRlvpVLApar0Mmc2Y2y0xSk5mi_95st25dEQkhH-c5b_IeDkJPKTmlhOtXWVCpSUVYmYQ1qtL30DEVipajJvf3e8WO0KOcN4TQmir5EB1xTpTSWh6jj5drwFMcwS2jTbi12WdsQ4c7n8FmwAlGuLbBAY49DjFU61jwOMQl4zefVhgKu4k--DA8Rg96O2Z4crueoG_v3l6efaguPr8_P1tdVK4WdK5s4yTvdEe1YKwmou0Ipa2TTedqUM7VTPc1tUJawlogfcOJbHumJAjWE8X5CXq9071a2gk6B2FOdjRXyU82_TTRenMYCX5thnhtNKm5JLQIvLgVSPH7Ank2k88OxtEGKL4ME5LJUlahC_r8L3QTlxSKvUIp0WhKObujBjuC8aGP5V23FTWrWrBC1Df_Pv0HVUYHk3cxQO_L_UHCy4OEwszwYx7skrM5__rlkGU71qWYc4J-Xw9KzLZdzK5dTPFlbtrFbN09-7OS-5Tf_VEAvgNyCYUB0p39_8j-Akmtx6Y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2474981132</pqid></control><display><type>article</type><title>The molecular basis and disease relevance of non-homologous DNA end joining</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Zhao, Bailin ; Rothenberg, Eli ; Ramsden, Dale A. ; Lieber, Michael R.</creator><creatorcontrib>Zhao, Bailin ; Rothenberg, Eli ; Ramsden, Dale A. ; Lieber, Michael R.</creatorcontrib><description>Non-homologous DNA end joining (NHEJ) is the predominant repair mechanism of any type of DNA double-strand break (DSB) during most of the cell cycle and is essential for the development of antigen receptors. Defects in NHEJ result in sensitivity to ionizing radiation and loss of lymphocytes. The most critical step of NHEJ is synapsis, or the juxtaposition of the two DNA ends of a DSB, because all subsequent steps rely on it. Recent findings show that, like the end processing step, synapsis can be achieved through several mechanisms. In this Review, we first discuss repair pathway choice between NHEJ and other DSB repair pathways. We then integrate recent insights into the mechanisms of NHEJ synapsis with updates on other steps of NHEJ, such as DNA end processing and ligation. Finally, we discuss NHEJ-related human diseases, including inherited disorders and neoplasia, which arise from rare failures at different NHEJ steps. Non-homologous DNA end joining (NHEJ) is the main repair pathway of DNA double-strand breaks. Recent studies show that synapsis — the crucial pairing of DNA ends — is performed by several mechanisms, and this insight can now be integrated with updates on the DNA end processing and ligation steps of NHEJ, and with NHEJ-related human diseases.</description><identifier>ISSN: 1471-0072</identifier><identifier>EISSN: 1471-0080</identifier><identifier>DOI: 10.1038/s41580-020-00297-8</identifier><identifier>PMID: 33077885</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/337/1427/2191 ; 631/45 ; Animals ; Antigens ; Biochemistry ; Biomedical and Life Sciences ; Cancer Research ; Cell Biology ; Cell cycle ; Deoxyribonucleic acid ; Developmental Biology ; Disease - genetics ; DNA ; DNA Breaks, Double-Stranded ; DNA damage ; DNA End-Joining Repair - physiology ; DNA repair ; DNA Repair - physiology ; Double-strand break repair ; Genetic Diseases, Inborn - genetics ; Genetic research ; Health aspects ; Hereditary diseases ; Homology ; Humans ; Ionizing radiation ; Life Sciences ; Lymphocytes ; Neoplasms - genetics ; Neoplasms - pathology ; Non-homologous end joining ; Repair ; Review Article ; Signal Transduction - genetics ; Stem Cells</subject><ispartof>Nature reviews. Molecular cell biology, 2020-12, Vol.21 (12), p.765-781</ispartof><rights>Springer Nature Limited 2020</rights><rights>COPYRIGHT 2020 Nature Publishing Group</rights><rights>Springer Nature Limited 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c641t-a9c53d8d18422604bd011bc59dc6e7cc628f61a45a02be0f9305bf275e42f0733</citedby><cites>FETCH-LOGICAL-c641t-a9c53d8d18422604bd011bc59dc6e7cc628f61a45a02be0f9305bf275e42f0733</cites><orcidid>0000-0003-1575-4748 ; 0000-0001-5894-0079</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41580-020-00297-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41580-020-00297-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,777,781,882,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33077885$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Bailin</creatorcontrib><creatorcontrib>Rothenberg, Eli</creatorcontrib><creatorcontrib>Ramsden, Dale A.</creatorcontrib><creatorcontrib>Lieber, Michael R.</creatorcontrib><title>The molecular basis and disease relevance of non-homologous DNA end joining</title><title>Nature reviews. Molecular cell biology</title><addtitle>Nat Rev Mol Cell Biol</addtitle><addtitle>Nat Rev Mol Cell Biol</addtitle><description>Non-homologous DNA end joining (NHEJ) is the predominant repair mechanism of any type of DNA double-strand break (DSB) during most of the cell cycle and is essential for the development of antigen receptors. Defects in NHEJ result in sensitivity to ionizing radiation and loss of lymphocytes. The most critical step of NHEJ is synapsis, or the juxtaposition of the two DNA ends of a DSB, because all subsequent steps rely on it. Recent findings show that, like the end processing step, synapsis can be achieved through several mechanisms. In this Review, we first discuss repair pathway choice between NHEJ and other DSB repair pathways. We then integrate recent insights into the mechanisms of NHEJ synapsis with updates on other steps of NHEJ, such as DNA end processing and ligation. Finally, we discuss NHEJ-related human diseases, including inherited disorders and neoplasia, which arise from rare failures at different NHEJ steps. Non-homologous DNA end joining (NHEJ) is the main repair pathway of DNA double-strand breaks. Recent studies show that synapsis — the crucial pairing of DNA ends — is performed by several mechanisms, and this insight can now be integrated with updates on the DNA end processing and ligation steps of NHEJ, and with NHEJ-related human diseases.</description><subject>631/337/1427/2191</subject><subject>631/45</subject><subject>Animals</subject><subject>Antigens</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Cancer Research</subject><subject>Cell Biology</subject><subject>Cell cycle</subject><subject>Deoxyribonucleic acid</subject><subject>Developmental Biology</subject><subject>Disease - genetics</subject><subject>DNA</subject><subject>DNA Breaks, Double-Stranded</subject><subject>DNA damage</subject><subject>DNA End-Joining Repair - physiology</subject><subject>DNA repair</subject><subject>DNA Repair - physiology</subject><subject>Double-strand break repair</subject><subject>Genetic Diseases, Inborn - genetics</subject><subject>Genetic research</subject><subject>Health aspects</subject><subject>Hereditary diseases</subject><subject>Homology</subject><subject>Humans</subject><subject>Ionizing radiation</subject><subject>Life Sciences</subject><subject>Lymphocytes</subject><subject>Neoplasms - genetics</subject><subject>Neoplasms - pathology</subject><subject>Non-homologous end joining</subject><subject>Repair</subject><subject>Review Article</subject><subject>Signal Transduction - genetics</subject><subject>Stem Cells</subject><issn>1471-0072</issn><issn>1471-0080</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kl1rFDEUhoMotlb_gBcS8EYvpuZzkrkRlvpVLApar0Mmc2Y2y0xSk5mi_95st25dEQkhH-c5b_IeDkJPKTmlhOtXWVCpSUVYmYQ1qtL30DEVipajJvf3e8WO0KOcN4TQmir5EB1xTpTSWh6jj5drwFMcwS2jTbi12WdsQ4c7n8FmwAlGuLbBAY49DjFU61jwOMQl4zefVhgKu4k--DA8Rg96O2Z4crueoG_v3l6efaguPr8_P1tdVK4WdK5s4yTvdEe1YKwmou0Ipa2TTedqUM7VTPc1tUJawlogfcOJbHumJAjWE8X5CXq9071a2gk6B2FOdjRXyU82_TTRenMYCX5thnhtNKm5JLQIvLgVSPH7Ank2k88OxtEGKL4ME5LJUlahC_r8L3QTlxSKvUIp0WhKObujBjuC8aGP5V23FTWrWrBC1Df_Pv0HVUYHk3cxQO_L_UHCy4OEwszwYx7skrM5__rlkGU71qWYc4J-Xw9KzLZdzK5dTPFlbtrFbN09-7OS-5Tf_VEAvgNyCYUB0p39_8j-Akmtx6Y</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Zhao, Bailin</creator><creator>Rothenberg, Eli</creator><creator>Ramsden, Dale A.</creator><creator>Lieber, Michael R.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1575-4748</orcidid><orcidid>https://orcid.org/0000-0001-5894-0079</orcidid></search><sort><creationdate>20201201</creationdate><title>The molecular basis and disease relevance of non-homologous DNA end joining</title><author>Zhao, Bailin ; Rothenberg, Eli ; Ramsden, Dale A. ; Lieber, Michael R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c641t-a9c53d8d18422604bd011bc59dc6e7cc628f61a45a02be0f9305bf275e42f0733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/337/1427/2191</topic><topic>631/45</topic><topic>Animals</topic><topic>Antigens</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Cancer Research</topic><topic>Cell Biology</topic><topic>Cell cycle</topic><topic>Deoxyribonucleic acid</topic><topic>Developmental Biology</topic><topic>Disease - genetics</topic><topic>DNA</topic><topic>DNA Breaks, Double-Stranded</topic><topic>DNA damage</topic><topic>DNA End-Joining Repair - physiology</topic><topic>DNA repair</topic><topic>DNA Repair - physiology</topic><topic>Double-strand break repair</topic><topic>Genetic Diseases, Inborn - genetics</topic><topic>Genetic research</topic><topic>Health aspects</topic><topic>Hereditary diseases</topic><topic>Homology</topic><topic>Humans</topic><topic>Ionizing radiation</topic><topic>Life Sciences</topic><topic>Lymphocytes</topic><topic>Neoplasms - genetics</topic><topic>Neoplasms - pathology</topic><topic>Non-homologous end joining</topic><topic>Repair</topic><topic>Review Article</topic><topic>Signal Transduction - genetics</topic><topic>Stem Cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Bailin</creatorcontrib><creatorcontrib>Rothenberg, Eli</creatorcontrib><creatorcontrib>Ramsden, Dale A.</creatorcontrib><creatorcontrib>Lieber, Michael R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature reviews. Molecular cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Bailin</au><au>Rothenberg, Eli</au><au>Ramsden, Dale A.</au><au>Lieber, Michael R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The molecular basis and disease relevance of non-homologous DNA end joining</atitle><jtitle>Nature reviews. Molecular cell biology</jtitle><stitle>Nat Rev Mol Cell Biol</stitle><addtitle>Nat Rev Mol Cell Biol</addtitle><date>2020-12-01</date><risdate>2020</risdate><volume>21</volume><issue>12</issue><spage>765</spage><epage>781</epage><pages>765-781</pages><issn>1471-0072</issn><eissn>1471-0080</eissn><abstract>Non-homologous DNA end joining (NHEJ) is the predominant repair mechanism of any type of DNA double-strand break (DSB) during most of the cell cycle and is essential for the development of antigen receptors. Defects in NHEJ result in sensitivity to ionizing radiation and loss of lymphocytes. The most critical step of NHEJ is synapsis, or the juxtaposition of the two DNA ends of a DSB, because all subsequent steps rely on it. Recent findings show that, like the end processing step, synapsis can be achieved through several mechanisms. In this Review, we first discuss repair pathway choice between NHEJ and other DSB repair pathways. We then integrate recent insights into the mechanisms of NHEJ synapsis with updates on other steps of NHEJ, such as DNA end processing and ligation. Finally, we discuss NHEJ-related human diseases, including inherited disorders and neoplasia, which arise from rare failures at different NHEJ steps. Non-homologous DNA end joining (NHEJ) is the main repair pathway of DNA double-strand breaks. Recent studies show that synapsis — the crucial pairing of DNA ends — is performed by several mechanisms, and this insight can now be integrated with updates on the DNA end processing and ligation steps of NHEJ, and with NHEJ-related human diseases.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33077885</pmid><doi>10.1038/s41580-020-00297-8</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-1575-4748</orcidid><orcidid>https://orcid.org/0000-0001-5894-0079</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1471-0072
ispartof Nature reviews. Molecular cell biology, 2020-12, Vol.21 (12), p.765-781
issn 1471-0072
1471-0080
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8063501
source MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online
subjects 631/337/1427/2191
631/45
Animals
Antigens
Biochemistry
Biomedical and Life Sciences
Cancer Research
Cell Biology
Cell cycle
Deoxyribonucleic acid
Developmental Biology
Disease - genetics
DNA
DNA Breaks, Double-Stranded
DNA damage
DNA End-Joining Repair - physiology
DNA repair
DNA Repair - physiology
Double-strand break repair
Genetic Diseases, Inborn - genetics
Genetic research
Health aspects
Hereditary diseases
Homology
Humans
Ionizing radiation
Life Sciences
Lymphocytes
Neoplasms - genetics
Neoplasms - pathology
Non-homologous end joining
Repair
Review Article
Signal Transduction - genetics
Stem Cells
title The molecular basis and disease relevance of non-homologous DNA end joining
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T11%3A53%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20molecular%20basis%20and%20disease%20relevance%20of%20non-homologous%20DNA%20end%20joining&rft.jtitle=Nature%20reviews.%20Molecular%20cell%20biology&rft.au=Zhao,%20Bailin&rft.date=2020-12-01&rft.volume=21&rft.issue=12&rft.spage=765&rft.epage=781&rft.pages=765-781&rft.issn=1471-0072&rft.eissn=1471-0080&rft_id=info:doi/10.1038/s41580-020-00297-8&rft_dat=%3Cgale_pubme%3EA642323673%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2474981132&rft_id=info:pmid/33077885&rft_galeid=A642323673&rfr_iscdi=true